江苏省南京市2018届高三9月学情调研考试数学试题

合集下载

江苏省南京市届三9月学情调研数学试题x

江苏省南京市届三9月学情调研数学试题x

江苏省南京市届三9月学情调研数学试题x南京市 20xx 届高三年级学情调研卷数学20xx.09.......一、填空题:本大题共14 小题,每小题5 分,共70 分.请把答案填写在答题卡相应位置上.22▲.1.函数 f(x)= cos x- sin x 的最小正周期为1,其中 i 是虚数单位,则 |z|=▲.2.已知复数 z= 1+i3.某学校高一、高二、高三年级的学生人数之比为4:3: 3,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为80 的样本,则应从高一年级抽取▲名学生.4.从甲、乙、丙、丁 4 位同学中随机选出 2 名代表参加学校会议,则甲被选中的概率是▲.5.已知向量a= (2, 1), b= (0,- 1).若 (a+λb) ⊥ a,则实数λ=▲.6.右图是一个算法流程图,则输出S 的值是▲.开始S←0k← 1k←k+2 S←S+ k2 Nk>5Y输出 S7.已知双曲线x2y2结束2- 2= 1(a> 0, b>0)的渐近线方程ab(第 6为 y=±3x,则该双曲线的离心率为▲.题图)8.已知圆锥的侧面展开图是一个半径为2 的半圆,则这个圆锥的高是▲.9.设 f(x)= x2- 3x+ a.若函数 f(x)在区间 (1,3) 内有零点,则实数 a 的取值范围为▲.10.在△ ABC 中,角 A,B, C 所对边的长分别为a, b,c.已知 a+2c= 2b, sinB= 2sinC,则 cosA=▲.a,x 1,11.若 f(x)= xa 的取值范围为是 R 上的单调函数,则实数▲.x+ 3a, x<112.记数列 { an} 的前 n 项和为 Sn.若 a1= 1,Sn =2(a1 +an )(n≥2,n∈ N*) ,则 Sn =▲.13.在平面直角坐标系 xOy 中,已知圆 C:x2+ y2- 6x+ 5= 0,点 A,B 在圆 C 上,且 AB= 23,则→→| OA + OB |的最大值是▲.14.已知函数f(x)= x- 1- (e- 1)ln x,其中e 为自然对数的底,则满足f(ex)< 0的x 的取值范围为▲.二、解答题:本大题共 6 小题,共计........ 90 分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14 分)π已知函数f(x)= 2sin(2x+φ)(0 <φ<2π)的图象过点 (2 ,-2).( 1)求φ的值;α 6,-πα-π( 2)若 f()=<α< 0,求 sin(2) 的值.252616.(本小题满分14 分)如图,三棱柱 ABC-A1B1C1 中, M, N 分别为 AB, B1C1 的中点.1)求证:MN ∥平面 AA1C1C;2)若 CC1= CB1, CA=CB ,平面CC1B1B⊥平面 ABC,求证: AB 平面 CMN .C1NB1 A1CB M A(第 16 题图)17.(本小题满分14 分)已知 { an} 是等差数列,其前n 项的和为Sn, { bn} 是等比数列,且a1= b1= 2, a4+ b4= 21,S4+ b4= 30.1)求数列 { an} 和 { bn} 的通项公式;2)记 cn= an bn,n∈ N* ,求数列 { cn} 的前 n 项和.18.(本小题满分16 分)x2y22222给定椭圆 C:a2+b2= 1(a> b> 0),称圆 C1: x+ y=a + b为椭圆 C 的“伴随圆”.已知椭圆3C 的离心率为 2 ,且经过点 (0, 1).( 1)求实数 a, b 的值;( 2)若过点 P(0, m)(m> 0)的直线 l 与椭圆 C 有且只有一个公共点,且 l 被椭圆 C 的伴随圆 C1所截得的弦长为 2 2,求实数m 的值.19.(本小题满分16 分)如图(示意),公路AM、 AN 围成的是一块顶角为α的角形耕地,其中tanα=- 2.在该块土地中 P 处有一小型建筑,经测量,它到公路AM ,AN 的距离分别为3km,5km .现要过点P 修建一条直线公路 BC,将三条公路围成的区域ABC 建成一个工业园.为尽量减少耕地占用,问如何确定 B 点的位置,使得该工业园区的面积最小?并求最小面积.NC·PαMA B(第 19 题图)20.(本小题满分16 分)已知函数f(x)= ax3+ |x- a|,a∈ R .1)若 a=- 1,求函数 y=f(x) (x∈ [0,+∞ ))的图象在 x= 1 处的切线方程;2)若 g(x)= x4,试讨论方程 f(x)= g(x)的实数解的个数;( 3)当 a> 0 时,若对于任意的x1∈ [a,a+ 2],都存在x2∈[a +2,+∞ ),使得 f(x1)f(x2)= 1024,求满足条件的正整数 a 的取值的集合.南京市 20xx 届高三年级学情调研卷数学附加题20xx.09....21.【选做题】在 A、 B、C、 D 四小题中只能选做 2 题,每小题10 分,共计 20 分.请在答卷卡指....定区域内作答.解答应写出文字说明、证明过程或演算步骤.A.选修 4— 1:几何证明选讲如图, PA 是圆 O 的切线, A 为切点, PO 与圆 O 交于点 B、C,AQ OP,垂足为 Q.若 PA= 4,PC= 2,求 AQ 的长.AP C Q O BB.选修 4— 2:矩阵与变换(第 21 题 A 图)已知矩阵 A=2b113属于特征值的一个特征向量为α=- 1.( 1)求实数 b,的值;( 2)若曲线 C 在矩阵 A 对应的变换作用下,得到的曲线为 C : x2+2y2= 2,求曲线 C 的方程.C.选修 4— 4:坐标系与参数方程3在平面直角坐标系xOy 中,已知直线x=3+2 t,),圆 C 的参数l 的参数方程为1(t 为参数y= 2+2t方程为 x= 3+cosθ,(θ为参数 ) .若点 P 是圆 C 上的动点,求点P 到直线 l 的距离的最小值.y=sinθD.选修 4— 5:不等式选讲已知 a, b 是正数,且a+ b= 1,求证: (ax+ by)( bx+ay)≥xy.........【必做题】第 22 题、第 23 题,每题10 分,共计20 分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.22.如图,已知长方体ABCD - A1B1C1D1 中, AB= 3,BC =2,CC1= 5,E 是棱 CC1 上不同于端→→点的点,且CE =λCC1.( 1)当∠ BEA1 为钝角时,求实数λ的取值范围;2( 2)若λ= 5,记二面角 B1- A1B- E 的的大小为θ,求|cosθ|.D 1 C1B1A1EDCA B(第 22 题图)23.某商店为了吸引顾客,设计了一个摸球小游戏,顾客从装有 1 个红球, 1 个白球, 3 个黑球的袋中一次随机的摸2 个球,设计奖励方式如下表:结果奖励1 红 1 白10 元1 红 1 黑5 元2 黑2 元1 白 1 黑不获奖1)某顾客在一次摸球中获得奖励X 元,求 X 的概率分布表与数学期望; 2)某顾客参与两次摸球,求他能中奖的概率.20xx 届高三年级学情调研卷数学参考答案及评分标准20xx.09一、填空题:本大题共14小题,每小题5 分,共 70分.1.π2.24. 15. 522926. 357. 28. 39. (0, 4]10. 411. [1,+∞ )12. 2- 2n- 113. 814.(0, 1)2二、解答题:本大题共6 小题,共计90 分.15.(本小题满分14 分)π解:( 1)因为函数 f(x)=2sin(2 x+φ)(0 <φ<2π)的图象过点( ,- 2),2π所以 f(2)=2sin(π+φ)=- 2,即sinφ= 1.,,,,,,,,,,,,,,,,,π因为 0<φ<2π,所以φ=2.,,,,,,,,,,,,,,,,,6 分( 2)由( 1)得, f( x)= 2cos2x.,,,,,,,,,,,,,,,,8 分α63因为 f()=5,所以cosα=.25又因为-π4.,,,,,,,,,,,,,,10 分<α< 0,所以sinα=-252427所以sin2α=2sinαcosα=- 25,cos2α=2cos α- 1=-25.,,,,,,,,12 分从而sin(2α-πππ7- 24 3,,,,,,,,14 分6)=sin2αcos -cos2αsin =.665016.