安徽中考数学试题及答案

合集下载

2020年安徽省中考数学试题及参考答案(word解析版)

2020年安徽省中考数学试题及参考答案(word解析版)

2020年安徽省初中学业水平考试数学(试题卷)(试卷满分为150分,考试时间为120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.下列各数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.22.计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a23.下面四个几何体中,主视图为三角形的是()A.B.C.D.4.安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×1075.下列方程中,有两个相等实数根的是()A.x2+1=2x B.x2+1=0 C.x2﹣2x=3 D.x2﹣2x=06.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11 B.平均数是12 C.方差是D.中位数是137.已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)8.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cosA=,则BD的长度为()A.B.C.D.49.已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC10.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:﹣1=.12.分解因式:ab2﹣a=.13.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)∠PAQ的大小为;(2)当四边形APCD是平行四边形时,的值为.三、(本大题共2小题,每小题8分,满分16分)15.解不等式:>1.16.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.四、(本大题共2小题,每小题8分,满分16分)17.观察以下等式:第1个等式:×(1+)=2﹣,第2个等式:×(1+)=2﹣,第3个等式:×(1+)=2﹣,第4个等式:×(1+)=2﹣.第5个等式:×(1+)=2﹣.…按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.18.如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)五、(本大题共2小题,每小题10分,满分20分)19.某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份 a x a﹣x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.20.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.六、(本题满分12分)21.某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.七、(本题满分12分)22.在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.八、(本题满分14分)23.如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=AG.参考答案与解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.下列各数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.2【知识考点】有理数大小比较.【思路分析】先根据正数都大于0,负数都小于0,可排除C、D,再根据两个负数,绝对值大的反而小,可得比﹣2小的数是﹣3.【解题过程】解:根据两个负数,绝对值大的反而小可知﹣3<﹣2.故选:A.【总结归纳】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.2.计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a2【知识考点】幂的乘方与积的乘方;同底数幂的除法.【思路分析】直接利用同底数幂的除法运算法则计算得出答案.【解题过程】解:原式=a6÷a3=a3.故选:C.【总结归纳】此题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.3.下面四个几何体中,主视图为三角形的是()A.B.C.D.【知识考点】简单几何体的三视图.【思路分析】根据主视图是从正面看得到的图形,可得答案.【解题过程】解:A、主视图是圆,故A不符合题意;B、主视图是三角形,故B符合题意;C、主视图是矩形,故C不符合题意;D、主视图是正方形,故D不符合题意;故选:B.【总结归纳】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×107【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解题过程】解:54700000用科学记数法表示为:5.47×107.故选:D.【总结归纳】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.5.下列方程中,有两个相等实数根的是()A.x2+1=2x B.x2+1=0 C.x2﹣2x=3 D.x2﹣2x=0【知识考点】根的判别式.【思路分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.有两个相等实数根的一元二次方程就是判别式的值是0的一元二次方程.【解题过程】解:A、△=(﹣2)2﹣4×1×1=0,有两个相等实数根;B、△=0﹣4=﹣4<0,没有实数根;C、△=(﹣2)2﹣4×1×(﹣3)=16>0,有两个不相等实数根;D、△=(﹣2)2﹣4×1×0=4>0,有两个不相等实数根.故选:A.【总结归纳】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11 B.平均数是12 C.方差是D.中位数是13【知识考点】算术平均数;中位数;众数;方差.【思路分析】根据平均数、众数、中位数、方差的计算方法分别计算这组数据的平均数、众数、中位数、方差,最后做出选择.【解题过程】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D符合题意;=(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B不符合题意;S2=[(10﹣12)2+(11﹣12)2×3+(13﹣12)2×2+(15﹣12)2]=,因此方差为,于是选项C不符合题意;故选:D.【总结归纳】本题考查平均数、中位数、众数、方差的意义和计算方法,掌握计算方法是得出正确答案的前提.7.已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)【知识考点】一次函数的性质;一次函数图象上点的坐标特征.【思路分析】由点A的坐标,利用一次函数图象上点的坐标特征求出k值,结合y随x的增大而减小即可确定结论.【解题过程】解:A、当点A的坐标为(﹣1,2)时,﹣k+3=3,解得:k=1>0,∴y随x的增大而增大,选项A不符合题意;B、当点A的坐标为(1,﹣2)时,k+3=﹣2,解得:k=﹣5<0,∴y随x的增大而减小,选项B符合题意;C、当点A的坐标为(2,3)时,2k+3=3,解得:k=0,选项C不符合题意;D、当点A的坐标为(3,4)时,3k+3=4,解得:k=>0,∴y随x的增大而增大,选项D不符合题意.故选:B.【总结归纳】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,根据点的坐标,利用一次函数图象上点的坐标特征求出k值是解题的关键.8.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cosA=,则BD 的长度为()A.B.C.D.4【知识考点】相似三角形的判定与性质;解直角三角形.【思路分析】在△ABC中,由三角函数求得AB,再由勾股定理求得BC,最后在△BCD中由三角函数求得BD.【解题过程】解:∵∠C=90°,AC=4,cosA=,∴AB=,∴,∵∠DBC=∠A.∴cos∠DBC=cos∠A=,∴,故选:C.【总结归纳】本题主要考查了勾股定理,解直角三角形的应用,关键是解直角三角形.9.已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC【知识考点】命题与定理.【思路分析】根据垂径定理,平行四边形的性质判断即可.【解题过程】解:A、如图,若半径OB平分弦AC,则四边形OABC不一定是平行四边形;原命题是假命题;B、若四边形OABC是平行四边形,则AB=OC,OA=BC,∵OA=OB=OC,∴AB=OA=OB=BC=OC,∴∠ABO=∠OBC=60°,∴∠ABC=120°,是真命题;C、如图,若∠ABC=120°,则弦AC不平分半径OB,原命题是假命题;D、如图,若弦AC平分半径OB,则半径OB不一定平分弦AC,原命题是假命题;故选:B.【总结归纳】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()B.B.C.D.【知识考点】动点问题的函数图象.【思路分析】分为0<x≤2、2<x≤4两种情况,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.【解题过程】解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=EJ=x,∴y=EJ•GH=x2.当x=2时,y=,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y=FJ•GH=(4﹣x)2,函数图象为抛物线的一部分,且抛物线开口向上.故选:A.【总结归纳】本题主要考查的是动点问题的函数图象,求得函数的解析式是解题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:﹣1=.【知识考点】实数的运算.【思路分析】直接利用二次根式的性质化简进而得出答案.【解题过程】解:原式=3﹣1=2.故答案为:2.【总结归纳】此题主要考查了实数运算,正确化简二次根式是解题关键.12.分解因式:ab2﹣a=.【知识考点】提公因式法与公式法的综合运用.【思路分析】原式提取a,再利用平方差公式分解即可.【解题过程】解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)【总结归纳】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为.【知识考点】反比例函数与一次函数的交点问题.【思路分析】分别求出矩形ODCE与△OAB的面积,即可求解.【解题过程】解:一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B,令x=0,则y=k,令y=0,则x=﹣k,故点A、B的坐标分别为(﹣k,0)、(0,k),则△OAB的面积=OA•OB=k2,而矩形ODCE的面积为k,则k2=k,解得:k=0(舍去)或2,故答案为2.【总结归纳】本题考查的是反比例函数与一次函数的交点问题,计算矩形ODCE与△OAB的面积是解题的关键.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)∠PAQ的大小为;(2)当四边形APCD是平行四边形时,的值为.【知识考点】平行四边形的性质;翻折变换(折叠问题).【思路分析】(1)由折叠的性质可得∠B=∠AQP,∠DAQ=∠QAP=∠PAB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,由平角的性质可得∠D+∠C=180°,∠AQP=90°,可证AD∥BC,由平行线的性质可得∠DAB=90°,即可求解;(2)由平行四边形和折叠的性质可得AR=PR,由直角三角形的性质可得AP=2PB=2QR,AB =PB,即可求解.【解题过程】解:(1)由折叠的性质可得:∠B=∠AQP,∠DAQ=∠QAP=∠PAB,∠DQA=∠AQR,∠CQP=∠PQR,∠D=∠ARQ,∠C=∠QRP,∵∠QRA+∠QRP=180°,∴∠D+∠C=180°,∴AD∥BC,∴∠B+∠DAB=180°,∵∠DQR+∠CQR=180°,∴∠DQA+∠CQP=90°,∴∠AQP=90°,∴∠B=∠AQP=90°,∴∠DAB=90°,∴∠DAQ=∠QAP=∠PAB=30°,故答案为:30;(2)由折叠的性质可得:AD=AR,CP=PR,∵四边形APCD是平行四边形,∴AD=PC,∴AR=PR,又∵∠AQP=90°,∴QR=AP,∵∠PAB=30°,∠B=90°,∴AP=2PB,AB=PB,∴PB=QR,∴=,故答案为:.【总结归纳】本题考查了翻折变换,平行四边形的性质,直角三角形的性质,熟练运用这些性质解决问题是本题的关键.三、(本大题共2小题,每小题8分,满分16分)15.解不等式:>1.【知识考点】解一元一次不等式.【思路分析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.【解题过程】解:去分母,得:2x﹣1>2,移项,得:2x>2+1,合并,得:2x>3,系数化为1,得:x>.【总结归纳】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.【知识考点】作图﹣轴对称变换;作图﹣旋转变换.【思路分析】(1)分别作出A,B的对应点A1,B2即可.(2)作出点A1的对应点A2即可.【解题过程】解:(1)如图线段A1B1即为所求.(2)如图,线段B1A2即为所求.【总结归纳】本题考查作图﹣旋转变换,轴对称变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.四、(本大题共2小题,每小题8分,满分16分)17.观察以下等式:第1个等式:×(1+)=2﹣,第2个等式:×(1+)=2﹣,第3个等式:×(1+)=2﹣,第4个等式:×(1+)=2﹣.第5个等式:×(1+)=2﹣.…按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【知识考点】列代数式;规律型:数字的变化类.【思路分析】(1)根据题目中前5个等式,可以发现式子的变化特点,从而可以写出第6个等式;(2)把上面发现的规律用字母n表示出来,并运用分式的混合运算法则计算等号的右边的值,进而得到左右相等便可.【解题过程】解:(1)第6个等式:×(1+)=2﹣;(2)猜想的第n个等式:×(1+)=2﹣.证明:∵左边=×==2﹣=右边,∴等式成立.故答案为:×(1+)=2﹣;×(1+)=2﹣.【总结归纳】本题考查数字的变化类,解答本题的关键是明确题意,发现式子的变化特点,写出相应的等式,并证明猜想的正确性.18.如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)【知识考点】解直角三角形的应用﹣仰角俯角问题.【思路分析】根据三角函数的定义和直角三角形的性质解答即可.【解题过程】解:由题意,在Rt△ABD中,tan∠ABD=,∴tan42.0°=≈0.9,∴AD≈0.9BD,在Rt△BCD中,tan∠CBD=,∴tan36.9°=≈0.75,∴CD≈0.75BD,∵AC=AD﹣CD,∴15=0.15BD,∴BD=100米,∴CD=0.75BD=75(米),答:山高CD为75米.【总结归纳】本题考查了解直角三角形的应用﹣仰角俯角问题,注意方程思想与数形结合思想的应用.五、(本大题共2小题,每小题10分,满分20分)19.某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份 a x a﹣x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.【知识考点】列代数式;一元一次方程的应用.【思路分析】(1)由线下销售额的增长率,即可用含a,x的代数式表示出2020年4月份的线下销售额;(2)根据2020年4月份的销售总额=线上销售额+线下销售额,即可得出关于x的一元一次方程,解之即可得出x的值(用含a的代数式表示),再将其代入中即可求出结论.【解题过程】解:(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a﹣x)元.故答案为:1.04(a﹣x).(2)依题意,得:1.1a=1.43x+1.04(a﹣x),解得:x=,∴===0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.【总结归纳】本题考查了一元一次方程的应用以及列代数式,找准等量关系,正确列出一元一次方程是解题的关键.20.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.【知识考点】全等三角形的判定与性质;圆周角定理;切线的性质.【思路分析】(1)根据圆周角定理得到∠ACB=∠ADB=90°,根据全等三角形的判定定理即可得到结论;(2)根据等腰三角形的性质得到∠E=∠BFE,根据切线的性质得到∠ABE=90°,根据三角形的内角和以及角平分线的定义即可得到结论.【解题过程】(1)证明:∵AB是半圆O的直径,∴∠ACB=∠ADB=90°,在Rt△CBA与Rt△DAB中,,∴Rt△CBA≌Rt△DAB(HL);(2)解:∵BE=BF,由(1)知BC⊥EF,∴∠E=∠BFE,∵BE是半圆O所在圆的切线,∴∠ABE=90°,∴∠E+∠BAE=90°,由(1)知∠D=90°,∴∠DAF+∠AFD=90°,∵∠AFD=∠BFE,∴∠AFD=∠E,∴∠DAF=90°﹣∠AFD,∠BAF=90°﹣∠E,∴∠DAF=∠BAF,∴AC平分∠DAB.【总结归纳】本题考查了切线的性质,全等三角形的判定和性质,圆周角定理,正确的识别图形是解题的关键.六、(本题满分12分)21.某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【知识考点】用样本估计总体;扇形统计图;条形统计图;列表法与树状图法.【思路分析】(1)用被调查的职工人数乘以最喜欢A套餐人数所占百分比即可得其人数;再由四种套餐人数之和等于被调查的人数求出C对应人数,继而用360°乘以最喜欢C套餐人数所占比例即可得;(2)用总人数乘以样本中最喜欢B套餐的人数所占比例即可得;(3)画树状图列出所有等可能结果,从中找到符合条件的结果数,利用概率公式求解可得答案.【解题过程】解:(1)在抽取的240人中最喜欢A套餐的人数为240×25%=60(人),则最喜欢C套餐的人数为240﹣(60+84+24)=72(人),∴扇形统计图中“C”对应扇形的圆心角的大小为360°×=108°,故答案为:60、108;(2)估计全体960名职工中最喜欢B套餐的人数为960×=336(人);(3)画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,∴甲被选到的概率为=.【总结归纳】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.七、(本题满分12分)22.在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.【知识考点】一次函数图象上点的坐标特征;二次函数的性质;二次函数图象上点的坐标特征;二次函数图象与几何变换;二次函数的最值.【思路分析】(1)根据待定系数法求得直线的解析式,然后即可判断点B(2,3)在直线y=x+m 上;(2)因为直线经过A、B和点(0,1),所以经过点(0,1)的抛物线不同时经过A、B点,即可判断抛物线只能经过A、C两点,根据待定系数法即可求得a、b;(3)设平移后的抛物线为y=﹣x+px+q,其顶点坐标为(,+q),根据题意得出+q=+1,由抛物线y=﹣x+px+q与y轴交点的纵坐标为q,即可得出q=﹣﹣1=﹣(p﹣1)2+,从而得出q的最大值.【解题过程】解:(1)点B是在直线y=x+m上,理由如下:∵直线y=x+m经过点A(1,2),∴2=1+m,解得m=1,∴直线为y=x+1,把x=2代入y=x+1得y=3,∴点B(2,3)在直线y=x+m上;(2)∵直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),且B、C两点的横坐标相同,∴抛物线只能经过A、C两点,把A(1,2),C(2,1)代入y=ax2+bx+1得,解得a=﹣1,b=2;(3)由(2)知,抛物线为y=﹣x2+2x+1,设平移后的抛物线为y=﹣x+px+q,其顶点坐标为(,+q),∵顶点仍在直线y=x+1上,∴+q=+1,∴q=﹣﹣1,∵抛物线y=﹣x+px+q与y轴的交点的纵坐标为q,∴q=﹣﹣1=﹣(p﹣1)2+,∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为.【总结归纳】本题考查了待定系数法求一次函数的解析式和二次函数的解析式,二次函数的图象与几何变换,二次函数的性质,题目有一定难度.八、(本题满分14分)23.如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=AG.【知识考点】四边形综合题.【思路分析】(1)证明△AEF≌△ADB(SAS),得出∠AEF=∠ADB,证得∠EGB=90°,则结论得出;(2)证明△AEF∽△DCF,得出,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解方程即可得出答案;(3)在线段EG上取点P,使得EP=DG,证明△AEP≌△ADG(SAS),得出AP=AG,∠EAP =∠DAG,证得△PAG为等腰直角三角形,可得出结论.【解题过程】(1)证明:∵四边形ABCD是矩形,点E在BA的延长线上,∴∠EAF=∠DAB=90°,又∵AE=AD,AF=AB,∴△AEF≌△ADB(SAS),∴∠AEF=∠ADB,∴∠GEB+∠GBE=∠ADB+∠ABD=90°,即∠EGB=90°,故BD⊥EC,(2)解:∵四边形ABCD是矩形,∴AE∥CD,∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF,∴,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解得或(舍去),∴AE=.(3)如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠PAG=∠PAD+∠DAG=∠PAD+∠EAP=∠DAE=90°,∴△PAG为等腰直角三角形,∴EG﹣DG=EG﹣EP=PG=AG.【总结归纳】本题是四边形综合题,考查了矩形的性质,相似三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.。

