不等式选讲之不等式证明与数学归纳法单元过关检测卷(六)含答案新教材高中数学
高三数学不等式选讲试题答案及解析

高三数学不等式选讲试题答案及解析1.不等式的解集是.【答案】【解析】由绝对值的几何意义,数轴上之间的距离为,结合图形,当落在数轴上外时.满足不等式,故答案为.【考点】不等式选讲.2.不等式的解集是【答案】【解析】原不等式可化为,解得.考点:绝对值不等式解法3.已知函数(Ⅰ)证明:;(Ⅱ)求不等式:的解集.【答案】(Ⅰ)祥见解析;(Ⅱ).【解析】(Ⅰ)通过对x的范围分类讨论将函数f(x)=|x-2|-|x-5|中的绝对值符号去掉,转化为分段函数,即可解决;(Ⅱ)结合(1)对x分x≤2,2<x<5与x≥5三种情况讨论解决即可.试题解析:(Ⅰ)当所以(Ⅱ)由(1)可知,当的解集为空集;当时,的解集为:;当时,的解集为:;综上,不等式的解集为:;【考点】绝对值不等式的解法.4.设函数=(1)证明:2;(2)若,求的取值范围.【答案】(2)【解析】本题第(1)问,可由绝对值不等式的几何意义得出,从而得出结论;对第(2)问,由去掉一个绝对值号,然后去掉另一个绝对值号,解出的取值范围.试题解析:(1)证明:由绝对值不等式的几何意义可知:,当且仅当时,取等号,所以.(2)因为,所以,解得:.【易错点】在应用均值不等式时,注意等号成立的条件:一正二定三相等.【考点】本小题主要考查不等式的证明、绝对值不等式的几何意义、绝对值不等式的解法、求参数范围等不等式知识,熟练基础知识是解答好本类题目的关键.5.(5分)(2011•陕西)(请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)若不等式|x+1|+|x﹣2|≥a对任意x∈R恒成立,则a的取值范围是.B.(几何证明选做题)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE= .C.(坐标系与参数方程选做题)直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建极坐标系,设点A,B分别在曲线C1:(θ为参数)和曲线C2:p=1上,则|AB|的最小值为.【答案】(﹣∞,3] 2 1【解析】A.首先分析题目已知不等式|x+1|+|x﹣2|≥a恒成立,求a的取值范围,即需要a小于等于|x+1|+|x﹣2|的最小值即可.对于求|x+1|+|x﹣2|的最小值,可以分析它几何意义:在数轴上点x 到点﹣1的距离加上点x到点2的距离.分析得当x在﹣1和2之间的时候,取最小值,即可得到答案;B.先证明Rt△ABE∽Rt△ADC,然后根据相似建立等式关系,求出所求即可;C.先根据ρ2=x2+y2,sin2+cos2θ=1将极坐标方程和参数方程化成直角坐标方程,根据当两点连线经过两圆心时|AB|的最小,从而最小值为两圆心距离减去两半径.解:A.已知不等式|x+1|+|x﹣2|≥a恒成立,即需要a小于等于|x+1|+|x﹣2|的最小值即可.故设函数y=|x+1|+|x﹣2|.设﹣1、2、x在数轴上所对应的点分别是A、B、P.则函数y=|x+1|+|x﹣2|的含义是P到A的距离与P到B的距离的和.可以分析到当P在A和B的中间的时候,距离和为线段AB的长度,此时最小.即:y=|x+1|+|x﹣2|=|PA|+|PB|≥|AB|=3.即|x+1|+|x﹣2|的最小值为3.即:k≤3.故答案为:(﹣∞,3].B.∵∠B=∠D,AE⊥BC,∠ACD=90°∴Rt△ABE∽Rt△ADC而AB=6,AC=4,AD=12,根据AD•AE=AB•AC解得:AE=2,故答案为:2C.消去参数θ得,(x﹣3)2+y2=1而p=1,则直角坐标方程为x2+y2=1,点A在圆(x﹣3)2+y2=1上,点B在圆x2+y2=1上则|AB|的最小值为1.故答案为:1点评:A题主要考查不等式恒成立的问题,其中涉及到绝对值不等式求最值的问题,对于y=|x﹣a|+|x﹣b|类型的函数可以用分析几何意义的方法求最值.本题还考查了三角形相似和圆的参数方程等有关知识,同时考查了转化与划归的思想,属于基础题.6.(2012•广东)不等式|x+2|﹣|x|≤1的解集为_________.【答案】【解析】∵|x+2|﹣|x|=∴x≥0时,不等式|x+2|﹣|x|≤1无解;当﹣2<x<0时,由2x+2≤1解得x≤,即有﹣2<x≤;当x≤﹣2,不等式|x+2|﹣|x|≤1恒成立,综上知不等式|x+2|﹣|x|≤1的解集为故答案为7.设函数,若,则实数的取值范围是()A.B.C.D.【答案】C【解析】由的图象,可知在处取得最小值,∵, ,即,或.∴实数的取值范围为,选C.8.已知不等式的解集与不等式的解集相同,则的值为()A.B.C.D.【答案】C【解析】解不等式得或,所以的两个根为和,由根与系数的关系知.故选.【考点】绝对值不等式的解法,一元二次不等式的解法.9.设函数,其中。