(本小题满分 14 分)证明:( 1)取 A1C1 的中点 P,连接 AP, NP.C1NP1因为 C1 N= NB1, C1P= PA1 ,所以NP∥ A1B1, NP=B12 分A1B1 . ,,,,,,,,A12在三棱柱 ABC- A1B1C1 中,A1B1∥ AB, A1B1= AB. C故NP∥ AB,且1NP=AB .2BMA(第 16 题图)因为 M 为 AB 的中点,所以1AM = AB.2所以 NP= AM,且NP∥ AM.所以四边形 AMNP 为平行四边形.所以MN ∥ AP.,,,,,,,,,,,,,,,4 分因为 AP平面 AA1C1C,MN平面 AA1C1C,所以MN ∥平面 AA1C1C.,,,,,,,,,,,,,,,,,,6 分( 2)因为 CA= CB, M 为 AB 的中点,所以CM ⊥ AB. ,,,,,,,,,,,8 分因为 CC1= CB1, N 为 B1C1 的中点,所以CN⊥B1C1.在三棱柱 ABC- A1B1C1 中,BC∥B1C1,所以 CN BC.因为平面CC 1B1B⊥平面 ABC ,平面CC1B1B∩平面 ABC= BC. CN平面 CC1B1B,所以CN⊥平面 ABC.,,,,,,,,,,,,,,10 分因为 AB平面 ABC ,所以CN⊥ AB.,,,,,,,,,,,,,,12 分因为 CM平面 CMN , CN 平面 CMN ,CM ∩ CN= C,所以AB⊥平面 CMN .,,,,,,,,,,,,,,14 分17.(本小题满分 14 分)解:(1)设等差数列 { an } 的公差为 d,等比数列 { bn} 的公比为q.由 a1= b1= 2,得 a4= 2+ 3d, b4= 2q3, S4= 8+ 6d.,,,,,,,,,,,, 3 分由条件 a4+ b4=21, S4+ b4= 30,得方程组2+ 3d+ 2q3= 21,解得d= 1,3q= 2.8+ 6d+ 2q = 30,所以 an= n+1, bn= 2n,n∈ N* .,,,,,,,,,,,,7 分( 2)由题意知, cn= (n+1)× 2n.Tn= c1+ c2+ c3+, + cn.Tn= c1+ c2+ c3+, + cn=2× 2+3× 22+4× 23+, +n× 2n- 1+(n+1)× 2n,2 Tn=2× 22+3× 23 +, + (n-1)× 2n- 1+n× 2n+(n+ 1)2n+ 1,232n)- (n+n+1, ,,,,,,,,,,,11 分所以- Tn =2× 2+ (2 + 2 +, +1)× 2即 Tn=n· 2n+ 1,n∈ N* .,,,,,,,,,,,,14 分18.(本小题满分16 分)解:(1)记椭圆C 的半焦距为 c.由题意,得b= 1, ac= 23, c2= a2+ b2,解得 a= 2, b= 1.,,,,,,,,,,,,,,,,,, 4 分22)由( 1)知,椭圆 C 的方程为 x + y2= 1,圆 C1 的方程为 x2+ y2= 5. 4显然直线l 的斜率存在.设直线 l的方程为 y= kx+m,即 kx- y+ m= 0. ,,,,,,,,,,,,,, 6 分因为直线l 与椭圆 C 有且只有一个公共点,y= kx+ m,2故方程组x + y2= 1 ( * )有且只有一组解.由( * )得 (1+ 4k2)x2+ 8kmx+ 4m2- 4=0.从而△= (8km)2- 4(1+ 4k2)( 4m2- 4)= 0.化简,得 m2= 1+4k2.①,,,,,,,,,,,,,,,,10 分因为直线 l 被圆 x2+ y2= 5所截得的弦长为 22,所以圆心到直线l 的距离 d=5- 2= 3.即|m|= 3.②,,,,,,,,,,,,,,,14 分k2+ 1由①②,解得 k2= 2, m2= 9.因为 m> 0,所以 m= 3.,,,,,,,,,,,,,,,16 分19.(本小题满分 16 分)解:(方法一)如图 1,以 A 为原点, AB 为 x 轴,建立平面直角坐标系. Ny因为tanα=- 2,故直线 AN 的方程是 y=- 2x.C设点 P(x0, y0).P·因为点 P 到 AM 的距离为 3,故 y0= 3.由 P 到直线 AN 的距离为5,(A) OBx(第 19 题图 1)得∣ 2x0+y0∣ =5,解得 x = 1 或 x =- 4(舍去 ),5所以点 P(1, 3).,,,,,,,,,,,,4 分显然直线 BC 的斜率存在.设直线BC 的方程为y- 3= k(x- 1),k∈ (- 2, 0).令 y= 0得 x = 1- 3.,,,,,,,,,,,,6 分Bk由 y- 3=k(x-1),解得 y=6- 2k.,,,,,,,,,,,,8 分y=- 2xCk+ 21- k2+ 6k- 98k- 9设△ ABC 的面积为 S,则S= 2 xB yC=k2+ 2k=- 1+k2+ 2k.,,,,,10 分- 2(4k+ 3)(k- 3)= 0 得 k=- 3或 k=3.由 S =2+ 2k)24当- 2< k<- 3时, S < 0, S 单调递减;当- 3<k< 0 时, S >0, S 单调递增.,13 分443所以当 k=-4时,即 AB=5 时, S 取极小值,也为最小值15.答:当 AB= 5km 时,该工业园区的面积最小,最小面积为15km 2.,,,,,,16 分(方法二)如图 1,以 A 为原点, AB 为 x 轴,建立平面直角坐标系.因为tanα=- 2,故直线AN 的方程是 y=- 2x.设点 P(x0, y0).因为点 P 到 AM 的距离为 3,故 y0= 3.由 P 到直线 AN 的距离为5,得∣ 2x0+y0∣5,解得 x0= 1 或 x0=- 4(舍去 ),=5所以点 P(1, 3).显然直线BC 的斜率存在.设直线BC 的方程为令 y= 0 得 xB= 1- k.y- 3=k(x-1),解得 yC=6- 2k. y=- 2x+ 2k,,,,,,,,,,,,y- 3= k(x- 1),k∈ (- 2, 0). ,,,,,,,,,,,,,,,,,,,,,,,,分分分设△ ABC 的面积为 S,则 S= 1xB yC=- k2+ 6k- 98k2- 9 . ,,,,,2=- 1+2k+ 2kk + 2kt+ 9令 8k- 9= t,则t∈ (-25,- 9),从而 k=8 .因此 S=- 1+t=- 1+ 264t=- 1+64.,,,,t+9 2t+ 9+ 34t+225(+2×t34+ t+2258)8t因为当t∈ (- 25,- 9)时, t+225∈ (- 34,- 30] , t分分当且仅当t=- 15 时,此时 AB= 5, 34+ t+225的最大值为4.从而 S 有最小值为 15.t答:当 AB= 5km 时,该工业园区的面积最小,最小面积为15km 2.,,,,,,16 分(方法三)如图 2,过点 P 作PE⊥AM , PF ⊥ AN,垂足为E、 F ,连接 PA.设 AB = x,AC = y.因为 P 到 AM , AN 的距离分别为3,5,NCP·FA EMPE= 3, PF = 5.S△ABC =S△ ABP+S△ APC =1112 x 3+ 2 y5 =2(3x+ 5y).① ,,4 分因为 tan =- 2,所以 sin= 2 .5所以S△ABC = 1 x y2 .②,,,,,,,,,,,,,,,8 分25由①②可得1x y212= (3x+ 5y).52即 3 5x+ 5y= 2xy.③,,,,,,,,,,,,,,,10 分因为 3 5x+5y≥ 2155xy,所以2xy≥ 2 155xy.