2024年安徽省中考真题数学试卷含答案解析

2024年安徽省中考真题数学试卷含答案解析

安徽省2024年中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.﹣5的绝对值是()A .5B .﹣5C .15-D .15【答案】A【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A .2.据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为()A .70.94410⨯B .69.4410⨯C .79.4410⨯D .694.410⨯【答案】B【分析】本题考查了科学记数法,先把944万转化为9440000,再根据科学记数法:10n a ⨯(110a ≤<,n 为整数),先确定a 的值,然后根据小数点移动的数位确定n 的值即可,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:944万694400009.4410==⨯,故选:B .3.某几何体的三视图如图所示,则该几何体为()A .B .C .D .【答案】D【分析】本题主要考查由三视图判断几何体,关键是熟悉三视图的定义.【详解】解:根据三视图的形状,结合三视图的定义以及几何体的形状特征可得该几何体为D 选项.故选:D .4.下列计算正确的是()A .356a a a +=B .632a a a ÷=C .()22a a -=Da=5.若扇形AOB 的半径为6,120AOB ∠=︒,则 AB 的长为()A .2πB .3πC .4πD .6π6.已知反比例函数()0ky k x=≠与一次函数2y x =-的图象的一个交点的横坐标为3,则k 的值为()A .3-B .1-C .1D .3【答案】A【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出231y =-=-,代入反比例函数求解即可7.如图,在Rt ABC △中,2AC BC ==,点D 在AB 的延长线上,且CD AB =,则BD 的长是()A B C .2D .8.已知实数a ,b 满足10a b -+=,011a b <++<,则下列判断正确的是()A .12a -<<B .112b <<C .2241a b -<+<D .1420a b -<+<【答案】C∴442a -<<-,021b <<,∴4421a b -<+<-,选项D 错误,不符合题意;故选:C9.在凸五边形ABCDE 中,AB AE =,BC DE =,F 是CD 的中点.下列条件中,不能推出AF 与CD 一定垂直的是()A .ABC AED ∠=∠B .BAF EAF ∠=∠C .BCF EDF ∠=∠D .ABD AEC∠=∠【答案】D【分析】本题考查了全等三角形的判定和性质,等腰三角形“三线合一”性质的应用,熟练掌握全等三角形的判定的方法是解题的关键.利用全等三角形的判定及性质对各选项进行判定,然后根据等腰三角形“三线合一”的性质即可证得结论.【详解】解:A 、连结AC AD 、,∵ABC AED ∠=∠,AB AE =,BC DE =,∴()SAS ACB ADE ≌,∴AC AD=又∵点F 为CD 的中点∴AF CD ⊥,故不符合题意;B 、连结BF EF 、,∵AB AE =,BAF EAF ∠=∠,AF AF =,∴()SAS ABF AEF ≌,∴BF EF =,AFB AFE ∠=∠又∵点F 为CD 的中点,∴CF DF =,∵BC DE =,∴()SSS CBF DEF ≌,∴CFB DFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;C 、连结BF EF 、,∵点F 为CD 的中点,∴CF DF =,∵BCF EDF ∠=∠,BC DE =,∴()SAS CBF DEF ≌,∴BF EF =,CFB DFE ∠=∠,∵AB AE =,AF AF =,∴()SAS ABF AEF ≌,∴AFB AFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;D 、ABD AEC ∠=∠,无法得出相应结论,符合题意;故选:D.10.如图,在RtABC △中,90ABC ∠=︒,4AB =,2BC =,BD 是边AC 上的高.点E ,F 分别在边AB ,BC 上(不与端点重合),且DE DF ⊥.设AE x =,四边形DEBF 的面积为y ,则y 关于x 的函数图象为()A .B .C .D .∵90ABC ∠=︒,AB =∴22AC AB BC =+=∵BD 是边AC 上的高.二、填空题11.若代数式14-x 有意义,则实数x 的取值范围是.【答案】4x ≠【分析】根据分式有意义的条件,分母不能等于0,列不等式求解即可.【详解】解: 分式有意义的条件是分母不能等于0,∴40x -≠∴4x ≠.故答案为:4x ≠.【点睛】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.12.,祖冲之给出圆周率的一种分数形式的近似值为227(填“>”或“<”).13.不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是.由树状图可得,共有12种等结果,其中恰为∴恰为2个红球的概率为21126=,故答案为:1.14.如图,现有正方形纸片ABCD ,点E ,F 分别在边,AB BC 上,沿垂直于EF 的直线折叠得到折痕MN ,点B ,C 分别落在正方形所在平面内的点B ',C '处,然后还原.(1)若点N 在边CD 上,且BEF α∠=,则C NM '∠=(用含α的式子表示);(2)再沿垂直于MN 的直线折叠得到折痕GH ,点G ,H 分别在边,CD AD 上,点D 落在正方形所在平面内的点D ¢处,然后还原.若点D ¢在线段B C ''上,且四边形EFGH 是正方形,4AE =,8EB =,MN 与GH 的交点为P ,则PH 的长为.∵MN EF ⊥,∴CC FE '∥,∴12∠=∠,∵四边形ABCD 是正方形,∴90B BCD ∠=∠=︒,∴343290∠+∠=∠+∠=︒,∵四边形ABCD 是正方形,四边形∴90A B C D ∠=∠=∠=∠=∴567690∠+∠=∠+∠=︒,∴57∠=∠,三、解答题15.解方程:223x x -=【答案】13x =,21x =-【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵223x x -=,∴223=0x x --,∴(3)(1)0x x -+=,∴13x =,21x =-.【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.16.如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy ,格点(网格线的交点)A 、B ,C 、D 的坐标分别为()7,8,()2,8,()10,4,()5,4.(1)以点D 为旋转中心,将ABC 旋转180︒得到111A B C △,画出111A B C △;(2)直接写出以B ,1C ,1B ,C 为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E ,使得射线AE 平分BAC ∠,写出点E 的坐标.(2)连接1BB ,1CC ,∵点B 与1B ,点C 与1C 分别关于点∴1DB DB =,1DC DC =,∴四边形11BC B C 是平行四边形,∴122104S CC B ==⨯⨯⨯= (3)∵根据网格信息可得出5AB =∴ABC 是等腰三角形,∴AE 也是线段BC 的垂直平分线,∵B ,C 的坐标分别为,()2,8,(10,4∴点21084,22E ++⎛⎫ ⎪⎝⎭,即()6,6E .(答案不唯一)17.乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地.采用新技术种植A B ,两种农作物.种植这两种农作物每公顷所需人数和投入资金如表:农作物品种每公顷所需人数每公顷所需投入资金(万元)A48B 39已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元.问A B ,这两种农作物的种植面积各多少公顷?【答案】A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.【分析】本题考查了二元一次方程组的应用,设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,根据题意列出二元一次方程组即可求解,根据题意,找到等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,由题意可得,43248960x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩,答:设A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.18.数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数表示结果22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-L L一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=()2-()2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【答案】(1)(ⅰ)7,5;(ⅱ)()()2211n n +--;(2)()224k m k m -+-【分析】(1)(ⅰ)根据规律即可求解;(ⅱ)根据规律即可求解;(2)利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【详解】(1)(ⅰ)由规律可得,222475=-,故答案为:7,5;(ⅱ)由规律可得,()()22411n n n =+--,故答案为:()()2211n n +--;(2)解:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()()22222221214x y k m k m k m -=+-+=-+-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.故答案为:()224k m k m -+-.19.科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=︒,点B 到水面的距离 1.20BC =m ,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒≈).20.如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.【答案】(1)见详解21.综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x (单位:cm )表示.将所收集的样本数据进行如下分组:组别A B C D E x 3.5 4.5x ≤< 4.5 5.5x ≤< 5.5 6.5x ≤< 6.57.5x ≤<7.58.5x ≤≤整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:任务1求图1中a 的值.【数据分析与运用】任务2A ,B ,C ,D ,E 五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3下列结论一定正确的是______(填正确结论的序号).①两园样本数据的中位数均在C 组;②两园样本数据的众数均在C 组;③两园样本数据的最大数与最小数的差相等.任务4结合市场情况,将C,D两组的柑橘认定为一级,B组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.Y的对角线AC与BD交于点O,点M,N分别在边AD,BC上,且22.如图1,ABCDAM CN =.点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE OF =;(2)连接BM 交AC 于点H ,连接HE ,HF .(ⅰ)如图2,若HE AB ∥,求证:HF AD ∥;(ⅱ)如图3,若ABCD Y 为菱形,且2MD AM =,60EHF ∠=︒,求AC BD的值.23.已知抛物线2y x bx =-+(b 为常数)的顶点横坐标比抛物线22y x x =-+的顶点横坐标大1.(1)求b 的值;(2)点()11,A x y 在抛物线22y x x =-+上,点()11,B x t y h ++在抛物线2y x bx =-+上.(ⅰ)若3h t =,且10x ≥,0t >,求h 的值;(ⅱ)若11x t =-,求h 的最大值.。