高中不等式证明练习题及参考答案

高中不等式证明练习题及参考答案高中不等式证明练习题及参考答案不等式证明是可以作文练习题经常出现的,这类的练习题是的呢?下面就是店铺给大家整理的不等式证明练习题内容,希望大家喜欢。
不等式证明练习题解答(1/a+2/b+4/c)*1=(1/a+2/b+4/c)*(a+b+c)展开,得=1+2a/b+4a/c+b/a+2+4b/c+c/a+2c/b+4=7+2a/b+4a/c+b/a+4b/c+c/a+2c/b基本不等式,得>=19>=18用柯西不等式:(a+b+c)(1/a + 2/b + 4/c)≥(1+√2+2)^2=(3+√2)^2=11+6√2≥18楼上的,用基本不等式要考虑等号时候成立,而且如果你的式子里7+2a/b+4a/c+b/a+4b/c+c/a+2c/b直接用基本不等式得出的并不是≥18设ab=x,bc=y,ca=z则原不等式等价于:x^2+y^2+z^2>=xy+yz+zx<=>2(x^2+y^2+z^2)>=2(xy+yz+zx)<=>(x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2zx+x^2)>=0<=>(x-y)^2+(y-z)^2+(z-x)^2>=0含有绝对值的不等式练习。
1.实数x的不等式|x-|7|x+1|成立的前提条件是:x7x+7, -1-7x-7, x>-2,因此有:-20的解,∵a<0,不等式变形为x2+x-<0,它与不等式x2+x+<0比较系数得:a=-4,b=-9.函数y=arcsinx的定义域是 [-1, 1] ,值域是,函数y=arccosx的定义域是 [-1, 1] ,值域是[0, π] ,函数y=arctgx的定义域是 R ,值域是 .,函数y=arcctgx的定义域是 R ,值域是(0, π) .直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。
不等式选讲之不等式证明与数学归纳法单元过关检测卷(六)带答案新高考高中数学

高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 评卷人得分一、填空题1.1 .(汇编年高考陕西卷(理))(不等式选做题) 已知a , b , m , n 均为正数, 且a +b =1, mn =2, 则(am +bn )(bm +an )的最小值为_______. 2.已知x y z 、、均为正数,求证:2223111111()3x y z x y z++≤++.评卷人得分二、解答题3.(选修4—5:不等式证明选讲)(本小题满分10分)已知,,a b c 均为正数,证明:2222111()63a b c a b c+++++≥.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.4.选修4—5:不等式选讲已知函数2()122f x x x a a =++---,若函数()f x 的图象恒在x 轴上方,求实数a 的取值范围.5.已知,,x y z ∈R ,且234x y z --=,求222x y z ++的最小值.6.设正数a ,b ,c 满足1a b c ++=,求111323232a b c +++++的最小值.7.已知实数z y x ,,满足,2=++z y x 求22232z y x ++的最小值.【必做题】第22题、第23题,每题10分,共计20分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.8.已知x ,y 均为正数,且x >y ,求证:2212232x y x xy y ++-+≥.【参考答案】***试卷处理标记,请不要删除评卷人得分一、填空题1.22.证明:由柯西不等式得……………5分则,即…………10分 解析:证明:由柯西不等式得2222222111111(111)()()x y z x y z++++≥++……………5分 则2221111113x y z x y z ⨯++≥++,即2223111111()3x y z x y z ++≤++…………10分 评卷人得分二、解答题3.4. 