解得xy≥ 15 5.,,,,,,,,,,,,,,,13 分当且仅当 35x=5y 取“=”,结合③解得x=5, y= 35.所以S△ABC = 1 x y2 有最小值 15.25答:当 AB= 5km 时,该工业园区的面积最小,最小面积为15km 2.,,,,,,16 分20.(本小题满分16 分)解:(1)当 a=- 1,x∈[0 ,+∞ )时, f(x) =- x3+ x+ 1,从而 f ′(x)=- 3x2+ 1.x= 1 时, f(1)= 1,f ′(1)=- 2,所以函数y=f(x) (x∈ [0,+∞ )) 的图象在 x= 1 处的切线方程为y-1=- 2(x- 1),即 2x+ y- 3= 0. ,,,,,,,,,,,,,,,,,,,3 分2) f(x)= g(x)即为 ax3+ |x- a|= x4.所以 x4- ax3= |x- a|,从而 x3(x- a)= |x- a|.此方程等价于x= a 或 x> a,或 x< a,,,,,,,,,,,,,,,,,6 分x= 1x=- 1.所以当a≥1 时,方程 f(x)=g(x)有两个不同的解 a,- 1;当- 1< a<1时,方程 f( x)= g(x)有三个不同的解 a,- 1, 1;当a≤- 1 时,方程 f(x)= g(x)有两个不同的解a, 1.,,,,,,,,,,,9 分3)当 a> 0,x∈ (a,+∞ )时, f(x)= ax3+ x- a,f ′(x)= 3ax2+ 1> 0,所以函数 f(x)在 (a,+∞ )上是增函数,且 f(x) >f(a)= a4> 0.所以当x∈[a,a+ 2]时,f(x)∈ [f(a), f( a+ 2)] ,1024∈ [1024, 1024f( x)f(a+ 2)f(a) ] ,当x∈ [a+ 2,+∞ )时,f(x)∈ [ f(a+ 2),+∞ ). ,,,,,,,,,,,,,, 11 分因为对任意的x1∈ [a, a+ 2],都存在x2∈ [a+ 2,+∞ ),使得 f(x1)f(x2)=1024,所以 [1024,1024[ f(a+2) ,+∞ ).,,,,,,,,,,,,,,,,13 分f( a+ 2)f(a) ]?从而1024 ≥ f(a+ 2).f(a+ 2)所以 f 2(a+2)≤ 1024 ,即 f(a+2) ≤32,也即 a(a+ 2)3+2≤ 32.因为 a> 0,显然 a=1 满足,而a≥ 2 时,均不满足.所以满足条件的正整数a 的取值的集合为 {1}.,,,,,,,,,,,,,,16 分20xx 届高三年级学情调研卷数学附加题参考答案及评分标准20xx.09说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 21.【选做题】在A 、 B、 C、 D 四小题中只能选做2 题,每小题 10 分,共计20 分.A.选修 4— 1:几何证明选讲证明:连接 AO.设圆 O 的半径为 r.A因为 PA 是圆 O 的切线, PBC 是圆 O 的割线,所以 PA2=PC· PB.,,,,,,,,,,,,PCQOB3 分因为 PA= 4,PC= 2,所以 42=2×(2+ 2r),解得 r = 3.,,,,,,5 分(第 21 题 A 图)所以 PO=PC+ CO= 2+ 3= 5, AO= r = 3.由 PA 是圆 O 的切线得PA⊥ AO,故在Rt△ APO 中,因为AQ⊥PO,由面积法可知,1× AQ× PO=1×AP ×AO ,22AP× AO 4× 312即 AQ=PO5=5 .,,,,,,,,10 分B.选修 4— 2:矩阵与变换解:(1)因为矩阵 A=2b113 属于特征值的一个特征向量为α=- 1,2b12- b. ,,,,,,,,,3 分所以=1 ,即=13- 1- 1-2- b=,从而- 2=-.解得 b= 0,= 2.,,,,,,,,,,5 分( 2)由( 1)知, A=20 .13设曲线 C 上任一点 M(x, y)在矩阵 A 对应的变换作用后变为曲线 C 上一点 P(x0, y0 ),则x02x=2x,=3yx+ 3y从而x0=2x,,,,,,,,,,,,7 分y0= x+ 3y.因为点 P 在曲线 C 上,所以 x02+ 2y02= 2,即 (2x)2+ 2(x+3y)2= 2,从而 3x2+ 6xy+ 9y2= 1.所以曲线 C 的方程为3x2+6xy+ 9y2= 1.,,,,,,,,,,,,10 分C.选修 4— 4:坐标系与参数方程解:(方法一)直线 l 的普通方程为 x-3y+3= 0.,,,,,,,,,,,,,,3 分因为点 P 在圆 C 上,故设 P(3+cosθ,sinθ),从而点 P 到直线 l 的距离π|2 3-2sin(θ-)|d=| 3+cosθ-3sinθ+ 3|=.,,,,,,,,7 分1222+ (- 3)所以 dmin= 3- 1.即点 P 到直线 l 的距离的最小值为3- 1.,,,,,,,,,,,,10 分( 方法二 )直线 l 的普通方程为x- 3y+3= 0.,,,,,,,,,,,,3 分圆 C 的圆心坐标为 (3,0) ,半径为 1.从而圆心 C 到直线 l 的距离为 d= | 3- 0+ 3| = 3.,,,,,,,,,,6 分12+( - 3)2所以点 P 到直线 l 的距离的最小值为 3- 1.,,,,,,,,,,10 分D.选修 4— 5:不等式选讲证明:因为 a,b 是正数,且 a+ b=1,所以 (ax+ by)(bx+ ay)= abx2+ ( a2 + b2 )xy+ aby2= ab(x2+ y2)+ (a2+ b2)xy,,,,,,,,,,,3 分≥ ab 2xy+ (a2+ b2)xy,,,,,,,,,,,,8 分= (a+ b)2xy= xy即 (ax+ by)(bx+ay)≥ xy 成立.,,,,,,,,,,,,10 分【必做题】第 22 题、第 23 题,每题10 分,共计20 分.22.解:( 1)以 D 为原点, DA 为 x 轴, DC 为 y 轴, DD 1 为 z 轴,建立如图所示的空间直角坐标系.由题设,知 B(2, 3, 0), A1(2, 0, 5),C(0, 3,0) ,C1(0, 3,5).z→→D 1C1因为 CE=λCC1,所以 E(0, 3,5λ).→A1B12 分从而 EB= (2, 0,-5λ), EA1=(2,- 3, 5-5λ).,, 当∠ BEA1 为钝角时,cos∠ BEA 1< 0,E→→DC y2× 2-5λ(5-5λ<)0,所以EB · EA1<0,即AB1<λ< 4.x(第 22 题图)解得 5514,,,,,,,,,,,,,,5 分即实数λ的取值范围是 ( , ).55→→( 2)当λ=时, EB =(2, 0,- 2), EA1= (2,- 3, 3). 5设平面 BEA1 的一个法向量为n1= (x,y, z),→2x- 2z= 0,由n1· EB =0,→得2x- 3y+ 3z= 0,n1· EA1= 05取 x= 1,得 y= 3, z= 1,所以平面 BEA1 的一个法向量为n1= (1,5, 1).,,,,,,,,,,,,,7 分3易知,平面 BA1B1 的一个法向量为n2= (1, 0, 0).因为 cos=n1· n2 =143,| n1|· |n2|43439343,,,,,,,,,,,,,,10 分从而|cosθ|= 43 .123.解:( 1)因为 P(X= 10)= 12=1C3= 3 ,, P(X= 5)= 2C510C51021C3= 3 , P(X= 0)=C3= 3 ,P(X= 2)= 2210C5C5所以 X 的概率分布表为: X1052P133310101010,,,,,,,,,,,4 分1333从而 E(X)=10 10+5 10+210+ 010= 3.1 元.,,,,,,,,,,,6 分( 2)记该顾客一次摸球中奖为事件A,由( 1)知, P(A)= 7 ,10291从而他两次摸球中至少有一次中奖的概率 P=1-[1- P(A)] =100.答:他两次摸球中至少有一次中奖的概率为 91 .,,,,,,,,,,,10 分.100。