2022年安徽省中考数学试题卷(含答案解析)

2022年安徽省中考数学试题卷(含答案解析)

2022年安徽省初中学业水平考试数学2022.6(试题卷)注意事项:1. 你拿到的试卷满分为150分,考试时间为120分钟。

2. 本试卷包括“试题卷”和“答题卷”两部分。

“试题卷”共4页,“答题卷”共6页。

3. 请务必在“答题..卷.”上答题,在“试题卷”上答题是无效的;4. 考试结束后,请将“试题卷”和“答题卷”一并交回。

一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.下列为负数的是A.|﹣2|B.√3C.0D.﹣52.据统计,2021年我省出版期刊杂志总印数3400万册,其中3400万用科学记数法表示为A.3.4×108B.0.34×108C.3.4×107D.34×1063.一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是A.B.C.D.4.下列各式中,计算结果等于a9的是A.a3+a6B.a3•a6C.a10﹣a D.a18÷a25.甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算,走得最快的是A.甲B.乙C.丙D.丁6.两个矩形的位置如图所示,若∠1=α,则∠2=A.α﹣90°B.α﹣45°C.180°﹣αD.270°﹣α7.已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若P A=4,PB=6,则OP=A.√14B.4C.√23D.58.随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由三个小正方形组成的“”进行涂色,每个小正方形随机涂成黑色或白色,恰好是两个黑色小正方形和一个白色小正方形的概率为A.13B.38C.12D.239.在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是A.B.C.D.10.已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△P AB,△PBC,△PCA的面积分别记为S0,S1,S2,S3.若S1+S2+S3=2S0,则线段OP长的最小值是A.3√32B.5√32C.3√3D.7√32二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式x−32≥1的解集为.12.若一元二次方程2x2﹣4x+m=0有两个相等的实数根,则m =.13.如图,▱OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数y=1x的图象经过点C,y=kx(k≠0)的图象经过点B.若OC=AC,则k=.14.如图,四边形ABCD是正方形,点E在边AD上,△BEF是以E为直角顶点的等腰直角三角形,EF,BF分别交CD于点M,N,过点F作AD的垂线交AD的延长线于点G.连接DF,请完成下列问题:(1)∠FDG=°;(2)若DE=1,DF=2√2,则MN=.三、(本大题共2小题,每小题8分,满分16分)15.计算:(1)0−√16+(﹣2)2.216.如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).(1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1;(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.四、(本大题共2小题,每小题8分,满分16分)17.某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%.注:进出口总额=进口额+出口额.(1)设2020年进口额为x亿元,出口额为y亿元,请用含x,y的代数式填表:年份进口额/亿元出口额/亿元进出口总额/亿元2020 x y5202021 1.25x 1.3y(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元?18.观察以下等式:第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2,第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2,第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2,第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2,……按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式(用含n的式子表示),并证明.五、(本大题共2小题,每小题10分,满分20分)19.已知AB为⊙O的直径,C为⊙O上一点,D为BA的延长线上一点,连接CD.(1)如图1,若CO⊥AB,∠D=30°,OA=1,求AD的长;(2)如图2,若DC与⊙O相切,E为OA上一点,且∠ACD=∠ACE.求证:CE⊥AB.20.如图,为了测量河对岸A,B两点间的距离,数学兴趣小组在河岸南侧选定观测点C,测得A,B均在C的北偏东37°方向上,沿正东方向行走90米至观测点D,测得A在D的正北方向,B在D的北偏西53°方向上.求A,B两点间的距离.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.六、(本题满分12分)21.第24届冬奥会于2022年2月20日在北京胜利闭幕.某校七、八年级各有500名学生,为了解这两个年级学生对本次冬奥会的关注程度,现从这两个年级各随机抽取n名学生进行冬奥会知识测试,将测试成绩按以下六组进行整理(得分用x表示):A:70≤x<75,B:75≤x<80,C:80≤x<85,D:85≤x<90,E:90≤x<95,F:95≤x≤100,并绘制七年级测试成绩频数分布直方图和八年级测试成绩扇形统计图,部分信息如下:已知八年级测试成绩D组的全部数据如下:86,85,87,86,85,89,88.请根据以上信息,完成下列问题:(1)n=,a=;(2)八年级测试成绩的中位数是;(3)若测试成绩不低于90分,则认定该学生对冬奥会关注程度高.请估计该校七、八两个年级对冬奥会关注程度高的学生一共有多少人,并说明理由.七、(本题满分12分)22.已知四边形ABCD中,BC=CD,连接BD,过点C作BD的垂线交AB于点E,连接DE.(1)如图1,若DE∥BC,求证:四边形BCDE是菱形;(2)如图2,连接AC,设BD,AC相交于点F,DE垂直平分线段AC.(ⅰ)求∠CED的大小;(ⅱ)若AF=AE,求证:BE=CF.八、(本题满分14分)23.如图1,隧道截面由抛物线的一部分AED和矩形ABCD构成,矩形的一边BC为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy,规定一个单位长度代表1米.E(0,8)是抛物线的顶点.(1)求此抛物线对应的函数表达式;(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点P1,P4在x轴上,MN与矩形P1P2P3P4的一边平行且相等.栅栏总长l为图中粗线段P1P2,P2P3,P3P4,MN长度之和,请解决以下问题:(ⅰ)修建一个“”型栅栏,如图2,点P2,P3在抛物线AED上.设点P1的横坐标为m(0<m≤6),求栅栏总长l与m之间的函数表达式和l的最大值;(ⅱ)现修建一个总长为18的栅栏,有如图3所示的“”型和“”型两种设计方案,请你从中选择一种,求出该方案下矩形P1P2P3P4面积的最大值,及取最大值时点P1的横坐标的取值范围(P1在P4右侧).2022年安徽省初中学业水平考试数学试题参考答案一、选择题(本大题共10小题,每小题4分,满分40分) 1.D 2.C 3.A 4.B 5.A 6.C7.D8.B9.D10.B二、填空题(本大题共4小题,每小题5分,满分20分) 11.x ≥5.12.2.13.3.14.(1)45;(2)2615.三、(本大题共2小题,每小题8分,满分16分) 15.(8分)解:原式=1﹣4+4=1. 16.(8分)解:(1)如图,△A 1B 1C 1即为所求; (2)如图,△A 2B 2C 2即为所求.四、(本大题共2小题,每小题8分,满分16分) 17.(8分)解:(1)由表格可得,2021年进出口总额为:1.25x +1.3y , 故答案为:1.25x +1.3y ; (2)由题意可得,{x +y =5201.25x +1.3y =520+140, 解得{x =320y =200,∴1.25x =400,1.3y =260,答:2021年进口额是400亿元,出口额是260亿元. 18.(8分)解:(1)因为第1个等式:(2×1+1)2=(2×2+1)2﹣(2×2)2, 第2个等式:(2×2+1)2=(3×4+1)2﹣(3×4)2, 第3个等式:(2×3+1)2=(4×6+1)2﹣(4×6)2, 第4个等式:(2×4+1)2=(5×8+1)2﹣(5×8)2, 第5个等式:(2×5+1)2=(6×10+1)2﹣(6×10)2, 故答案为:(2×5+1)2=(6×10+1)2﹣(6×10)2;(2)第n 个等式:(2n +1)2=[(n +1)×2n +1]2﹣[(n +1)×2n ]2, 证明:左边=4n 2+4n +1,右边=[(n +1)×2n ]2+2×(n +1)×2n +12﹣[(n +1)×2n ]2 =4n 2+4n +1, ∴左边=右边. ∴等式成立.五、(本大题共2小题,每小题10分,满分20分) 19.(10分)解:(1)∵OA =1=OC ,CO ⊥AB ,∠D =30°, ∴OD =√3•OC =√3, ∴AD =OD ﹣OA =√3−1; (2)∵DC 与⊙O 相切, ∴OC ⊥CD ,即∠ACD +∠OCA =90°, ∵OA =OC , ∴∠OCA =∠OAC , ∵∠ACD =∠ACE , ∴∠OAC +∠ACE =90°, ∴∠AEC =90°,即CE ⊥AB . 20.(10分) 解:∵CE ∥AD , ∴∠A =∠ECA =37°,∴∠CBD =∠A +∠ADB =37°+53°=90°, ∴∠ABD =90°,在Rt △BCD 中,∠BDC =90°﹣53°=37°,CD =90米,cos ∠BDC =BDCD , ∴BD =CD •cos ∠37°≈90×0.80=72(米), 在Rt △ABD 中,∠A =37°,BD =72米,tan A =BDAB , ∴AB =BD tan37°≈720.75=96(米).答:A ,B 两点间的距离约96米.六、(本题满分12分) 21.(12分)解:(1)由题意得:n =7÷35%=20(人), 故2a =20﹣1﹣2﹣3﹣6=8, 解得a =4, 故答案为:20;4;(2)把八年级测试成绩从小到大排列,排在中间的两个数分别为86,87,故中位数为86+872=86.5,故答案为:86.5;(3)500×3+120+500×(1﹣5%﹣5%﹣20%﹣35%) =100+175 =275(人),故估计该校七、八两个年级对冬奥会关注程度高的学生一共有275人.七、(本题满分12分)22.(12分)(1)证明:设CE与BD交于点O,∵CB=CD,CE⊥BD,∴DO=BO,∵DE∥BC,∴∠DEO=∠BCO,∵∠DOE=∠BOC,∴△DOE≌△BOC(AAS),∴DE=BC,∴四边形BCDE是平行四边形,∵CD=CB,∴平行四边形BCDE是菱形;(2)(i)解:∵DE垂直平分AC,∴AE=EC且DE⊥AC,∴∠AED=∠CED,又∵CD=CB且CE⊥BD,∴CE垂直平分DB,∴DE=BE,∴∠DEC=∠BEC,∴∠AED=∠CED=∠BEC,又∵∠AED+∠CED+∠BEC=180°,∴∠CED=13×180°=60°;(ii)证明:由(i)得AE=EC,又∵∠AEC=∠AED+∠DEC=120°,∴∠ACE =30°,同理可得,在等腰△DEB 中,∠EBD =30°,∴∠ACE =∠ABF =30°,在△ACE 与△ABF 中,{∠ACE =∠ABF ∠CAE =∠BAF AE =AF,∴△ABF ≌△ACE (AAS ),∴AC =AB ,又∵AE =AF ,∴AB ﹣AE =AC ﹣AF ,即BE =CF .八、(本题满分14分)23.(14分)解:(1)由题意可得:A (﹣6,2),D (6,2),又∵E (0,8)是抛物线的顶点,设抛物线对应的函数表达式为y =ax 2+8,将A (﹣6,2)代入, (﹣6)2a +8=2,解得:a =−16,∴抛物线对应的函数表达式为y =−16x 2+8;(2)(ⅰ)∵点P 1的横坐标为m (0<m ≤6),且四边形P 1P 2P 3P 4为矩形,点P 2,P 3在抛物线AED 上,∴P 2的坐标为(m ,−16m 2+8),∴P 1P 2=P 3P 4=MN =−16m 2+8,P 2P 3=2m ,∴l =3(−16m 2+8)+2m =−12m 2+2m +24=−12(m ﹣2)2+26, ∵−12<0,∴当m =2时,l 有最大值为26,即栅栏总长l 与m 之间的函数表达式为l =−12m 2+2m +24,l 的最大值为26; (ⅱ)方案一:设P 2P 1=n ,则P 2P 3=18﹣3n ,∴矩形P1P2P3P4面积为(18﹣3n)n=﹣3n2+18n=﹣3(n﹣3)2+27,∵﹣3<0,∴当n=3时,矩形面积有最大值为27,此时P2P1=3,P2P3=9,令−16x2+8=3,解得:x=±√30,∴此时P1的横坐标的取值范围为−√30+9≤x≤√30,方案二:设P2P1=n,则P2P3=18−2n2=9﹣n,∴矩形P1P2P3P4面积为(9﹣n)n=﹣n2+9n=﹣(n−92)2+814,∵﹣1<0,∴当n=92时,矩形面积有最大值为814,此时P2P1=92,P2P3=92,令−16x2+8=92,解得:x=±√21,∴此时P1的横坐标的取值范围为−√21+92≤x≤√21.。