选修4—5:不等式选讲解:()f x 的最小值为232a a --, …………………5分 由题设,得223a a -<,解得(1,3)a ∈-. …………………10分【必做题】第22题、第23题,每题10分,共计20分.5. 由柯西不等式,得2222222[(2)(3)][1(2)(3)]()x y z x y z ----++++++≤, 即2222(23)14()x y z x y z --++≤, (5)分即2221614()x y z ++≤. 所以22287x y z ++≥,即22x y z ++的最小值为87. …………………………………10分 26.因为a ,b ,c 均为正数,且1a b c ++=,所以(32)(32)(32)9a b c +++++=.于是 ()[]111(32)(32)(32)323232a b c a b c ++++++++++ 33133(32)(32)(32)9(32)(32)(32)a b c a b c ⋅+++=+++≥,当且仅当13a b c ===时,等号成立. …………………………………8分 即1111323232a b c +++++≥,故111323232a b c +++++的最小值为1.…………10分7.由柯西不等式,222222211()(2)(3)()()123x y z x y z ⎡⎤⎡⎤++++⋅++⎢⎥⎣⎦⎣⎦≤,……5分因为2x y z =++,所以222242311x y z ++≥, 当且仅当2311123x y z ==,即6412,,111111x y z ===时,等号成立, 所以22223x y z ++的最小值为2411.…………………………………………………10分 8.(第22题AB C A 1B 1C 1 M N xy z O。
不等式选讲之不等式证明与数学归纳法单元过关检测卷(二)带答案人教版高中数学艺考生专用

高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.(选修4—5 不等式选讲)如果关于x 的不等式34x x a -+-<的解集不是空集,则实数a 的取值范围是 ;2.1 .(汇编年高考湖北卷(理))设,,x y z R ∈,且满足:2221x y z ++=,2314x y z ++=,则x y z ++=_______. 评卷人得分 二、解答题3.[选修4-5:不等式选讲](本小题满分10分)已知a 、b 、c 均为正实数,且a +b +c =1,求111a b c +++++的最大值.4.(汇编年高考辽宁卷(文))选修4-5:不等式选讲已知函数()f x x a =-,其中1a >.(I)当=2a 时,求不等式()44f x x ≥=-的解集;(II)已知关于x 的不等式()(){}222f x a f x +-≤的解集为{}|12x x ≤≤,求a 的值.5.已知a ,b ,c 都是正数,且236a b c ++=,求12131a b c +++++的最大值.6.对于实数y x ,,若,12,11≤-≤-y x 求1+-y x 的最大值.7.设d c b a ,,,都是正数,且22b a x +=,22d c y +=. 求证:))((bc ad bd ac xy ++≥.8.已知实数a ,b ,c ,d 满足a >b >c >d ,求证:1a -b +1b -c +1c -d ≥9a -d【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题1.;2.314 7评卷人得分二、解答题3.解:因a、b、c>0,故(111a b c+++++)2= (111111a b c+⋅++⋅++⋅)2≤((a+1)+(b+1)+(c+1))(1+1+1)=12,························································3分于是111a b c+++++≤23,当且仅当111a b c+=+=+,即a=b=c=13时,取“=”.所以,111a b c+++++的最大值为23.··········································10分【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内........作答..,解答时应写出文字说明、证明过程或演算步骤.4.5.6.解法一:1+-y x =|)2()1(|---y x …………………………5′ 221≤-+-≤y x …………………………9′(当且仅当3,2==y x 或x=0,y=1时取等号)…………………………10′ 解法二:∵11≤-x , ∴20≤≤x …………………………3′∵,12≤-y ∴31≤≤y …………………………6′∴13-≤-≤-y∴212≤+-≤-y x …………………………9′∴1+-y x 的最大值为2. …………………………10′7.8.。