南京市2018届高三年级学情调研数学附加卷

南京市2018届高三年级学情调研数学附加卷

南京市2018届高三年级学情调研卷 数学附加题 2017.09 注意事项:1.附加题供选修物理的考生使用.2.本试卷共40分,考试时间30分钟.3.答题前,考生务必将自己的姓名、学校写在答题卡上.试题的答案写在答.题.卡.上对应题目的答案空格内.考试结束后,交回答题卡.21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答.卷卡指定区域内.......作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—1:几何证明选讲如图,CD 是圆O 的切线,切点为D ,CA 是过圆心O 的割线且交圆O 于点B , DA =DC .求证: CA =3CB .B .选修4—2:矩阵与变换设二阶矩阵A =⎣⎡⎦⎤1234. (1)求A -1;(2)若曲线C 在矩阵A 对应的变换作用下得到曲线C ':6x 2-y 2=1,求曲线C 的方程.C .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =-1+t ,y =t(t 为参数),圆C 的参数方程为⎩⎨⎧x =a +cos θ,y =2a +sin θ(θ为参数).若直线l 与圆C 相切,求实数a 的值.(第21A 题)D .选修4—5:不等式选讲解不等式:|x -2|+|x +1|≥5.【必做题】第22题、第23题,每题10分,共计20分.请在答.卷卡指定区域内.......作答.解答应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB ⊥AD ,AD ∥BC ,AP =AB =AD =1.(1)若直线PB 与CD 所成角的大小为π3,求BC 的长; (2)求二面角B -PD -A 的余弦值.23.(本小题满分10分)袋中有形状和大小完全相同的四种不同颜色的小球,每种颜色的小球各有4个,分别编号为1,2,3,4.现从袋中随机取两个球.(1)若两个球颜色不同,求不同取法的种数;(2)在(1)的条件下,记两球编号的差的绝对值为随机变量X ,求随机变量X 的概率分布与数学期望. C D PB A (第22题)。

2018年高考南京市高三年级学情调研考试试卷(含答案)

2018年高考南京市高三年级学情调研考试试卷(含答案)

南京市2018届高三年级学情调研考试英语2017.09本试卷分选择题和非选择题两部分。

满分120分,考试用时120分钟。

注意事项:答题前,务必将自己的学校、姓名、考试号写在答题纸上。

考试结束后,将答题纸交回。

第一部分听力(共两节,满分20分)做题时,先将答案标在试卷上。

录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题纸上。

第一节(共5小题;每小题1分,满分5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1.What are the speakers mainly talking about?A. A friend.B. A program.2.What time is it in New York?A.About 5 p.m.B. About 7 p.m.3.Why did the woman go to the city?A. To have a chat.B. To have dinner.4.How much will the woman pay if she buys two skirts?A. $38.B. $39.5.Where will the woman get the ticket?A. On the Internet.B. In the museum.第二节(共15小题:每小题1分,满分15分)听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听每段对话或独白前,你将有时间阅读各个小题, 每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。

每段对话或独白读两遍。

听第6段材料,回答第6、7题。

6.What is the lost handbag like?A.It has a small button.B. It is a leather bag.C. It is an empty bag.7.What does the man ask the woman to do?A.To call the police.B. To search everywhere.C. To leave her information.听第7段材料,回答第8至10题。