2019年安徽省中考数学试题(解析版)

2019年安徽省中考数学试题(解析版)

2019年安徽省中考数学一、选择题(本大题共10小题,每小题4分,满分40分)1.在-2,-1,0,1这四个数中,最小的数是( ) A. -2 B. -1 C. 0 D. 1【答案】A 【解析】 【分析】根据正数大于0,负数小于0,负数绝对值越大值越小即可求解. 【详解】解:在2-、1-、0、1这四个数中, 大小顺序为:2101-<-<<, 所以最小的数是2-. 故选:A.【点睛】此题考查了有理数的大小的比较,解题的关键利用正负数的性质及数轴可以解决问题.2.计算3()a a •- 的结果是( ) A. a 2 B. -a 2 C. a 4 D. -a 4【答案】D 【解析】 【分析】直接利用同底数幂的乘法运算法则计算得出答案.【详解】解:34()=a a a •--,故选:D .【点睛】此题主要考查了同底数幂的乘法运算,正确掌握运算法则是解题关键.3.一个由圆柱和圆锥组成的几何体如图水平放置,它的俯视图是( )A. B. C. D.【答案】C【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【详解】解:从上面看,一个正方形里面有一个圆且是实线.故选:C.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.2019年“五一”假日期间,某省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为()A. 1.61×109B. 1.61×1010C. 1.61×1011D. 1.61×1012【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.详解】解:161亿=16100000000=1.61×1010.故选:B.【点睛】此题考查科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.已知点A(1,-3)关于x轴的对称点A'在反比例函数ky=的图像上,则实数k的值为()xA. 3B. 13C. -3D. 1-3【答案】A【解析】【分析】先求出A'坐标,代入函数解析式即可求出k.【详解】解:点A(1,-3)关于x轴的对称点A'的坐标为:(1,3),将(1,3)代入反比例函数ky=x,可得:k=1×3=3,故选:A.【点睛】本题考查了反比例函数图像上点的坐标特征,根据对称的性质求出A'的坐标是解题关键.6.在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为()A. 60B. 50C. 40D. 15【答案】C【解析】【分析】一组数据中出现次数最多的数据叫做众数,由此可得出答案【详解】解:车速为40km/h的车辆数最多,这50辆车的车速的众数为40km/h,故选:C.【点睛】本题考查了众数的定义,众数是一组数据中出现次数最多的数,注意众数可以不止一个.7.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G,若EF=EG,则CD的长为()A. 3.6B. 4C. 4.8D. 5【答案】B【解析】【分析】过点D作DH⊥BC交AB于点H,根据△AFE∽△ACD和△AEG∽△ADH可得DC=DH,再由△BDH∽△BCA,根据相似三角形的性质列出方程即可求出CD. 【详解】解:过点D作DH⊥BC交AB于点H,∵EF⊥AC,∴EF∥BC,∴△AFE∽△ACD,∴EF AE DC AD=,∵DH⊥BC,EG⊥EF,∴DH∥EG,∴△AEG∽△ADH,∴EG AE DH AD=,∴EF EG DC DH=∵EF=EG,∴DC=DH,设DH=DC=x,则BD=12-x,又∵△BDH∽△BCA,∴DH BD CABC=,即12612x x-=,解得:x=4,即CD=4,故选:B.【点睛】本题考查了相似三角形的判定和性质,根据相似的性质得到DC=DH是解题关键.8.据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是()A. 2019年B. 2020年C. 2021年D. 2022年【答案】B【解析】【分析】根据2018年全年国内生产总值和增长率求出2019年,2020年等国内生产总值,直到国内生产总值首次突破100万亿即可得到答案.【详解】解:根据题意得2019年国内生产总值为90.3万亿×(1+6.6%)=96.2598万亿,2020年国内生产总值为96.2598×(1+6.6%)≈102.61万亿,故选:B.【点睛】本题考查了增长率的问题,能够根据题意列出算式,求出下一年的国内生产总值是解题关键. 9.已知三个实数a,b,c满足a-2b+c=0,a+2b+c<0,则()A. b>0,b2-ac≤0B. b<0,b2-ac≤0C. b>0,b2-ac≥0D. b<0,b2-ac≥0 【答案】D【解析】【分析】根据题意得a+c=2b,然后将a+c替换掉可求得b<0,将b2-ac变形为()24a c-,可根据平方的非负性求得b2-ac≥0.【详解】解:∵a-2b+c=0,∴a+c=2b,∴a+2b+c=4b<0,∴b<0,∴a2+2ac+c2=4b2,即22 224a ac c b++=∴b2-ac=()22222220 444a ca ac c a ac cac-++-+-==≥,故选:D.【点睛】本题考查了等式的性质以及完全平方公式的应用,熟练掌握完全平方公式是解题关键.10.如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是()A. 0B. 4C. 6D. 8【答案】D【解析】【分析】P点是正方形的边上的动点,我们可以先求PE+PF的最小值,然后根据PE+PF=9判断得出其中一边上P点的个数,即可解决问题.【详解】解:如图,作点F关于BC的对称点M,连接FM交BC于点N,连接EM,交BC于点H∵点E,F将对角线AC三等分,且AC=12,∴EC=8,FC=4=AE,∵点M与点F关于BC对称∴CF=CM=4,∠ACB=∠BCM=45°∴∠ACM=90°∴2245ECCM+=则在线段BC存在点H到点E和点F的距离之和最小为59在点H右侧,当点P与点C重合时,则PE+PF=12∴点P在CH上时,5PE+PF≤12在点H左侧,当点P与点B重合时,22210FNBN+=∵AB=BC,CF=AE,∠BAE=∠BCF∴△ABE≌△CBF(SAS)∴10∴10∴点P在BH上时,5PE+PF<10∴在线段BC上点H的左右两边各有一个点P使PE+PF=9,同理在线段AB,AD,CD上都存在两个点使PE+PF=9.即共有8个点P满足PE+PF=9,故选:D.【点睛】本题主要考查了正方形的性质以及根据轴对称求最短路径,有一定难度,巧妙的运用求最值的思想判断满足题意的点的个数是解题关键.二、填空题(本大共4小题,每小题5分,满分30分)11.__________.【答案】3【解析】【分析】根据二次根式的除法计算即可.,故答案为:3【点睛】本题考查了二次根式的除法,熟练掌握运算法则是解题关键.12.命题“如果a+b=0,那么a,b互为相反数”的逆命题为____________________________.【答案】如果a,b互为相反数,那么a+b=0【解析】【分析】交换原命题的题设与结论即可得到其逆命题.【详解】解:逆命题为:如果a,b互为相反数,那么a+b=0.故答案为:如果a,b互为相反数,那么a+b=0.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.13.如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O的半径为2,则CD 的长为_____【答案】2【解析】【分析】连接OA,OC,根据∠COA=2∠CBA=90°可求出AC=22,然后在Rt△ACD中利用三角函数即可求得CD 的长.【详解】解:连接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=22222222OA OC+=+=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=12222⨯=,故答案为:2.【点睛】本题考查了圆周角定理以及锐角三角函数,根据题意作出常用辅助线是解题关键.14.在平面直角坐标系中,垂直于x轴的直线l分别于函数y=x-a+1和y+x2-2ax的图像相交于P,Q两点.若平移直线l,可以使P,Q都在x轴的下方,则实数a的取值范围是_______【答案】a>1或a<-1【解析】【分析】首先求出y=x-a+1<0和y=x2-2ax<0的解集,然后分情况讨论,联立不等式,即可得到a的取值范围. 【详解】解:∵直线l分别与函数y=x-a+1和y=x2-2ax的图像相交于P,Q两点,且都在x轴的下方,∴令y=x-a+1<0,解得x<a-1,令y=x2-2ax<0,当a>0时,解得:0<x<2a;当a<0时,解得:2a<x<0,①当a>0时,若102x ax a-⎧⎨⎩<<<有解,则0a1-<,解得:a>1,②当a<0时,若120x aa x<<<-⎧⎨⎩有解,则2a a1-<,解得:a<-1,综上所述,实数a的取值范围是a>1或a<-1.【点睛】本题考查了一次函数、二次函数与不等式的关系,利用数形结合与分类讨论思想是解题关键.三、(本大题共2小题,每小题8分,满分16分)15.解方程:2(1)4x-=【答案】x=-1或x=3【解析】【分析】本题利用直接开平方法即可求出答案.【详解】解:x-1=±2,x-1= 2或x-1=-2,解得:x=-1或x=3.【点睛】本题考查了直接开平方法解一元二次方程,能够根据方程特点选取不同的解法是解题关键. 16.如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD.(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据平移的性质作图即可;(2)根据菱形的性质作图即可.【详解】解:(1)如图,线段CD即为所求;(2)如图,菱形CDEF即为所求(菱形CDEF不唯一).【点睛】本题考查了平移的性质以及菱形的性质,根据题意结合网格特点画出图形是解题关键.四、(本大题共2小题,每小题8分,满分16分)17.为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米,按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天?【答案】甲乙两个工程队还需联合工作10天.