高中数学数学归纳法检测试题(有答案)

高中数学数学归纳法检测试题(有答案)高中数学数学归纳法检测试题(有答案)数学归纳法及其应用举例一、选择题(共49题,题分合计245分)1.用数学归纳法证明:1+ + +…+ 1)时,由n=k(k1)不等式成立,推证n=k+1时,左边应增加的项数是A.2k-1B.2k-1C.2kD.2k+12.球面上有n个大圆,其中任何三个都不相交于同一点,设球面被这n个大圆所分成的部分为f(n),则下列猜想:①f(n)=n,②f(n)=f(n-1)+2n,③f(n)=n2-n+2中,正确的是A.①与②B.①与③C.②与③D.只有③3.某个命题与自然数m有关,若m=k(kN)时该命题成立,那么可以推得m=k+1时该命题成立,现已知当m=5时,该命题不成立,那么可推得A.当m=6时该命题不成立B.当m=6时该命题成立C.当m=4时该命题不成立D.当m=4时该命题成立4.设f(n)= (nN),那么f(n+1)-f(n)等于A. B. C. + D. -5.用数学归纳法证明1+a+a2+…+ = (nN,a1)中,在验证n=1时,左式应为A.1B.1+aC.1+a+a2D.1+a+a2+a312.用数字归纳法证明1+2+…+(2n+1)=(n+1)(2n+1)时,在验证n=1成立时,左边所得的代数式是A.1B.1+3C.1+2+3D.1+2+3+413.用数学归纳法证明当n是非负数时,34n+2+52n+1能被14整除的第二步中,为了使用归纳假设应将34k+6+52k+3变形为A.34k+281+52k+125B.34k+1243+52k125C.25(34k+2+52k+1)+5634k+2D.34k+49+52k+2514.用数学归纳法证明+ + +……+ = (nN)时,从n=k到n=k+1,等式左边需增添的项是A. B. C. D.15.利用数学归纳法证明不等式 ,(n2,nN)的过程中,由n=k 变到n=k+1时,左边增加了A.1项B.k项C.2k-1项D.2k项16.用数学归纳法证明5n-2n能被3整除的第二步中,n=k+1时,为了使用假设,应将5k+1-2k+1变形为A.(5k-2k)+45k-2kB.5(5k-2k)+32kC.(5-2)(5k-2k)D.2(5k-2k)-35k17.平面内原有k条直线,它们的交点个数记为f(k),则增加一条直线后,它们的交点个数最多为A.f(k)+1B.f(k)+kC.f(k)+k+1D.kf(k)18.已知一个命题P(k),k=2n(nN),若n=1,2,…,1000时,P(k)成立,且当n=1000+1时它也成立,下列判断中,正确的是A.P(k)对k=2019成立 B.P(k)对每一个自然数k成立C.P(k)对每一个正偶数k成立D.P(k)对某些偶数可能不成立19.用数学归纳法证明: ,从k到k+1需在不等式两边加上A. B. C. D.20.设 ,则f(2k)变形到f(2k+1)需增添项数为A.2k+1项B.2k项C.2项D.1项21.欲用数学归纳法证明:对于足够大的自然数n,总有2n >n3,n0为验证的第一个值,则A.n0=1B.n0为大于1小于10的某个整数C.n0D.n0=222.某同学回答用数字归纳法证明 n+1(nN)的过程如下:证明:(1)当n=1时,显然命题是正确的;(2)假设n=k时有 k+1那么当n=k+1时, =(k+1)+1,所以当n=k+1时命题是正确的,由(1)、(2)可知对于(nN),命题都是正确的.以上证法是错误的,错误在于A.当n=1时,验证过程不具体B.归纳假设的写法不正确C.从k到k+1的推理不严密D.从k到k+1的推理过程没有使用归纳假设23.平面上有k(k3)条直线,其中有k-1条直线互相平行,剩下一条与它们不平行,则这k条直线将平面分成区域的个数为A.k个B.k+2个C.2k个D.2k+2个24.