2017-2018学年江苏省南京市高三(上)9月调研数学试卷

2017-2018学年江苏省南京市高三(上)9月调研数学试卷

2017-2018学年江苏省南京市高三(上)9月调研数学试卷一、填空题:本大题共14小题,每小题5分,共70分•请把答案填写在答题卡相应位置上.1. (5 分)若集合P={ - 1, 0, 1 , 2} , Q={0, 2, 3},则P A Q= _______ .2. (5 分)若(a+bi)(3-4i)=25 (a, b € R, i 为虚数单位),则a+b 的值为 .3. (5分)某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为_________ .4. (5 分)如图所示的算法流程图,若输出y的值为「,则输入x的值为________5. (5分)记函数f (x)= 厂―「的定义域为D.若在区间[-5, 5]上随机取一个数X,则x€ D的概率为________ .6. (5分)在平面直角坐标系xOy中,双曲线"--=1的焦点到其渐近线的距16 9离为_______ .'2<x<47. (5分)已知实数x, y满足条件' y>3 ,则z=3x- 2y的最大值为____________8. (5分)将一个正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为27 n crK则该圆柱的侧面积为________ cm2.9. (5分)若函数f (x)=Asin (^x® (A>0, w>0, |创< n)的部分图象如第1页(共24页)10. (5分)记等差数列{a n}前n项和为S n•若a m=10, S2m-1=110,贝U m的值为______ .11. _______________________________________________________________ (5分)已知函数f (x)是定义在R上的奇函数,且在(-X, 0]上为单调增函数•若f (- 1)=-2,则满足f (2x- 3)< 2的x的取值范围是 _________________ .12. (5分)在厶ABC 中,AB=3, AC=2, / BAC=120, BM= .若AM?EC=-竺,3 则实数入的值为_________ .13. (5分)在平面直角坐标系xOy中,若圆(x-2)2+ (y-2)2=1上存在点M , 使得点M关于x轴的对称点N在直线kx+y+3=0上,则实数k的最小值为________ .14(5分)已知函数f(x)= ……若存在唯一的整数x,使得|^-3 |x-l | + 3, (x>0)x>0成立,则实数a的取值范围为 ________ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15. (14分)在直三棱柱ABC- A1B1C1中,AB=AC E是BC的中点,求证:(I)平面ABE丄平面BBCC;(n)“c//平面ABE.第3页(共24页)第4页(共24页)416. (14分)在厶ABC 中,内角A , B, C 所对的边分别为a , b , c , cosB=.(I)若 c=2a,求二二L —的值;sinC(H) 若 c — B=",求 si nA 的值.417. (14分)某工厂有100名工人接受了生产1000台某产品的总任务,每台产 品由9个甲型装置和3个乙型装置配套组成,每个工人每小时能加工完成1个甲 型装置或3个乙型装置.现将工人分成两组分别加工甲型和乙型装置.设加工甲型装置的工人有x 人,他们加工完甲型装置所需时间为t 1小时,其余工人加工完 乙型装置所需时间为t 2小时. 设 f (X )=t 1+t 2.(I)求f ( X )的解析式,并写出其定义域; (U)当x 等于多少时,f (x )取得最小值?2 218. (16分)如图,在平面直角坐标系 xOy 中,椭圆C : —=1 (a > b >0)a b的离心率为乎,且过点(1,爭).过椭圆C 的左顶点A 作直线交椭圆C 于另一 点P ,交直线I : x=m (m >a )于点M .已知点B (1,0),直线PB 交I 于点N .19. (16分)已知函数 f (x ) =2x 3— 3 (a+1) x 2+6ax ,a € R.(I)曲线y=f (x )在x=0处的切线的斜率为3,求a 的值;(U)若对于任意x €(0,+^),f (x ) +f ( — x )> 12lnx 恒成立,求a 的取值 范围;(I)求椭圆C 的方程;m 的值.(川)若a> 1,设函数f (x)在区间[1, 2]上的最大值、最小值分别为M (a)、m (a),记h (a) =M (a)—m (a),求h (a)的最小值.第5页(共24页)第6页(共24页)20. (16分)已知数列{a n }的各项均为正数,记数列{a n }的前n 项和为S ,数列 {a n 2}的前 n 项和为 T n , 且 3T n =E 2+2S , n € N *.(I )求a i 的值;(U )求数列{an }的通项公式;(川)若k , t € N *,且0, S k -3, S - S k 成等比数列,求k 和t 的值.【选做题】在21,22,23,24四小题中只能选做2题,每小题0分,共计20分.请 在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤. [选修4-1:几何证明选讲]21. 如图,CD 是圆O 的切线,切点为D ,CA 是过圆心O 的割线且交圆O 于点B , DA=DC 求证:CA=3CB[选修4-2:矩阵与变换]22 .设二阶矩阵A=P 2(I )求 A -1;(U )若曲线C 在矩阵A 对应的变换作用下得到曲线 C : 6X 2-『=1,求曲线C的方程.[选修4-4 :坐标系与参数方程]23 .在平面直角坐标系xOy 中,直线I 的参数方程为" (t 为参数),圆C[选修4-5:不等式选讲] 24 .解不等式:|x -2|+| x+1| >5 .【必做题】第25题、第26题,每题10分,共计20分•请在答卷卡指定区域内作22 .设二阶矩阵A=(B 为参数).若直线I 与圆C 相切,求实数a 的值.的参数方程为第7页(共24页)答•解答应写出文字说明、证明过程或演算步骤.25.如图,在四棱锥 P - ABCD 中,PA ±平面 ABCDAB 丄AD,AD// BC, AP=AB=AD=1(I)若直线PB 与CD 所成角的大小为一二,求BC 的长;26.袋中有形状和大小完全相同的四种不同颜色的小球,每种颜色的小球各有 4个,分别编号为1,2,3,4.现从袋中随机取两个球.(I)若两个球颜色不同,求不同取法的种数;(U)在(1)的条件下,记两球编号的差的绝对值为随机变量 X ,求随机变量X 的概率分布与数学期望.20仃-2018学年江苏省南京市高三(上)9月调研数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分•请把答案填写在答题卡相应位置上.1. (5 分)若集合P={ - 1, 0, 1 , 2} , Q={0, 2, 3},则P A Q= {0, 2} . 【解答】解:集合P={ - 1 , 0, 1, 2},Q={0, 2, 3},则P A Q={ - 1 , 0, 1, 2} A {0, 2, 3}={0, 2}.故答案为:{0, 2}.2. (5 分)若(a+bi)(3-4i)=25 (a, b € R, i 为虚数单位),则a+b 的值为7.【解答】解:由题意得,(a+bi)(3-4i)=25,•••(3b- 4a)i+3a+4b=25,.f3b-4a=0l3a+4b=25--a=3 b=4,• a+b=7,故答案为:73. (5分)某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为16 .【解答】解:•••高校甲、乙、丙、丁四个专业分别有150、150、400、300名第8页(共24页)学生•本校共有学生150+150+400+300=1000,第9页(共24页)第10页(共24页)•••用分层抽样的方法从该校这四个专业共抽取 40名学生进行调查 •••每个个体被抽到的概率是•.•丙专业有400人, •要抽取400X 丄=1625 故答案为:164(5分)如图所示的算法流程图,若输出y 的值为丄,则输入x 的值为 -並2—【解答】解:根据流程图所示的顺序,可知:该程序的作用是计算分段函数y=''… .的函数值,[log 2Gx), x<0 当x >0时,y=2x =,解得x=- 1,不合条件,舍去;二当 xv 0 时,y=log2 (- x )=,,解得 x=- ■:;二综上,yJ 时,输入的x 值为-:. 