【解析】【分析】设甲工程队每天掘进x米,则乙工程队每天掘进(x-2)米,利用甲、乙两工程队3天共掘进26米列出方程,分别求得甲、乙工程队每天的工作量,再求出结果即可.【详解】解:设甲工程队每天掘进x米,则乙工程队每天掘进(x-2)米,由题意得2x+(x+x-2)=26,解得x=7,所以乙工程队每天掘进5米,146-26=1075+(天)答:甲乙两个工程队还需联合工作10天【点睛】本题考查了一元一次方程的实际应用,理解题意,找到等量关系并列出方程是解题关键.18.观察以下等式:第1个等式:211 =111+,第2个等式:211 =326+,第3个等式:211=5315+,第4个等式:211=7428+,第5个等式:211=9545+,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1)211=11666+;(2)21121(21)n n n n=+--,见解析.【解析】【分析】观察各式子的分母之间的关系发现:等式左边式子的分母的值从1开始,后一项的值比前一个分母的值大2,分子不变,等式右边分子不变,第一个式子的分母等序增加,第二个分母的值依次为:1,6,15,28,45,根据顺序关系可以记作第n组式子对应的分母为n(2n+1),然后解题即可.【详解】解:(1)第6个等式:211= 11666+(2)211=2n-1n n2n-1+()证明:∵右边112n-1+12====n n2n-1n2n-12n-1+()()左边.∴等式成立【点睛】本题是规律探究题,解答过程中,要注意各式中相同位置数字的变化规律,并将其用代数式表示出来.五、(本大题共2小题,每小题10分,满分20分)19.筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)【答案】6.64米【解析】【分析】通过垂径定理求出AD,再通过三角函数解直角三角形,求出AO和OD的值,从而得到点C到弦AB所在直线的距离.【详解】解:如图:连接CO并延长,交AB于点D,∵OD ⊥AB ,AB=6, ∴AD=12AB=3, 在Rt △OAD 中, ∠OAB=41.3°,cos ∠OAD=ADAO, ∴AO=4cos OADAD∠=,∵sin ∠OAD=ODAO, ∴OD=AO·sin ∠OAD=2.64, ∴CD=OC+OD=AO+OD=4+2.64=6.64米, 答:点C 到弦AB 所在直线的距离是6.64米.【点睛】本题为圆中计算的典型考题,考查了垂径定理和三角函数的应用,通过垂径定理求出AD 的值是解题关键.20.如图,点E 在▱ABCD 内部,AF ∥BE ,DF ∥CE .(1)求证:△BCE ≌△ADF ;(2)设▱ABCD 的面积为S ,四边形AEDF 的面积为T ,求ST的值 【答案】(1)证明略;(2)S T=2 【解析】 【分析】(1)已知AD=BC ,可以通过证明EBC FAD ∠=∠,ECB FDA ∠=∠来证明BCE ADF ≅V V (ASA ); (2)连接EF ,易证四边形ABEF ,四边形CDFE 为平行四边形,则AFE FED ABE CDE AEDF S S S S T S =+=+=V V V V 四边形12S =,即可得ST=2. 【详解】(1)证明:∵四边形ABCD 为平行四边形, ∴AD BC ∥,180BAD ABC ︒∴∠+∠=,又//AF BE Q ,180BAF ABE ︒∴∠+∠=,BAD ABE EBC FAD BAD ABE ∴∠+∠+∠=∠+∠+∠, EBC FAD ∴∠=∠,同理可得:ECB FDA ∠=∠, 在BCE V 和ADF V 中,EBC FADBC ADECB FDA ∠=∠⎧⎪=⎨⎪∠=∠⎩BCE ADF ∴≅V V(2)解:连接EF ,BCE ADF ≅QV V ,,BE AF CE DF ∴==,又,AF BE DF CE Q ∥∥,∴四边形ABEF ,四边形CDFE 为平行四边形, ∴,ABE AFE CDE FED S S S S ==V V V V ,∴AFE FED ABE CDE AEDF S S S S T S =+=+=V V V V 四边形,设点E 到AB 的距离为h 1,到CD 的距离为h 2,线段AB 到CD 的距离为h , 则h= h 1+ h 2, ∴()1212111222T AB h CD h AB h h =⋅⋅+⋅⋅=⋅⋅+1122AB h S =⋅⋅=,即ST=2.【点睛】本题考查了三角形全等的判定和性质、平行四边形的判定和性质以及相关面积计算,熟练掌握所学性质定理并能灵活运用进行推理计算是解题的关键.六、(本题满分12分)21.为监控某条生产线上产品的质量,检测员每个相同时间抽取一件产品,并测量其尺寸,在一天的抽检结束后,检测员将测得的个数据按从小到大的顺序整理成如下表格:编号①②③④⑤⑥⑦⑧⑨⑩⑪⑫⑬⑭⑮尺寸(cm)8.72 8.88 8.92 8.93 8.94 8.96 8.97 8.98 a 9.03 9.04 9.06 9.07 9.08 b按照生产标准,产品等次规定如下:尺寸(单位:cm)产品等次8.97≤x≤9.03 特等品8.95≤x≤9.05 优等品8.90≤x≤9.10 合格品x<8.90或x>9.10 非合格品注:在统计优等品个数时,将特等品计算在内;在统计合格品个数时,将优等品(含特等品)仅算在内. (1)已知此次抽检的合格率为80%,请判断编号为⑮的产品是否为合格品,并说明理由(2)已知此次抽检出的优等品尺寸的中位数为9cm.(i)求a的值,(ii )将这些优等品分成两组,一组尺寸大于9cm ,另一组尺寸不大于9cm ,从这两组中各随机抽取1件进行复检,求抽到的2件产品都是特等品的概率. 【答案】(1)不合格,见解析;(2)(i )a =9.02,(ii )49. 【解析】 【分析】(1)判断出非合格品有3个,其中①②是非合格品,即可确定⑮是非合格品;(2)(i )判断出符合优等品尺寸的编号是⑥~⑪,根据中位数是9可得正中间两个数据的平均数是9,可求出a 的值;(ii )优等品尺寸大于9cm 的有⑨⑩⑪,小于9cm 的有⑥⑦⑧,其中特等品为⑦⑧⑨⑩,画树状图即可. 【详解】解:(1)不合格.因为15×80%=12,不合格的有15-12=3个,给出的数据只有①②两个不合格; (2)(i )优等品有⑥~⑪,中位数在⑧8.98,⑨a 之间,∴8.98a=92,解得a=9.02 (ii )大于9cm 的有⑨⑩⑪,小于9cm 的有⑥⑦⑧,其中特等品为⑦⑧⑨⑩ 画树状图为:共有九种等可能的情况,其中抽到两种产品都是特等品的情况有4种, ∴抽到两种产品都是特等品的概率P=49【点睛】本题主要考查了中位数、树状图或列表法求概率,用到的知识点为:概率=所求情况数与总情况数之比.七、(本题满分12分)22.一次函数y =kx +4与二次函数y =ax 2+c 的图像的一个交点坐标为(1,2),另一个交点是该二次函数图像的顶点(1)求k ,a ,c 的值;(2)过点A (0,m )(0<m <4)且垂直于y 轴的直线与二次函数y =ax 2+c 的图像相交于B ,C 两点,点O 为坐标原点,记W =OA 2+BC 2,求W 关于m 的函数解析式,并求W 的最小值.【答案】(1)k =-2,a =-2,c =4;(2)2(1)7W m =-+, W 取得最小值7. 【解析】 【分析】(1)把(1,2)分别代入y=kx+4和y=ax 2+c ,得k+4=-2和a+c=2,然后求出二次函数图像的顶点坐标为(0,4),可得c=4,然后计算得到a 的值;(2)由A (0,m )(0<m <4)可得OA=m ,令y=-2x 2+4=m ,求出B ,C 坐标,进而表示出BC 长度,将OA ,BC 代入W=OA 2+BC 2中得到W 关于m 的函数解析式,求出最小值即可. 【详解】解:(1)由题意得,k+4=-2,解得k=-2, ∴一次函数解析式为:y=-2x+4 又二次函数顶点横坐标为0, ∴顶点坐标为(0,4) ∴c=4把(1,2)带入二次函数表达式得a+c=2,解得a=-2(2)由(1)得二次函数解析式为y=-2x 2+4,令y=m ,得2x 2+m-4=0∴x=±,设B ,C 两点的坐标分别为(x 1,m )(x 2,m ),则12x x + ∴W=OA 2+BC 2=2224-m m 4=m -2m+8=m-172+⨯+() ∴当m=1时,W 取得最小值7【点睛】本题考查了待定系数法求函数解析式以及二次函数的图像和性质,将二次函数图像与直线的交点问题转化为求一元二次方程的解,得到B ,C 坐标是解题的关键.八、(本题满分14分)23.如图,Rt △ABC 中,∠ACB =90°,AC =BC ,P 为△ABC 内部一点,且∠APB =∠BPC =135° (1)求证:△PAB ∽△PBC (2)求证:PA =2PC(3)若点P 到三角形的边AB ,BC ,CA 的距离分别为h 1,h 2,h 3,求证h 12=h 2·h 3【答案】(1)见解析;(2)见解析;(3)见解析. 【解析】 【分析】(1)结合题意,易得∠ABC=45°=∠PBA+∠PBC ,然后由∠APB=∠BPC=135°即可证明△PAB ∽△PBC ; (2)根据(1)中△PAB ∽△PBC ,可得PA PB AB ==PB PC BC ,然后由△ABC 是等腰直角三角形,可得出AB=2BC,易得PA=2PC ;(3)过点P 作PD ⊥BC ,PE ⊥AC 交BC 、AC 于点D ,E ,首先由Rt △AEP ∽Rt △CDP 得出PE AP==2DP PC,即32h =2h ,再根据△PAB ∽△PBC 可得出12h AB ==2h BC2123h =h h . 【详解】解:(1)∵∠ACB=90°,AC=BC , ∴∠ABC=45°=∠PBA+∠PBC 又∠APB=135°, ∴∠PAB+∠PBA=45°, ∴∠PBC=∠PAB , 又∵∠APB=∠BPC=135°, ∴△PAB ∽△PBC ; (2)∵△PAB ∽△PBC , ∴PA PB AB==PB PC BC , 在Rt △ABC 中,AC=BC , ∴AB=2BC∴PB=2PC PA=2PB , ∴PA=2PC ; (3)过点P 作PD ⊥BC ,PE ⊥AC 交BC 、AC 于点D ,E , ∵∠CPB+∠APB=135°+135°=270°, ∴∠APC=90°,∴∠EAP+∠ACP=90°, 又∵∠ACB=∠ACP+∠PCD=90° ∴∠EAP=∠PCD , ∴Rt △AEP ∽Rt △CDP , ∴PE AP==2DP PC,即32h =2h ,∴32h =2h∵△PAB ∽△PBC , ∴1122h AB==2h 2h h BC,∴ 即22122223h =2h =2h h =h h •.【点睛】本题是相似三角形综合题,主要考查了相似三角形的判定和性质以及等腰直角三角形的性质,其中第(3)问有一定难度,通过作辅助线构造出Rt △AEP ∽Rt △CDP 是解题关键.。