已知凸k边形的对角线条数为f(k)(k3),则凸k+1边形的对角线条数为A.f(k)+kB.f(k)+k+1C.f(k)+k-1D.f(k)+k-225.平面内原有k条直线,它们将平面分成f(k)个区域,则增加第k+1条直线后,这k+1条直线将平面分成的区域最多会增加A.k个B.k+1个C.f(k)个D.f(k)+1个26.同一平面内有n个圆,其中每两个圆都有两个不同交点,并且三个圆不过同一点,则这n个圆把平面分成A.2n部分B.n2部分C.2n-2部分D.n2-n+2部分27.平面内有n个圆,其中每两个圆都相交于两点,并且每三个圆都不相交于同一点,这n个圆把平面分成f(n)个部分,则满足上述条件的n+1个圆把平面分成的部分f(n+1)与f(n)的关系是A.f(n+1)=f(n)+nB.f(n+1)=f(n)+2nC.f(n+1)=f(n)+n+1D.f(n+1)=f(n)+n+228.用数学归纳法证明不等式成立时,应取的第一个值为A.1B.3C.4D.529.若,则等于A. B.C. D.30.设凸n边形的内角和为f (n),则f (n+1) - f (n) 等于A. B. C. D.31.用数学归纳法证明不等式成立,则n的第一个值应取A.7B.8C.9D.1032. 等于A. B. C. D.33.已知ab是不相等的正数,若 ,则b的取值范围是A.02B.02C.bD.b234.利用数学归纳法证明对任意偶数n,an-bn能被a+b整除时,其第二步论证,应该是A.假设n=k时命题成立,再证n=k+1时命题也成立B.假设n=2k时命题成立,再证n=2k+1时命题也成立C.假设n=k时命题成立,再证n=k+2时命题也成立D.假设n=2k时命题成立,再证n=2(k+1)时命题也成立35.用数学归纳法证明42n-1+3n+1(nN)能被13整除的第二步中,当n=k+1时为了使用假设,对42k+1+3k+2变形正确的是A.16(42k-1+3k+1)-133k+1B.442k+93kC.(42k-1+3k+1)+1542k-1+23k+1D.3(42k-1+3k+1)-1342k-136.用数学归纳法证明(n+1)(n+2)…(n+n)=2n13…(2n-1)(nN)时,从两边同乘以一个代数式,它是A.2k+2B.(2k+1)(2k+2)C.D.37.用数学归纳法证明某命题时,左式为+cos+cos3+…+cos(2n-1)(kZ,nN),在验证n=1时,左边所得的代数式为A. B. +cos C. +cos+cos 3 D. +cos+cos 3+cos 538.用数学归纳法证明(n+1)(n+2)…(n+n)=2n13…(2n-1)时,第二步n=k+1时的左边应是n=k时的左边乘以A.(k+1+k+1)B.(k+1+k)(k+1+k+1)C.D.39.设Sk= + + +……+ ,则Sk+1为A. B.C. D.40.用数字归纳法证明某命题时,左式为1- +…+ ,从n=k到n=k+1,应将左边加上A. B. C. D.41.用数学归纳法证明当n为正奇数时,xn+yn能被x+y整除时,第二步应是A.假设n=k(kN)时命题成立,推得n=k+1时命题成立B.假设n=2k+1(kN)时命题成立,推得n=2k+3时命题成立C.假设k=2k-1(kN)时命题成立,推得n=2k+1时命题成立D.假设nk(k1,kN)时命题成立,推得n=k+2时命题成立42.设p(k):1+ (k N),则p(k+1)为A.B.C.D.上述均不正确43.k棱柱有f(k)个对角面,则k+1棱柱有对角面的个数为A.2f(k)B.k-1+f(k)C.f(k)+kD.f(k)+244.已知,则等于A. B.C. D.45.用数学归纳法证明,在验证n=1等式成立时,左边计算所得的项是A. B. C. D.46.用数学归纳法证明某不等式,其中证时不等式成立的关键一步是:,括号中应填的式子是A. B. C. D.47.对于不等式,某人的证明过程如下:当时,不等式成立。
不等式选讲之不等式证明与数学归纳法单元过关检测卷(二)附答案人教版高中数学辅导班专用

高中数学专题复习
《不等式选讲-不等式证明与数学归纳法》单元过关
检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.1 .(汇编年高考湖北卷(理))设,,x y z R ∈,且满足:222
1x y z ++=,2314x y z ++=,则x y z ++=_______.