故答案为:-15. (5分)记函数f (x ) = : ,:「的定义域为D •若在区间[-5, 5]上随机取一个数x ,则x € D 的概率为_ 【解答】解:函数f (x )I : = I| =则 4 —3x—x2> 0, 即卩/+3x— 4< 0, 解得-4W x< 1;••• f (x)的定义域为D=[ - 4, 1]; 在区间[-5, 5]上随机取一个数x, 则x€ D的概率为P= : J .5-(-5) 2故答案为:1 .26. (5分)在平面直角坐标系xOy中,双曲线厂—=1的焦点到其渐近线的距16 9离为3 .2 2【解答】解:双曲线二-—=1的焦点坐标为(土5,0),渐近线的方程为x土二y=0,16 9 3双曲线二—_=1的焦点到渐近线的距离为:一口——=3,故答案为:3.7. (5分)已知实数x, y满足条件y>3 ,则z=3x- 2y的最大值为6 ^+y<8f2<x<4【解答】解:作出实数x, y满足条件、y>3,对应的平面区域如图:x+y<3L由z=3x- 2y 得y= x—,平移直线y= x—,经过点A时,直线丫= *的截距最小,此时z最大.2 2 2 2由(尸3,解得A (4, 3),x=4L此时Z max=3X 4 -2X 3=6,故答案为:6.8. (5分)将一个正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为 27 n er 3,,则该圆柱的侧面积为18n cm2.【解答】解:将一个正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积 为 27 n cm,设正方形的边长为acm ,则V=nf ?a=27n 解得a=3cm ,•••该圆柱的侧面积为S=2冗X 3 X 3=18n crn . 故答案为:18 n9. (5分)若函数f (x ) =Asin (^x® (A >0, w>0, |创V n )的部分图象如 图所示,则f ( - n 的值为 -1.【解答】解:有函数的图象可得 A=2, 再根据]T=? 十_ ,求得3=. 由于点(n 2)在函数图象上, 可得: 2=2sin (=X n + ®),可得:3Xn +® =2kk €Z ,求得© =2k n k€ Z,又由于| ©| V n,可得:©=-=,6故函数的解析式为f (x) =2sin ( x-),3 6可得:f (—n) =2sin ( —Z n- —) = - 2si^^=—1.3 6 6故答案为:-1.10. (5分)记等差数列{a n}前n项和为S n.若a m=10, S m-1=110,则m的值为6 .【解答】解:由a m=10,--2a m =a1 +a2m -1 =20,c (血T) (a, +^兀_1 )二S2m-1= =10 (2m- 1) =110,解的m=6,故答案为:611. (5分)已知函数f (x)是定义在R上的奇函数,且在(-X, 0]上为单调增函数.若f (- 1) =-2,则满足f (2x-3)< 2的x的取值范围是 (-%, 2 .【解答】解:根据题意,函数f (x)是定义在R上的奇函数,且在(-X, 0]上为单调增函数,则在f (x)在[0, +X)上也是增函数,故函数f (x) R上也是增函数;又由 f (- 1) =-2,则 f (1) =-f (- 1) =2,则 f (2x- 3)< 2? 2x- 3< 1,解可得x<2,即不等式的解集为(-x, 2];故答案为:(-x, 2].12. (5分)在厶ABC中,AB=3, AC=2 / BAC=120,丽二蔽.若而?反=-则实数八的值为」—【解答】解:如图所示,△ ABC中,AB=3, AC=2 / BAC=120,r=x「=入(小),—* —* —* —* —*• ••叶?:= (1+ !') ?:'=(AB + 入(AC - AB)) ? ( AC - AB)=[(i -八7S+蔽]?(疋-7S)=(1 - 2 八'?£'-( 1 - R ;.J. +X, ■=(1 - 2R X 3X 2 X cos120,( 1-R X 32+R ?217=19 X- 12=-三-解得X=.故答案为:13. (5分)在平面直角坐标系xOy中,若圆(x-2) 2+ (y-2) 2=1上存在点M , 使得点M关于x轴的对称点N在直线kx+y+3=0上,则实数k的最小值为 -;.【解答】解:根据题意,圆C: (x- 2) 2+ (y- 2) 2=1关于x轴的对称图形是:圆D: (x-2) 2+ (y+2) 2=1,则圆D上存在点N在直线kx+y+3=0 上,又直线kx+y+3=0过定点P (0,- 3),•••直线与圆D相切时,有d=r,解得k=-;或k=0,3•••实数k的最小值为-’.3故答案为:」.14. (5分)已知函数f(x)= … 」一若存在唯一的整数x,使得二互一| + 3f(x>0)x >0成立,则实数a的取值范围为[0, 2] U [3, 8](【解答】解:作出f f x)的函数图象如图所示:•••存在唯一的整数x,使得二0成立,x••• a v f f x)只有1个整数解,又f (2) =0, ••• 0< av 3.(2)若x v 0,则f f x)> f f 0) =0,•••存在唯一的整数X,使得f > 0成立,X••• a>f (x)只有1 个整数解,又f (- 1) =2, f ( - 2) =8,2v a< 8.•••当O w a<2或3< a< 8时,「丄二->0只有1个整数解.x故答案为:[0, 2] U [3, 8].二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15. (14分)在直三棱柱ABC- A1B1C1中,AB=AC E是BC的中点,求证:(I)平面ABE丄平面BBCC;(n) “c//平面ABE.【解答】(本小题满分14分)证明:(I)在直三棱柱ABC- A1B1C1中,CC丄平面ABC.••• AE?平面ABC, • CC丄AE.v AB=AC E为BC的中点,• AE丄BC. ••• BC?平面B1BCG, CC?平面B1BCC,且BC A CC=C,•AE丄平面B1BCC.••• AE?平面AB1E,:平面AB1E丄平面BBCC .(n)连接A1B,设A1B n AB1=F, 连接EF.在直三棱柱ABC- A1B1G中,四边形AA1B1B为平行四边形,• F为A1B的中点.••• E是BC的中点,所以EF/ A1C.••• EF?平面A0E, A1C?平面ARE,•A1C//平面ABiE.16. (14分)在厶ABC 中,内角A , B, C 所对的边分别为a , b , c , cosB=.5(I )若c=2a,求二心的值;sinC(H ) 若 C - B=,求 si nA 的值.4【解答】(本小题满分14分)解:( 1)在厶ABC 中,因为cosB=:, 5所以:a 2 + c 2-b 2 42ac 5因为:c=2a, 所以: (f)2 + c 2-b 2 2=,即=■, 2cXf 5 £ 20由正弦定理得 二二sinC c又 O v B v n,所以 sinB= '_ 一=,所以 sin2B=2sinBcosB=Z .1= 1 .5 55 25因为 C -B=_,即 C=B^ ,4 4 所以 A=n -( B+C ) =- 2B,4所以 sinA=sin (^^ - 2B ) =sin cos2B — cos sin2B=' )x4 4 4 225224 = 31 血 IF •.所以:sinC 10(U )因为cosB=,所以 5cos2B =2coSB - i .尿 $所以:17. (14分)某工厂有100名工人接受了生产1000台某产品的总任务,每台产 品由9个甲型装置和3个乙型装置配套组成,每个工人每小时能加工完成1个甲 型装置或3个乙型装置.现将工人分成两组分别加工甲型和乙型装置. 设加工甲 型装置的工人有x 人,他们加工完甲型装置所需时间为t 1小时,其余工人加工完 乙型装置所需时间为t 2小时. 设 f ( X )=t 1+t 2.(I)求f ( X )的解析式,并写出其定义域; (U)当x 等于多少时,f (x )取得最小值?(10+x 100-x:')=10X( 10+6) =160. V x 100-x当且仅当x=75人时,函数f (x )取得最小值160小时.2 218. (16分)如图,在平面直角坐标系 xOy 中,椭圆C :+ =1 (a > b >0)己b的离心率为拳,且过点(1,半).过椭圆C 的左顶点A 作直线交椭圆C 于另一 点P ,交直线I : x=m (m >a )于点M .已知点B (1,0),直线PB 交I 于点N .(I)求椭圆C 的方程;(U)若MB 是线段PN 的垂直平分线,求实数 m 的值.【解答】解:(l )T t1=3 x••• f (x) =t1+t2=_ +' '■',工 100-x 5(II ) f ( x ) =1000 : !t= Dr 112=・=航■.定义域为{x| K x < 99, x € N *}.X 100-M1) =10[x+ ( 100 - x ) ] (2 一i —) =10X 100-K> 10X( 10+2 ;川【解答】(本小题满分16分) 解:(I )因为椭圆C 的离心率为,, 所以 a 2=4b 2.又因为椭圆C 过点(1,二),3_所以亠T \-,a b 解得 a 2=4,b 2=1.2 “所以椭圆C 的方程为一.(U )设 P (X o , y o ), - 2v X o V 2, x o 工 1,2 则]—因为MB 是PN 的垂直平分线,所以P 关于B 的对称点N (2 - X o ,- y o ),所以2 - X o =m. 由 A (-2, 0),P (xo , yo ),可得直线 AP 的方程为 y=r (X +2),y D因为 PB 丄MB ,所以 k pB ?k MB = - 1,所以 k pB ?k MB = ?, = - 1,X Q -1m-1Yr* (nH-2)pn ________ ______________ _ - 1即:,i —「I = 1.