安徽初三初中数学中考真卷带答案解析

安徽初三初中数学中考真卷带答案解析

安徽初三初中数学中考真卷班级:___________ 姓名:___________ 分数:___________一、选择题1.下列几何体中,俯视图是矩形的是()2.与1+最接近的整数是()A.4B.3C.2D.13.我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2013年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5D.1.4(1+x)+1.4(1+x)2=4.54.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分5.在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A.∠ADE=20°B.∠ADE=30°C.∠ADE=∠ADC D.∠ADE=∠ADC6.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是A.2B.3C.5D.67.如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能是( )二、填空题1.-64的立方根是 .2.如图,点A 、B 、C 在半径为9的⊙O 上,的长为,则∠ACB 的大小是 .3.按一定规律排列的一列数:21,22,23,25,28,213,…,若x 、y 、z 表示这列数中的连续三个数,猜想x 、y 、z 满足的关系式是 .4.已知实数a 、b 、c 满足a +b =ab =c ,有下列结论: ①若c≠0,则;②若a =3,则b +c =9;③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8. 其中正确的是 (把所有正确结论的序号都选上).三、解答题1.先化简,再求值:,其中a =-.2.解不等式:.3.如图,平台AB 高为12m ,在B 处测得楼房CD 顶部点D 的仰角为45°,底部点C 的俯角为30°,求楼房CD 的高度(=1.7).4.A 、B 、C 三人玩篮球传球游戏,游戏规则是:第一次传球由A 将球随机地传给B 、C 两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人. (1)求两次传球后,球恰在B 手中的概率; (2)求三次传球后,球恰在A 手中的概率.5.在⊙O 中,直径AB =6,BC 是弦,∠ABC =30°,点P 在BC 上,点Q 在⊙O 上,且OP ⊥PQ .(1)如图1,当PQ ∥AB 时,求PQ 的长度;(2)如图2,当点P 在BC 上移动时,求PQ 长的最大值.6.如图,已知反比例函数与一次函数y =k 2x +b 的图象交于点A (1,8)、B (-4,m ).(1)求k 1、k 2、b 的值; (2)求△AOB 的面积;(3)若M (x 1,y 1)、N (x 2,y 2)是比例函数图象上的两点,且x 1<x 2,y 1<y 2,指出点M 、N 各位于哪个象限,并简要说明理由.7.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m 的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度为xm ,矩形区域ABCD 的面积为ym 2.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围; (2)x 为何值时,y 有最大值?最大值是多少?8.如图1,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接AG 、BG 、CG 、DG ,且∠AGD =∠BGC . (1)求证:AD =BC ;(2)求证:△AGD ∽△EGF ;(3)如图2,若AD 、BC 所在直线互相垂直,求的值.安徽初三初中数学中考真卷答案及解析一、选择题1.下列几何体中,俯视图是矩形的是()【答案】B.【解析】选项A、D的俯视图是圆,选项B的俯视图是矩形,选项C的俯视图是三角形,故答案选B.【考点】几何体的俯视图.2.与1+最接近的整数是()A.4B.3C.2D.1【答案】B.【解析】由可得,又因4比9更接近5,所以更接近整数3.故答案选B.【考点】二次根式的估算.3.我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2013年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5D.1.4(1+x)+1.4(1+x)2=4.5【答案】C.【解析】设2014年与2015年这两年的平均增长率为x,则2014年的业务量为1.4(1+x)亿件,2015年的业务量为1.4(1+x)2亿件,又因2015年的快递业务量达到4.5亿件,所以可列方程为1.4(1+x)2=4.5,故答案选C.【考点】一元二次方程的应用.4.某校九年级(1)班全体学生2015年初中毕业体育考试的成绩统计如下表:根据上表中的信息判断,下列结论中错误的是()A.该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分【答案】D.【解析】由统计表可知总共有(2+5+6+6+8+7+6=40)名同学;45在这组数据中一个出现了8次,次数最多是众数;这组数据的中位数是第20、21两个数的平均数为45;这组数据的平均数为(35×2+39×5+42×6+44×6+45×8+48×7+50×6)÷40=44.425.所以本题选项中错误的结论只有选项D,故答案选D.【考点】中位数;众数;平均数.5.在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A.∠ADE=20°B.∠ADE=30°C.∠ADE=∠ADC D.∠ADE=∠ADC【答案】D.【解析】设∠ADE=x,∠ADC=y,由题意可得,∠ADE+∠AED+∠A=180°,∠A+∠B+∠C+∠ADC=360°,即x+60+∠A=180①,3∠A+y=360②,由①×3-②可得3x-y=0,所以,即∠ADE=∠ADC.故答案选D .【考点】三角形的内角和定理;四边形内角和定理.6.如图,矩形ABCD 中,AB =8,BC =4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是A .2B .3C .5D .6【答案】C .【解析】连接EF 交AC 于点M ,由四边形EGFH 为菱形可得FM=EM ,EF ⊥AC ;利用”AAS 或ASA”易证△FMC ≌△EMA ,根据全等三角形的性质可得AM=MC ;在Rt △ABC 中,由勾股定理求得AC=,且tan ∠BAC=;在Rt △AME 中,AM=AC=,tan ∠BAC=可得EM=;在Rt △AME 中,由勾股定理求得AE=5.故答案选C .【考点】菱形的性质;矩形的性质;勾股定理;锐角三角函数.7.如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能是( )【答案】A .【解析】点P 在抛物线上,设点P (x ,ax 2+bx+c ),又因点P 在直线y=x 上,所以x= ax 2+bx+c ,即ax 2+(b-1)x+c=0;由图象可知一次函数y=x 与二次函数y= ax 2+bx+c 交于第一象限的P 、Q 两点,方程ax 2+(b-1)x+c=0有两个正实数根,所以函数y=ax 2+(b-1)x+c 的图象与x 轴有两个交点,并且这两个交点都在x 轴的正半轴上,符合条件的 只有选项A ,故答案选A .【考点】二次函数与一元二次方程的关系.二、填空题1.-64的立方根是 . 【答案】-4.【解析】∵(-4)3=-64,∴-64的立方根为-4. 考点:立方根的定义.2.如图,点A、B、C在半径为9的⊙O上,的长为,则∠ACB的大小是.【答案】20°.【解析】连接OA、OB,由弧长公式的可求得∠AOB=40°,再根据同弧所对的圆周角等于圆心角的一半可得∠ACB=20°.【考点】弧长公式;圆周角定理.3.按一定规律排列的一列数:21,22,23,25,28,213,…,若x、y、z表示这列数中的连续三个数,猜想x、y、z满足的关系式是.【答案】xy=z.【解析】观察数列可发现所以这一列数据所揭示的规律是前两个数的积等于第三个数.根据规律x、y、z表示这列数中的连续三个数,则x、y、z满足的关系式是xy=z.【考点】规律探究题.4.已知实数a、b、c满足a+b=ab=c,有下列结论:①若c≠0,则;②若a=3,则b+c=9;③若a=b=c,则abc=0;④若a、b、c中只有两个数相等,则a+b+c=8.其中正确的是(把所有正确结论的序号都选上).【答案】①③④.【解析】在a+b=ab的两边同时除以ab(ab=c≠0)即可得,所以①正确;把a=3代入得3+b=3b=c,可得b=,c=,所以b+c=6,故②错误;把 a=b=c代入得,所以可得c=0,故③正确;当a=b时,由a+b=ab可得a=b=2,再代入可得c=4,所以a+b+c=8;当a=c时,由c=a+b可得b=0,再代入可得a=b=c=0,这与a、b、c中只有两个数相等相矛盾,故a=c这种情况不存在;当b=c时,情况同a=c,故b=c这种情况也不存在,所以④正确.所以本题正确的是①③④.【考点】分式的基本性质;分类讨论.三、解答题1.先化简,再求值:,其中a=-.【答案】.【解析】根据分式的混合运算法则先化简后再求值.试题解析:【考点】分式的混合运算.2.解不等式:.【答案】x>3.【解析】根据解不等式的基本方法解出即可.试题解析:【考点】一元一次不等式的解法.3.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(=1.7).【答案】32.4米.【解析】过点B作BE⊥DC于E,在Rt△BEC中,求BE的长;在Rt△BED中,求DE的长;根据CD=CE+DE可求得CD的长.试题解析:解:过点B作BE⊥DC于E,则CE=AB=12,在Rt△BEC中,.在Rt△BED中,DE=BE·tan∠DBE=.∴CD=CE+DE=12+≈32.4.所以,楼房CD的高度为32.4米.【考点】解直角三角形.4.A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.【答案】(1);(2).【解析】(1)直接列举出两次传球的所有结果,球球恰在B手中的结果只有一种即可求概率;(2)画出树状图,表示出三次传球的所有结果,三次传球后,球恰在A手中的结果有2种,即可求出三次传球后,球恰在A手中的概率.试题解析:解:(1)两次传球的所有结果有4种,分别是A→B→C,A→B→A,A→C→B,A→C→A.每种结果发生的可能性相等,球球恰在B手中的结果只有一种,所以两次传球后,球恰在B手中的概率是;(2)树状图如下,由树状图可知,三次传球的所有结果有8种,每种结果发生的可能性相等.其中,三次传球后,球恰在A 手中的结果有A→B→C→A ,A→C→B→A 这两种,所以三次传球后,球恰在A 手中的概率是.【考点】用列举法求概率.5.在⊙O 中,直径AB =6,BC 是弦,∠ABC =30°,点P 在BC 上,点Q 在⊙O 上,且OP ⊥PQ .(1)如图1,当PQ ∥AB 时,求PQ 的长度;(2)如图2,当点P 在BC 上移动时,求PQ 长的最大值. 【答案】(1);(2).【解析】(1)在Rt △OPB 中,由OP=OB·tan ∠ABC 可求得OP=,连接OQ ,在Rt △OPQ 中,根据勾股定理可得PQ 的长;(2)由勾股定理可知OQ 为定值,所以当当OP 最小时,PQ 最大.根据垂线段最短可知,当OP ⊥BC 时OP 最小,所以在Rt △OPB 中,由OP=OB·sin ∠ABC 求得OP 的长;在Rt △OPQ中,根据勾股定理求得PQ 的长.试题解析:解:(1)∵OP ⊥PQ ,PQ ∥AB ,∴OP ⊥AB . 在Rt △OPB 中,OP=OB·tan ∠ABC=3·tan30°=. 连接OQ ,在Rt △OPQ 中,.(2) ∵∴当OP 最小时,PQ 最大,此时OP ⊥BC . OP=OB·sin ∠ABC=3·sin30°=.∴PQ 长的最大值为.【考点】解直角三角形;勾股定理.6.如图,已知反比例函数与一次函数y =k 2x +b 的图象交于点A (1,8)、B (-4,m ).(1)求k 1、k 2、b 的值; (2)求△AOB 的面积;(3)若M (x 1,y 1)、N (x 2,y 2)是比例函数图象上的两点,且x 1<x 2,y 1<y 2,指出点M 、N 各位于哪个象限,并简要说明理由. 【答案】(1)=8,;(2)S △ABC =15;(3)点M 在第三象限,点N 在第一象限,理由见解析.【解析】(1)把A (1,8)代入求得=8,把B (-4,m )代入求得m=-2,把A (1,8)、B (-4,-2)代入求得、b 的值;(2)设直线y=2x+6与x 轴的交点为C ,可求得OC 的长,根据S △ABC =S △AOC +S △BOC 即可求得△AOB 的面积;(3)由<可知有三种情况,①点M 、N 在第三象限的分支上,②点M 、N 在第一象限的分支上,③ M 在第三象限,点N 在第一象限,分类讨论把不合题意的舍去即可. 试题解析:解:(1)把A (1,8), B (-4,m )分别代入,得=8,m=-2.∵A (1,8)、B (-4,-2)在图象上,∴, 解得,.(2)设直线y=2x+6与x 轴的交点为C ,当y=0时,x=-3, ∴OC=3∴S △ABC =S △AOC +S △BOC =(3)点M 在第三象限,点N 在第一象限.①若<<0,点M 、N 在第三象限的分支上,则>,不合题意; ②若0<<,点M 、N 在第一象限的分支上,则>,不合题意;③若<0<,M 在第三象限,点N 在第一象限,则<0<,符合题意.【考点】反比例函数与一次函数的交点坐标;用待定系数法求函数表达式;反比例函数的性质.7.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m 的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度为xm ,矩形区域ABCD 的面积为ym 2.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围; (2)x 为何值时,y 有最大值?最大值是多少? 【答案】(1)(0<x <40);(2)当x=20时,y 有最大值,最大值是300平方米.【解析】(1)设AE=a ,由AE·AD=2BE·BC ,AD=BC 可得BE=a ,AB=a ;根据周长为80米得方程2x+3a+2·a=80,解得a=20—x .由y=AB·BC 代入即可求y 与x 之间的函数关系式;根据题意0<BC+EF <80,所以x 的取值范围为0<x <40;(2)把y 与x 之间的函数关系式化为顶点式,利用二次函数的性质即可求解. 试题解析:解:(1)设AE=a ,由题意可得,AE·AD=2BE·BC ,AD=BC ,∴BE=a ,AB=a .由题意,得2x+3a+2·a=80,∴a=20—x .∴y=AB·BC=ax=(20—x )x ,即(0<x <40).(2)∵∴当x=20时,y 有最大值,最大值是300平方米. 【考点】二次函数的应用及性质.8.如图1,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接AG 、BG 、CG 、DG ,且∠AGD =∠BGC .(1)求证:AD=BC;(2)求证:△AGD∽△EGF;(3)如图2,若AD、BC所在直线互相垂直,求的值.【答案】(1)见解析;(2)见解析;(3)【解析】(1)根据线段垂直平分线上的点到线段两个端点的距离相等可得GA=GB,GD=GC.由“SAS”可判定△AGD≌△BGC根据全等三角形的对应边相等即可得AD=BC.(2)根据两边对应成比例且夹角相等的两个三角形相似可判定△AGB∽△DGC,再由相似三角形对应高的比等于相似比可得,再证得∠AGD=∠EGF,根据两边对应成比例且夹角相等的两个三角形相似即可判定△AGD∽△EGF.(3)如图1,延长AD交GB于点M,交BC的延长线于点H,则AH⊥BH.由△AGD≌△BGC可知∠GAD=∠GBC.在△GAM和△HBM中,由∠GAD=∠GBC,∠GMA=∠HMB可证得∠AGB=∠AHB=90°,根据等腰三角形三线合一的性质可得∠AGE =45°,即可得出根据相似三角形对应边的比相等即可得试题解析:(1)证明:∵GE是AB的垂直平分线,∴GA=GB.同理GD=GC.在△AGD和△BGC中,∵GA=GB,∠AGD=∠BGC,GD=GC,∴△AGD≌△BGC.∴AD=BC.(2)证明:∵∠AGD=∠BGC,∴∠AGB=∠DGC.在△AGB和△DGC中,,∠AGB=∠DGC,∴△AGB∽△DGC.∴,又∠AGE=∠DGF,∴∠AGD=∠EGF,∴△AGD∽△EGF.(3)解:如图1,延长AD交GB于点M,交BC的延长线于点H,则AH⊥BH.由△AGD≌△BGC,知∠GAD=∠GBC,在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB.∴∠AGB=∠AHB=90°,∴∠AGE=∠AGB=45°,∴又△AGD∽△EGF,∴(本小题解法有多种,如可按图2、图3做辅助线求解,过程略)【考点】线段垂直平分线的性质;全等三角形的判定及性质;相似三角形的判定及性质;等腰直角三角形的性质.。