2.考察下列一组不等式:33224433252525,252525,+>⋅+⋅+>⋅+⋅ 5511222222252525+>⋅+⋅ 将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为 . 评卷人
得分 二、解答题
3.选修4-5:不等式选讲
解不等式211x x +--≤.。
不等式选讲之不等式证明与数学归纳法单元过关检测卷(一)带答案人教版高中数学

高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.1 .(汇编年高考湖北卷(理))设,,x y z R ∈,且满足:2221x y z ++=,2314x y z ++=,则x y z ++=_______.2.2 .(汇编年高考陕西卷(理))(不等式选做题) 已知a , b , m , n 均为正数, 且a +b =1, mn =2, 则(am +bn )(bm +an )的最小值为_______. 评卷人得分 二、解答题3.选修4—5:不等式选讲已知0x >,0y >,a ∈R ,b ∈R .求证()222ax by a x b y x y x y++++≤. 【证明】因为0x >,0y >,所以0x y +>,所以要证()222ax by a x b y x y x y++++≤, 即证222()()()ax by x y a x b y +++≤. 即证22(2)0xy a ab b -+≥, ……………………………5分 即证2()0a b -≥,而2()0a b -≥显然成立, 故()222ax by a x b y x y x y++++≤. ……………………………10分 4.选修4—5:不等式选讲已知函数2()122f x x x a a =++---,若函数()f x 的图象恒在x 轴上方,求实数a 的取值范围.5.选修4—5:不等式选讲已知1x ≥,1y ≥,求证:22221x x y xy y x y ++++≤.6.已知a ,b ,c 都是正数,且236a b c ++=,求12131a b c +++++的最大值.7.设p 是ABC ∆内的一点,,,x y z 是p 到三边,,a b c 的距离,R 是ABC ∆外接圆的半径,证明22212x y z a b c R ++≤++.8.已知,,x y z 均为实数.(Ⅰ)若1x y z ++=,求证:31323333x y z +++++≤;(5分) (Ⅱ)若236x y z ++=,求222x y z ++的最小值.(5分)【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题1.31472.2 评卷人得分 二、解答题3.4. 选修4—5:不等式选讲解:()f x 的最小值为232a a --, …………………5分 由题设,得223a a -<,解得(1,3)a ∈-. …………………10分【必做题】第22题、第23题,每题10分,共计20分.5. 选修4—5:不等式选讲证明:左边-右边=2222()(1)1(1)[(1)1]y y x y x y y yx y x -+--+=--++………4分 =(1)(1)(1)y xy x ---, ………………………………………………………6分 ∵1x ≥,1y ≥,∴0,0,0111y xy x ---≤≥≥. ………………………………………………8分 从而左边-右边≤0,∴22221x x y xy y x y ++++≤. ………………………………………………10分 6.7.(选修4—5:不等式选讲)设p 是ABC ∆内的一点,,,x y z 是p 到三边,,a b c的距离,R 是ABC ∆外接圆的半径,证明22212x y z a b c R++≤++. 证:由柯西不等式得, 111x y z ax by cz a b c ++=++111ax by cz a b c≤++++,…3分 记S 为ABC ∆的面积,则2242abc abc ax by cz S R R++===, ……6分 122abc ab bc ca x y z ab bc ca R abc R++++≤=++22212a b c R ≤++, 故不等式成立.8.(1)证明:因为2222(313233)(111)(313233)27x y z x y z +++++≤+++++++= 所以313233x y z +++++≤33 …………5分 (2)解:因为(12+22+32)(x 2 + y 2 + z 2)≥(x + 2y +3z )2=36 …………8分 即14(x 2 + y 2 + z 2)≥36,所以x 2 + y 2 + z 2的最小值为187 …………10分。
不等式选讲之不等式证明与数学归纳法单元过关检测卷(四)带答案新教材高中数学

高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.(选修4—5 不等式选讲)如果关于x 的不等式34x x a -+-<的解集不是空集,则实数a 的取值范围是 ;2.1 .(汇编年高考湖北卷(理))设,,x y z R ∈,且满足:2221x y z ++=,2314x y z ++=,则x y z ++=_______. 评卷人得分 二、解答题3.【题文】[选修4 - 5:不等式选讲](本小题满分10分)设2()13f x x x =-+,实数a 满足1x a -<,求证:()()2(1)f x f a a -<+. 4.2 .(汇编年高考新课标1(理))选修4—5:不等式选讲 已知函数()f x =|21||2|x x a -++,()g x =3x +. (Ⅰ)当a =2时,求不等式()f x <()g x 的解集;(Ⅱ)设a >-1,且当x ∈[2a -,12)时,()f x ≤()g x ,求a 的取值范围.5.解不等式x |x -4|-3<0.6.