所以 因为 X o =2- m ,令 x=m ,得 y= .. (m+2),即 M (m ,屯+2(m+2)).2化简得3m2- 10m+4=0,解得m=3因为m>2,所以m=「319. (16分)已知函数f (x) =2x3- 3 (a+1) x2+6ax, a€ R.(I)曲线y=f (x)在x=0处的切线的斜率为3,求a的值;(U)若对于任意x€(0, +^) , f (x) +f (-x)> 121 nx恒成立,求a的取值范围;(川)若a> 1,设函数f (x)在区间[1, 2]上的最大值、最小值分别为M (a)、m (a),记h (a) =M (a)- m (a),求h (a)的最小值.【解答】解:(I) f'( x) =6x^- 6 (a+1) x+6a,故k=f'( 0) =6a,由6a=3,解得:a—;(n) f (x) +f (- x) =- 6 (a+1) x2> 12lnx对任意x€( 0, +x)恒成立,故-(a+1)》丁xg( x)豊,x> 0,则g( x 生警),令g' (x) =0,解得:x= ■■,故g (乂)在(0,二)递增,在(_, +x)递减,故g (x) max=g ( J =,e故-(a+1)》一,故a<- 1 - 一e e故a的范围是(-x,- 1-—];(川)f'(x) =6x2- 6 (a+1) x+6a=6 (x- 1) (x- a),f (1) =3a- 1, f (2) =4,令f' (x) =0,解得:x=1 或x=a,①当1v a w「时,3x€( 1, a)时,f'(x)v0, f (乂)在(1, a)递减,x€(a, 2)时,f'(x)>0, f (幻在(a, 2)递增,I f (1)< f (2),故M (a) =f (2) =4, m (a) =f (a) =- a3+3a2,故h (a) =M (a)- m (a) =a3- 3a2+4,••• h' (a) =3a (a-2)v0,••• h (&)在(1,「]递减,3故a€( 1,吕]时,h (a)最小值=h (£)=[;②当.v a v 2时,3x€( 1, a)时,f'(x)v0, f (乂)在(1, a)递减,x€(a, 2)时,f'(x)>0, f (幻在(a, 2)递增,T f (1 )> f (2), • M (a) =f (1) =3a- 1, m (a) =f (a) =- a3+3a2, 故h (a) =M (a)- m (a) =a3- 3a2+3a - 1,T h' (a) =3 (a- 1) 2>0,故h (a)在(匚,2)递增,3故a€(「,2)时,h (a)> h (「)=[;③当a>2时,x€( 1, 2)时,f'( x)v 0, f (刈在(1, 2)递减,故M (a) =f (1) =3a- 1, m (a) =f (2) =4,故h (a) =M (a)- m (a) =3a- 5,故h (a)在[2, +x)上的最小值是h (2) =1,综上,h (a)最小值=三.M I20. (16分)已知数列{a n}的各项均为正数,记数列{a n}的前n项和为S,数列{a n2}的前n 项和为T n, 且3T n=E2+2S, n € N*.(I)求a1的值;(U)求数列{an}的通项公式;(川)若k, t € N*,且S, S k-S1, S - S k成等比数列,求k和t的值.【解答】解:(I)由3T n=S2+2S n, n €N*. n=1 时,3T i= -+2S,可得.... .工0,解得a i=1.(II)由3T n=S2+2S,n € N*. n >2 时,-- +2S n-1,相减可得:-「=S2Ji n-1 °n-l ^a n「+细,--3an=Si+Si T+2.• • 3a n+i=Si+i+Si+2,可得:3a n+i —3a n=a n+ 什a n,化为:a n+i=2a n. n=1 时,3E二蟲乜匕,可得3(1+£)二(1+ a»'+2(仔比),十 > 0,解得a2=2, 满足上式.•••数列{a n}是等比数列,首项为I,公比为2.二a n=2n—i.(III)由(ii)可得:sn=…「=2n—i.2-1由0, S k—0, S —S<成等比数列,•••.■-_ I •■.:,可得(2k- 2)2=2f-2k.化为:2f= (2k)2—3?2k+4,可得:2f —2= (2k—i)2—3?2k —i+i. (*)k=i时不满足题意,• k>2.k=2 时,2f=8,解得t=3.k>3时,t=2时,化为2k=3,不成立舍去.t > 3时,(*)左边为偶数,右边为奇数,不成立.综上可得:t=3, k=2.【选做题】在21,22,23,24四小题中只能选做2题,每小题0分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤. [选修4-1:几何证明选讲]2i.如图,CD是圆O的切线,切点为D, CA是过圆心O的割线且交圆O于点B, DA=DC 求证:CA=3CB因为 DA=DC 所以/ DAO=Z C.在圆 O 中,AO=DO,所以/ DAO=Z ADO, 所以/ DOC=2/ DAO=2Z C . 因为CD 为圆O 的切线,所以/ ODC=9°,从而/ DOG / C=90,即 2/ C+/C=90, 故/ C=30,所以 OC=2OD=2OB 所以CB=OB 所以CA=3CB[选修4-2:矩阵与变换] 22•设二阶矩阵A 』】'.13 4」(I)求 A";(n)若曲线C 在矩阵A 对应的变换作用下得到曲线 C : 6x 2- y 2=1,求曲线C的方程.(n)设曲线C 上任意一点P(x, y ),在矩阵A 对应的变换作用下得到点P (X’,y ),"detA =3 4 = " 2【解答】1 9解:(I厂A=34则[叮* 2]丹严八, _y ] L3 dLyJ L3x+4y_.* =x+2yV =3x+4y•••(x ; y')在曲线 C 上,.6x 2-y'2=1,代入 6 (x+2y ) 2-( 3x+4y ) 2=1,化简得 8y 2 - 3^=1, .曲线C 的方程为8y 2-3x 2=1.[选修4-4 :坐标系与参数方程]23. 在平面直角坐标系xOy中,直线I 的参数方程为(尸T+t ( t 为参数),圆C【解答】解:由直线I 的参数方程为"',得直线I 的普通方程为x -y+仁0.【尸t由圆C 的参数方程为(E+3 ,得圆C 的普通方程为(x -a ) 2+(y -2a )2=1.Iy=2a+sin9因为直线I 与圆C 相切,所以 二二-亠丨=1,V2 解得 a=1± ':. 所以实数a 的值为1 ±匚.[选修4-5:不等式选讲] 24. 解不等式:|x -2|+| x+1| >5.【解答】解:(1)当X V- 1时,不等式可化为-x+2 - x- 1 >5,解得x <- 2; (2) 当-Kx < 2时,不等式可化为-x+2+x+1 > 5,此时不等式无解; (3) 当x >2时,不等式可化为x -2+x+1 >5,解得x >3; 所以原不等式的解集为(-X,-2] U [3, +x ).【必做题】第25题、第26题,每题10分,共计20分.请在答卷卡指定区域 内作答.解答应写出文字说明、证明过程或演算步骤.25. 如图,在四棱锥 P - ABCD 中,PA ±平面 ABCDAB 丄AD,AD// BC, AP=AB=AD=1I 尸t (B 为参数).若直线I 与圆C 相切,求实数a 的值.的参数方程为, x^a^cos 0y^2a+sin 6(I)若直线PB与CD所成角的大小为二,求BC的长;【解答】解:(I)分别以AB AD 、AP 所在直线为x 、y 、z 轴建立如图所示的 空间直角坐标系A - xyz.••• AP=AB=AD=1 ••• A (0 , 0, 0), B (1, 0, 0), D (0, 1, 0), P (0, 0, 1). 设 C (1, y , 0),则瓦=(1, 0, - 1), CD = (- 1,1- y , 0). ;直线P B 与CD 所成角大小为1即]J ,解得y=2或y=0 (舍),V2x Vl+(l-y)2 2• C (1, 2, 0),则 BC 的长为 2;(U)设平面PBD 的一个法向量为■= (x , y , z ). •- 1= (1 , 0, - 1), 1= (0 , 1 , - 1),审 —*''''■ '■,令 x=1 ,则 y=1 , z=1 , = (1 , 1 , 1). PD "npy-z-0•••平面PAD 的一个法向量为 F (1 , 0 , 0), --cog 二|面角B - PD- A 的余弦值为 J .■C 1••• I cos v 〒: i'.l>1 =| (U)求二面角B - PD- A 的余弦值.26.袋中有形状和大小完全相同的四种不同颜色的小球,每种颜色的小球各有 4个,分别编号为1,2,3,4.现从袋中随机取两个球.(I )若两个球颜色不同,求不同取法的种数;(U )在(1)的条件下,记两球编号的差的绝对值为随机变量 X ,求随机变量X 的概率分布与数学期望.【解答】解:(1)两个球颜色不同的情况共有 :?42=96 (种).4(2)随机变量X 所有可能的值为0,1, 2,3.所以随机变量X 的概率分布列为:X12 3P13 ■g1 71所以 E ( =0X[+「+3 X-=.(X=0)96 4 (x=1)=二=■I,(X=2)=呻;=1 ■I -, (X=3)克!丄::.。