2020年安徽省中考数学试卷及其答案

2020年安徽省中考数学试卷及其答案

2020年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)下列各数中,比﹣2小的数是()A.2B.0C.﹣1D.﹣32.(4分)计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a23.(4分)下面四个几何体中,主视图为三角形的是()A.B.C.D.4.(4分)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×1075.(4分)下列方程中,有两个相等实数根的是()A.x2﹣2x=3B.x2+1=0C.x2+1=2x D.x2﹣2x=06.(4分)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.方差是D.中位数是137.(4分)已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)8.(4分)如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cos A=,则BD 的长度为()A.B.C.D.49.(4分)已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC10.(4分)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC沿着直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)计算:﹣1=.12.(5分)分解因式:ab2﹣a=.13.(5分)如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为.14.(5分)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)∠PAQ的大小为°;(2)当四边形APCD是平行四边形时,的值为.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解不等式:>1.16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.四、(本大题共2小题,每小题8分,满分16分)17.(8分)观察以下等式:第1个等式:×(1+)=2﹣,第2个等式:×(1+)=2﹣,第3个等式:×(1+)=2﹣,第4个等式:×(1+)=2﹣.第5个等式:×(1+)=2﹣.…按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.18.(8分)如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C 的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)五、(本大题共2小题,每小题10分,满分20分)19.(10分)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.20.(10分)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.六、(本题满分12分)21.(12分)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为,扇形统计图中“C”对应扇形的圆心角的大小为°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.七、(本题满分12分)22.(12分)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.八、(本题满分14分)23.(14分)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=AG.2020年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)下列各数中,比﹣2小的数是()A.2B.0C.﹣1D.﹣3【解答】解:|﹣3|>|﹣2|,∴﹣3<﹣2,故选:D.2.(4分)计算(﹣a)6÷a3的结果是()A.﹣a3B.﹣a2C.a3D.a2【解答】解:原式=a6÷a3=a3.故选:C.3.(4分)下面四个几何体中,主视图为三角形的是()A.B.C.D.【解答】解:A、主视图是圆,故A不符合题意;B、主视图是三角形,故B符合题意;C、主视图是矩形,故C不符合题意;D、主视图是正方形,故D不符合题意;故选:B.4.(4分)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为()A.5.47×108B.0.547×108C.547×105D.5.47×107【解答】解:54700000用科学记数法表示为:5.47×107.故选:D.5.(4分)下列方程中,有两个相等实数根的是()A.x2﹣2x=3B.x2+1=0C.x2+1=2x D.x2﹣2x=0【解答】解:A.原方程化为x2﹣2x﹣3=0,Δ=(﹣2)2﹣4×1×(﹣3)=16>0,方程有两个不相等的实数解,所以A选项不符合题意;B.Δ=02﹣4×1×1=﹣4<0,方程没有实数解,所以B选项不符合题意;C.原方程化为x2﹣2x+1=0,Δ=(﹣2)2﹣4×1×1=0,方程有两个相等的实数解,所以C选项符合题意;D.Δ=(﹣2)2﹣4×1×0=4>,方程有两个不相等的实数解,所以D选项不符合题意.故选:C.6.(4分)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是()A.众数是11B.平均数是12C.方差是D.中位数是13【解答】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D符合题意;=(11+10+11+13+11+13+15)÷7=12,即平均数是12,于是选项B不符合题意;S2=[(10﹣12)2+(11﹣12)2×3+(13﹣12)2×2+(15﹣12)2]=,因此方差为,于是选项C不符合题意;故选:D.7.(4分)已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)【解答】解:A、当点A的坐标为(﹣1,2)时,﹣k+3=2,解得:k=1>0,∴y随x的增大而增大,选项A不符合题意;B、当点A的坐标为(1,﹣2)时,k+3=﹣2,解得:k=﹣5<0,∴y随x的增大而减小,选项B符合题意;C、当点A的坐标为(2,3)时,2k+3=3,解得:k=0,选项C不符合题意;D、当点A的坐标为(3,4)时,3k+3=4,解得:k=>0,∴y随x的增大而增大,选项D不符合题意.故选:B.8.(4分)如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cos A=,则BD 的长度为()A.B.C.D.4【解答】解:∵∠C=90°,AC=4,cos A=,∴AB=,∴,∵∠DBC=∠A.∴cos∠DBC=cos∠A=,∴,故选:C.9.(4分)已知点A,B,C在⊙O上,则下列命题为真命题的是()A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则∠ABC=120°C.若∠ABC=120°,则弦AC平分半径OBD.若弦AC平分半径OB,则半径OB平分弦AC【解答】解:A、如图,若半径OB平分弦AC,则四边形OABC不一定是平行四边形;原命题是假命题;B、若四边形OABC是平行四边形,则AB=OC,OA=BC,∵OA=OB=OC,∴AB=OA=OB=BC=OC,∴∠ABO=∠OBC=60°,∴∠ABC=120°,是真命题;C、如图,过O作OQ⊥AC于Q,交⊙O于P,连接PA,PC,∵∠ABC=120°,∴∠APC=120°,∠AOC=360°﹣2×120°=120°,∵OA=OC,∴∠AOC=∠OCA=30°,在Rt△OQA中,OQ=OA,∴OQ=OP,∴AC平分OP,∴只有当OB⊥AC时,弦AC平分半径OB,∴弦AC不一定平分半径OB,故C项是假命题;若∠ABC=120°,则弦AC不平分半径OB,原命题是假命题;D、如图,若弦AC平分半径OB,则半径OB不一定平分弦AC,原命题是假命题;故选:B.10.(4分)如图,△ABC和△DEF都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将△ABC沿着直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为()A.B.C.D.【解答】解:如图1所示:当0<x≤2时,过点G作GH⊥BF于H.∵△ABC和△DEF均为等边三角形,∴△GEJ为等边三角形.∴GH=EJ=x,∴y=EJ•GH=x2.当x=2时,y=,且抛物线的开口向上.如图2所示:2<x≤4时,过点G作GH⊥BF于H.y=FJ•GH=(4﹣x)2,函数图象为抛物线的一部分,且抛物线开口向上.故选:A.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)计算:﹣1=2.【解答】解:原式=3﹣1=2.故答案为:2.12.(5分)分解因式:ab2﹣a=a(b+1)(b﹣1).【解答】解:原式=a(b2﹣1)=a(b+1)(b﹣1),故答案为:a(b+1)(b﹣1)13.(5分)如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为2.【解答】解:一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B,令x=0,则y =k,令y=0,则x=﹣k,故点A、B的坐标分别为(﹣k,0)、(0,k),则△OAB的面积=OA•OB=k2,而矩形ODCE的面积为k,则k2=k,解得:k=0(舍去)或2,故答案为2.14.(5分)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将△PCQ,△ADQ分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)∠PAQ的大小为30°;(2)当四边形APCD是平行四边形时,的值为.【解答】解:(1)由折叠的性质可得:∠B=∠AQP,∠DAQ=∠QAP=∠PAB,∠DQA=∠AQR,∠CQP =∠PQR,∠D=∠ARQ,∠C=∠QRP,∵∠QRA+∠QRP=180°,∴∠D+∠C=180°,∴AD∥BC,∴∠B+∠DAB=180°,∵∠DQR+∠CQR=180°,∴∠DQA+∠CQP=90°,∴∠AQP=90°,∴∠B=∠AQP=90°,∴∠DAB=90°,∴∠DAQ=∠QAP=∠PAB=30°,故答案为:30;(2)由折叠的性质可得:AD=AR,CP=PR,∵四边形APCD是平行四边形,∴AD=PC,∴AR=PR,又∵∠AQP=90°,∴QR=AP,∵∠PAB=30°,∠B=90°,∴AP=2PB,AB=PB,∴PB=QR,∴=,故答案为:.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解不等式:>1.【解答】解:去分母,得:2x﹣1>2,移项,得:2x>2+1,合并,得:2x>3,系数化为1,得:x>.16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB,线段MN在网格线上.(1)画出线段AB关于线段MN所在直线对称的线段A1B1(点A1,B1分别为A,B的对应点);(2)将线段B1A1绕点B1顺时针旋转90°得到线段B1A2,画出线段B1A2.【解答】解:(1)如图线段A1B1即为所求.(2)如图,线段B1A2即为所求.四、(本大题共2小题,每小题8分,满分16分)17.(8分)观察以下等式:第1个等式:×(1+)=2﹣,第2个等式:×(1+)=2﹣,第3个等式:×(1+)=2﹣,第4个等式:×(1+)=2﹣.第5个等式:×(1+)=2﹣.…按照以上规律,解决下列问题:(1)写出第6个等式:×(1+)=2﹣;(2)写出你猜想的第n个等式:×(1+)=2﹣(用含n的等式表示),并证明.【解答】解:(1)第6个等式:×(1+)=2﹣;(2)猜想的第n个等式:×(1+)=2﹣.证明:∵左边=×==2﹣=右边,∴等式成立.故答案为:×(1+)=2﹣;×(1+)=2﹣.18.(8分)如图,山顶上有一个信号塔AC,已知信号塔高AC=15米,在山脚下点B处测得塔底C 的仰角∠CBD=36.9°,塔顶A的仰角∠ABD=42.0°,求山高CD(点A,C,D在同一条竖直线上).(参考数据:tan36.9°≈0.75,sin36.9°≈0.60,tan42.0°≈0.90.)【解答】解:由题意,在Rt△ABD中,tan∠ABD=,∴tan42.0°=≈0.9,∴AD≈0.9BD,在Rt△BCD中,tan∠CBD=,∴tan36.9°=≈0.75,∴CD≈0.75BD,∵AC=AD﹣CD,∴15=0.15BD,∴BD=100(米),∴CD=0.75BD=75(米),答:山高CD为75米.五、(本大题共2小题,每小题10分,满分20分)19.(10分)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)2019年4月份a x a﹣x2020年4月份 1.1a 1.43x 1.04(a﹣x)(2)求2020年4月份线上销售额与当月销售总额的比值.【解答】解:(1)∵与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04(a﹣x)元.故答案为:1.04(a﹣x).(2)依题意,得:1.1a=1.43x+1.04(a﹣x),解得:x=a,∴===0.2.答:2020年4月份线上销售额与当月销售总额的比值为0.2.20.(10分)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD=BC,AC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.(1)求证:△CBA≌△DAB;(2)若BE=BF,求证:AC平分∠DAB.【解答】(1)证明:∵AB是半圆O的直径,∴∠ACB=∠ADB=90°,在Rt△CBA与Rt△DAB中,,∴Rt△CBA≌Rt△DAB(HL);(2)解:∵BE=BF,由(1)知BC⊥EF,∴∠E=∠BFE,∵BE是半圆O所在圆的切线,∴∠ABE=90°,∴∠E+∠BAE=90°,由(1)知∠D=90°,∴∠DAF+∠AFD=90°,∵∠AFD=∠BFE,∴∠AFD=∠E,∵∠DAF=90°﹣∠AFD,∠BAF=90°﹣∠E,∴∠DAF=∠BAF,∴AC平分∠DAB.六、(本题满分12分)21.(12分)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为60,扇形统计图中“C”对应扇形的圆心角的大小为108°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【解答】解:(1)在抽取的240人中最喜欢A套餐的人数为240×25%=60(人),则最喜欢C套餐的人数为240﹣(60+84+24)=72(人),∴扇形统计图中“C”对应扇形的圆心角的大小为360°×=108°,故答案为:60、108;(2)估计全体960名职工中最喜欢B套餐的人数为960×=336(人);(3)画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,∴甲被选到的概率为=.七、(本题满分12分)22.(12分)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.【解答】解:(1)点B是在直线y=x+m上,理由如下:∵直线y=x+m经过点A(1,2),∴2=1+m,解得m=1,∴直线为y=x+1,把x=2代入y=x+1得y=3,∴点B(2,3)在直线y=x+m上;(2)∵直线y=x+1经过点B(2,3),直线y=x+1与抛物线y=ax2+bx+1都经过点(0,1),点(0,1),A(1,2),B(2,3)在直线上,点(0,1),A(1,2)在抛物线上,直线与抛物线不可能有三个交点,∵B(2,3),C(2,1)两点的横坐标相同,∴抛物线只能经过A、C两点,把A(1,2),C(2,1)代入y=ax2+bx+1得,解得a=﹣1,b=2;(3)由(2)知,抛物线的解析式为y=﹣x2+2x+1,设平移后的抛物线的解析式为y=﹣x2+px+q,其顶点坐标为(,+q),∵顶点仍在直线y=x+1上,∴+q=+1,∴q=﹣++1,∵抛物线y=﹣x2+px+q与y轴的交点的纵坐标为q,∴q=﹣++1=﹣(p﹣1)2+,∴当p=1时,平移后所得抛物线与y轴交点纵坐标的最大值为.(3)另解∵平移抛物线y=﹣x2+2x+1,其顶点仍在直线为y=x+1上,设平移后的抛物线的解析式为y=﹣(x﹣h)2+h+1,∴y=﹣x2+2hx﹣h2+h+1,设平移后所得抛物线与y轴交点的纵坐标为c,则c=﹣h2+h+1=﹣(h﹣)2+∴当h=时,平移后所得抛物线与y轴交点纵坐标的最大值为.八、(本题满分14分)23.(14分)如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD.EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AB=1,求AE的长;(3)如图2,连接AG,求证:EG﹣DG=AG.【解答】(1)证明:∵四边形ABCD是矩形,点E在BA的延长线上,∴∠EAF=∠DAB=90°,又∵AE=AD,AF=AB,∴△AEF≌△ADB(SAS),∴∠AEF=∠ADB,∴∠GEB+∠GBE=∠ADB+∠ABD=90°,即∠EGB=90°,故BD⊥EC,(2)解:∵四边形ABCD是矩形,∴AE∥CD,∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF,∴,即AE•DF=AF•DC,设AE=AD=a(a>0),则有a•(a﹣1)=1,化简得a2﹣a﹣1=0,解得或(舍去),∴AE=.(3)证明:如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠PAG=∠PAD+∠DAG=∠PAD+∠EAP=∠DAE=90°,∴△PAG为等腰直角三角形,∴EG﹣DG=EG﹣EP=PG=AG.。