已知0,0,a b >>且21a b +=,求2224S ab a b =--的最大值.7.设,,a b c 均为正实数,求证:111111222a b c b c c a a b+++++++≥.8.对于实数y x ,,若,12,11≤-≤-y x 求1+-y x 的最大值.【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题1.;2.3147评卷人 得分二、解答题3.1()21+-=-+-x a x aa 21≤-+-x a a 1212(1)<++=+a a .【结束】4.当a =-2时,不等式()f x <()g x 化为|21||22|30x x x -+---<,设函数y =|21||22|3x x x -+---,y =15, 212, 1236, 1x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩, 其图像如图所示从图像可知,当且仅当(0,2)x ∈时,y <0,∴原不等式解集是{|02}x x <<.(Ⅱ)当x ∈[2a -,12)时,()f x =1a +,不等式()f x ≤()g x 化为13a x +≤+, ∴2x a ≥-对x ∈[2a -,12)都成立,故2a -≥2a -,即a ≤43, ∴a 的取值范围为(-1,43]. 5. 选修4—5:不等式选讲解 原不等式等价于 ⎩⎨⎧x ≥4,x 2-4x -3<0,或⎩⎨⎧x <4,-x 2+4x -3<0.…………………… 5分 解得⎩⎨⎧x ≥4,2- 7<x <2+ 7,或⎩⎨⎧x <4,x <1或x >3. 即4≤x <2+ 7或3<x <4或x <1.综上,原不等式的解集为{x | x <1或3<x <2+ 7}. (10)分【必做题】第22题、第23题,每题10分,共20分.6.0,0,21,a b a b >>+= ∴2224(2)414a b a b ab ab +=+-=-, ………………………………………………………………2分 且1222a b ab =+≥,即24ab ≤,18ab ≤, ……………………………………………………5分 ∴2224S ab a b =--2(14)ab ab =--241ab ab =+-212-≤, 当且仅当11,42a b ==时,等号成立.…………………………………………………………………10分7.选修4-5:不等式选讲解: ∵,,a b c 均为正实数,∴b a ab b a +≥≥⎪⎭⎫ ⎝⎛+121212121,当b a =时等号成立; 则cb bc c b +≥≥⎪⎭⎫ ⎝⎛+121212121,当c b =时等号成立; ac ca a c +≥≥⎪⎭⎫ ⎝⎛+121212121,当a c =时等号成立;三个不等式相加得, ba a c cbc b a +++++≥++111212121,当且仅当c b a ==时等号成立.……………10分.8.解法一:1+-y x =|)2()1(|---y x …………………………5′ 221≤-+-≤y x …………………………9′(当且仅当3,2==y x 或x=0,y=1时取等号)…………………………10′ 解法二:∵11≤-x , ∴20≤≤x …………………………3′∵,12≤-y ∴31≤≤y …………………………6′∴13-≤-≤-y∴212≤+-≤-y x …………………………9′∴1+-y x 的最大值为2. …………………………10′。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
,…3分
记 为 的面积,则
,……6分
,
故不等式成立.
8.选修4-5(不等式选讲)
证明:因为x,y,z无为正数.所以 ,…………………………4分
同理可得 ,……………………………………………………7分
当且仅当x=y=z时,以上三式等号都成立.
将上述三个不等式两边分别相加,并除以2,得 .…………10分
则 ,即 …………10分
评卷人
得分
二、解答题
3.略
4.选修4—5:不等式选讲
解: 的最小值为 ,…………………5分
由题设,得 ,解得 .…………………10分
【必做题】第22题、第23题,每题10分,共计20分.
5.选修4—5:不等式选讲
本小题主要考查均值不等式等基础知识,考查推理论证能力.满分10分.
评卷人
得分
二、解答题
3.选修4—5:不等式选讲
已知不等式 对满足
的一切实数 , , 都成立,求实数 的取值范围.
【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
4.选修4—5:不等式选讲
已知函数 ,若函数 的图象恒在 轴上方,求实数 的取值范围.
高中数学专题复习
《不等式选讲-不等式证明与数学归纳法》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
评卷人
得分
一、填空题
1.(选修4—5不等式选讲)如果关于x的不等式 的解集不是空集,则实数a的取值范围是;
2.已知 均为正数,求证: .
证明: …………………………………………4分
(当且仅当 时等号成立).……………………………………………10分
6.选修4-5:不等式选讲
证明:由柯西不等式,得
…………………………………5分
.
∴ .…………………………………………………10分
7.(选修4—5:不等式选讲)设 是 内的一点, 是 到三边 的距离, 是 外接圆的半径,证明 .
5.已知正数 , , 满足 ,求证: .
6.设 ,求证: .
7.设 是 内的一点, 是 到三边 的距离, 是 外接圆的半径,证明 .
8.已知x,y,z均为正数.求证:
【参考答案】***试卷处理标记,请不要删除
评:由柯西不等式得……………5分则,即…………10分
解析:证明:由柯西不等式得 ……………5分