安徽省2023年中考数学试题+参考答案

安徽省2023年中考数学试题+参考答案

安徽省2023年中考数学试题一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的。

1.-5的相反数是()A.5B.-5C.15D.-152.某几何体的三视图如图所示,则该几何体为()A. B.C. D.3.下列计算正确的是()A.a4+a4=a8B.a4⋅a4=a16C.a4 4=a16D.a8÷a4=a24.在数轴上表示不等式x-12<0的解集,正确的是()A. B.C. D.5.下列函数中,y的值随x值的增大而减小的是()A.y=x2+1B.y=-x2+1C.y=2x+1D.y=-2x+16.如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE-∠COD=()A.60°B.54°C.48°D.36°7.如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为()A.59B.12C.13D.298.如图,点E 在正方形ABCD 的对角线AC 上,EF ⊥AB 于点F ,连接DE 并延长,交边BC 于点M ,交边AB 的延长线于点G .若AF =2,FB =1,则MG =()A.23B.352C.5+1D.109.已知反比例函数y =kxk ≠0 在第一象限内的图象与一次函数y =-x +b 的图象如图所示,则函数y =x 2-bx +k -1的图象可能为()A. B.C. D.10.如图,E 是线段AB 上一点,△ADE 和△BCE 是位于直线AB 同侧的两个等边三角形,点P ,F 分别是CD ,AB 的中点.若AB =4,则下列结论错误的是()A.PA +PB 的最小值为33B.PE +PF 的最小值为23C.△CDE 周长的最小值为6D.四边形ABCD 面积的最小值为33二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:38+1=。

(完整版)安徽中考数学试题及答案

(完整版)安徽中考数学试题及答案

2013年安徽省初中毕业学业考试数学本卷共8大题,计23小题,满分150分,考试时间120分钟得分评卷人一、选择题(本大题共10小题,每小题4分,满分40分)--------------- 每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确--------------- 选项的代号写在题后的括号内。

每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。

1.-2的倒数是.................................................... 【】11A. - 2B.2C. 2D. -22.用科学记数法的是表示537万正确的是 ................................ 【】A. 537x 104B. 5.37x 105C. 5.37x 106D. 0.537x 1073.图中所示的几何体为圆台,其主(正)视图正确的是..................... 【】第3题图 A B C D第3题图 A B C D4.下面运算正确的是........................................ 【】A. 2x+3y=5xyB. 5m2 • m3=5m5C. (a-b)2=a2-b2D. m2 • m3=m6;x-3> 05.已知不等式组+ 1与°其解集在数轴上表示正确的是................ 【】6 .如图,AB 〃CD , NA+NE=75°,则NC 为 A .60°B .65°C .75°D .80°7.目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年放给每个经济困难学生389元,今年上半年发放了 438元,设每半年发放的资助金额的平均增长率为x ,则下面列... 出的方程中正确的是 ............................................... 【】A .438(1+x )2=389B . 389(1+x )2=438C .389(1+2x )=438D .438(1+2x )=3898.如图,随机闭合开关K 1K 2K 3中的两个,则能让两盏灯泡同时发光的概率是……【 】A 」B 」6 3C . -D .29.图1所示矩形ABCD 中,BC=x , CD=y , y 与x 满足的反比例函数关系如图2所示,等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,则下列结论正确的是 .......... 【 】-2 -1 O 12 3 x-2 -1 O 12 3-2 -1 O 1 2 3 x-2 -1 O 1 2 3第8题图得分评卷人三.(本大题共2小题,每小题8分,满分16分)A.当 x=3 时,EC<EMB.当 y=9 时,EC>EMC.当x 增大时,EC • CF 的值增大D.当y 增大时,BE-DF 的值不变10 .如图,点P 是等边三角形ABC 外接圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省2010年初三毕业生学业考试数 学 试 题一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A 、B 、C 、D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分)1、在-1,0,1,2这四个数中,既不是正数也不是负数的是( ) A 、-1 B 、0 C 、1 D 、22、计算x x ÷3)2(的结果正确的是( )A 、28x B 、26x C 、38x D 、36x 3、如图,直线1l ∥2l ,︒=∠551,︒∠65,则3∠为( )A 、︒50B 、︒55C 、︒60D 、︒654、2010年第一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是( )A 、71089.2⨯B 、61089.2⨯C 、5109.28⨯D 、41089.2⨯5、如图,下列四个几何体中,其主视图、左视图、俯视图中只有两个相同的是( )A 、正方体B 、球体C 、直三棱柱D 、圆柱6、某企业1~5月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是( )A 、1~2月份利润的增长快于2~3月份利润的增长。

B 、1~4月份利润的极差与1~5月份利润的极差不同。

C 、1~5月份利润的众数是130万元。

D 、1~5月份利润的中位数是120万元。

7、若二次函数52++=bx x y 配方后为k x y +-=2)2(,则b 、k 的值分别为( ) A 、0,5 B 、0,1 C 、-4,5 D 、-4,18、如图。

⊙O 过点B 、C ,圆心O 在等腰直角△ABC 内部,︒=∠90BAC ,1=OA ,6=BC ,则⊙O 的半径为( ) A 、10 B 、32 C 、13 D 、239、下面两个多位数1248624……,6248624……,都是按照如下方法得到的:将第1位数字乘以2,若积为一位数,将其写在第2位;若积为两位数,则将其个位数字写在第2位,对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数了进行如上操作得到的,当第1位数字是3时,仍按如上操作得到一个多位数,则这个3211l 2l多位数前100位的所有数字之和是( )A 、495B 、497C 、501D 、50310、甲、乙两人准备在一段长为1200m 的笔直公路上进行跑步,甲、乙跑步的速度分别为4m/s 和6m/s ,起跑前乙在起点,甲在乙前面100m 处,若同时起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两人之间的距离y (m )与时间t (s )函数图象是( )A 、B 、C 、D 、二、填空题(本大题共4小题,每小题5分,满分20分) 11、计算:=-⨯263______________。

12、不等式组⎩⎨⎧≤-<+-84324x x 的解集是______________。

13、如图,△ABC 内接于于⊙O ,AC 是⊙O 的直径,︒=∠50ACB ,点D 是弧BAC 上一点,则=∠D _________。

14、如图,AD 是△ABC 的边BC 上的高,由下列条件中的某一个就能推出△ABC 是等腰三角形的是_____________(把所有正确答 案的序号都填写在横线上)①ACD BAD ∠=∠; ②CAD BAD ∠=∠;③CD AC BD AB +=+;④CD AC BD AB -=-;三、(本大题共2小题,每小题8分,满分16分) 15、先化简,再求值。

aa a a a -+-÷--2244)111(,其中1-=a16、若河岸的两边平行,河宽为900米,一只船由河岸的A 处沿直线方向开往对岸的B 处,AB 与河岸的夹角是︒60,船的速度为5米/秒,求船从A 处到B 处的需时间几分。

(参考数据:7.13≈)︒60BA四、(本大题共2小题,每题8分,共16分) 17、点P (1,a )在反比例函数xky =的图象上,它关于y 轴的对称点在一次函数42+=x y 的图象上,求反比例函数的解析式。

18、在小正方形组成的15×15的网格图中,四边形ABCD 和四边形D C B A ''''的位置如图所示。

(1)现把四边形ABCD 绕D 点按顺时针方向旋转︒90,画出相应的图形1111D C B A ; (2)若四边形ABCD 平移后,与四边形D C B A ''''成轴对称,写出满足要求的一种平移方法,并画出平移后的图形2222D C B A 。

五、(本大题共2小题,每题10分,共20分)19、在国家政策的宏观调控下,某市的商品房成交均价由今年3月份的14000元下降到5月份的12600元/2m 。

(1)问4、5两月平均每月降价的百分率约是多少?(参考数据:95.09.0≈)(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10000元/2m ?请说明理由。

20、如图,AD ∥FE ,点B 、C 在AD 上,21∠=∠,BC BF = (1)求证:四边形BCEF 是菱形;(2)若CD BC AB ==,求证:△ACF ≌△BDE;F AB C DE1 2B A CD A ' B ' C 'D '六、(本题满分12分)21、上海世博会门票的价格如下表示:某旅行社准备了1300 (1)有多少种购票方案?列举所有可能结果;(2)如果从上述方案中任意选一种方案购票,求恰好选到11张门票的概率。

七、(本题满分12分)22、春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售。

(1)九(1)班数学建模兴趣小组根据调查,整理出第x 天(201≤≤x 且x 为整数)的捕(1)在此期间该养殖场每天的捕捞量与前一天的捕劳量相比是如何变化的?(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且能在当天全部售出,求第x 天的收入y (元)与x (天)之间的函数关系式;(当天收入=日销售额-日捕捞成本)(3)试说明(2)中的函数y 随x 的变化情况,并指出在第几天y 取得最大值,最大值是多少?八、(本题满分14分)23、如图,已知△ABC ∽△111C B A ,相似比为k (1>k ),且△ABC 的三边长分别为a 、b 、c (c b a >>),△111C B A 的三边长分别为1a 、1b 、1c 。

(1)若1a c =,求证:kc a =(2)若1a c =,试给出符合条件的一对△ABC 和△111C B A ,使得a 、b 、c 和1a 、1b 、1c 都是正整数,并加以说明;(3)若1a b =,1b c =,是否存在△ABC 和△111C B A ,使得2=k ?请说明理由。

B 1C 11安徽省2010年初中毕业生学业考试数学试题参考答案二、填空题15、解:2)2()1(1244)111(222-=--⋅--=-+-÷--a aa a a a a aa a a a 当1-=a 时,原式312112=---=-=a a16、解:如图,过点B 作BC 垂直河岸,垂足为C ,则在Rt △ACB 中,有360060sin 900sin =︒=∠=BAC BC AB因而时间3326053600≈=⨯=t .4(分)即船从A 处到B 处约需3.5分17、解:点P (1,a )关于y 轴的对称点是(-1,a ) ∵点(-1,a )在一次函数42+=x y 的图象上,∴24)1(2=+-⨯=a∵点P (1,2)在反比例函数x ky =的图像上,∴2=k∴反比例函数的解析式为xy 2=18、解:(1)旋转后得到的图形1111D C B A 如图所示(2)将四边形ABCD 先向右平移4个单位,再向下平移6个单位,四边形2222D C B A 如图所示B AC D 1A 'B 2C 'D 'A 1B 1C 1A 2C 2D D ︒60BAC19、(1)解:设4、5两月平均每月降价的百分率为x ,根据题意,得 12600)1(140002=-x 化简,得9.0)1(2=-x解得:05.01≈x ,95.12≈x(不合题意,舍去)因此,4,5两月平均每月降价的百分率约为5%。

(2)解:如果按此降价的百分率继续回落,估计7月份的商品房成交均价为9.012600)1(126002⨯=-x1000011340>=由此可知,7月份该市的商品房成交均价不会跌破10000元/2m20、(1)证:∵AD ∥EF ,∴2∠=∠FEB ∵21∠=∠,∴1∠=∠FEB ∴EF BF =∵BC BF =,∴EF BC = ∴四边形BCEF 是平行四边形 ∵BC BF =∴四边形BCEF 是菱形。

(2)证:∵EF BC =,CD BC AB ==,AD ∥EF∴四边形ABEF 、四边形CDEF 均为平行四边形,∴BE AF =,ED FC = 又∵BD BC AC ==2 ∴△ACF ≌△BDE 21、(1(2)解:由(1)知,共有6种购票方案,且选到每种方案的可能性相等,而恰好选到11张门票的方案只有1种,因此恰好选到11张门票的概率是61。

22、(1)解:该养殖场每天的捕捞量与前一天的捕捞量相比每天减少了10kg (2)解:由题意得14250402)10950)(55()10950(202++-=----=x x x x y(3)解:∵02<-,14450)10(21425040222+--=++-=x x x y 又201≤≤x 且x 为整数∴当101≤≤x 时,y 随x 的增大而增大 当2010≤≤x 时,y 随x 的增大而减小当10=x 时即在第10天,y 取得最大值,最大值为14450元 23、(1)证:∵△ABC ∽△111C B A ,且相似比为k (1>k ),∴k a a=1,∴1ka a = 又∵1a c =,∴kc a =(2)解:取8=a ,6=b ,4=c ,同时取41=a ,31=b ,21=c 此时2111===c cb b a a ,∴△ABC ∽△111C B A 且1ac = (3)解:不存在这样的△ABC 和△111C B A ,理由如下: 若2=k ,则c b b a a 442211====∴c b 2=∴a c c c c b =<+=+42,而a c b >+故不存在这样的△ABC 和△111C B A ,使得2=k。

相关文档
最新文档