2018届高三9月调研测数学理试题含答案

2018届高三9月调研测数学理试题含答案

2017-2018学年第一学期高三调研测试卷 数学(理科)2017.9全卷满分:150分 考试时间:120分钟第Ⅰ卷(共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)( )1.已知全集U=R ,集合A={x|lg(x-2)≥0}, B={x|x≥2}, 则(C U A)∩B= A .{}13x x -<≤ B .{}23x x ≤<C .{}3x x ≤ D .φ( )2.某居民小区为如图所示矩形ABCD ,A , C 两点处各有一个通信基站, 假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF ,若在该小区内随机地选一地点, 则该地点无.信号的概率是 (注:该小区内无其他信号来源, 基站工作正常). A .12π- B .22π-C .14π-D .4π( )3.“0a ≤”是“复数1ai z i+=在复平面内对应的点在第三象限”的 A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件( )4.设{}n a 是等差数列,1359a a a ++=,69a =,则这个数列的前6项和等于 A .12B .24C .36D .48( )5.已知0.1 1.12log 0.1,2,0.2a b c ===,则,,a b c 的大小关系是A .a b c <<B .b c a <<C .c a b <<D .a cb <<( )6.把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是A .sin(2)3y x π=-,x R ∈B .sin()26x y π=+,x R ∈ C .sin(2)32y x π=+,x R ∈D .sin(2)3y x π=+, x R ∈( )7.执行右图的程序框图,若输出的5n =, 则输入整数p 的最大值是 A .15 B .14C .7D .6( )8.51(1)(1)x x++展开式中2x 的系数为A .20B .15C .6D .1( )9.设奇函数f (x )在(0,+∞)上为单调递减函 数,且f (1)=0,则不等式()()20f x f x x-+≥的解集为A .(-∞,-1]∪(0,1]B .[-1,0]∪[1,+∞)C .(-∞,-1]∪[1,+∞)D .[-1,0)∪(0,1] ( )10.一个四面体的三视图如图所示,则该四面体的表面积是A .1+B .1+2C .2+D .2( )11.设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若 |AF |=2|BF |,则线段AB 的长为.A .8B .92C .16D .163 ( )12.已知定义在),0[+∞上的函数)(x f 满足)2(2)(+=x f x f ,当)2,0[∈x 时,x x x f 42)(2+-=,设)(x f 在)2,22[n n -上的最大值为)(*N n a n ∈,且}{n a 的前n 项和为n S ,则n S =A .1212--nB .2214--n C .n 212- D .1214--n第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量25,10),1,2(=+=⋅=→→→→→b a b a a ,则=→b .14.设y x ,满足约束条件⎪⎩⎪⎨⎧-≥≤+≤11y y x xy ,则y x z +=2的最大值为 .15.如图,已知双曲线2222:1x y C a b-=(0,0)a b >>的右顶点为,A O 为坐标原点,以A 为圆心的圆与双曲线C 的一条渐近线交于两点P ,Q ,若060PAQ ∠=,且3OQ OP =uuu r uu u r,则双曲线C 的离心率为.16.如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角 三角形,再沿虚线折起,使得ABCD 四个点重合 于图中的点P, 正好形成一个正四棱柱形状的 包装盒,若要包装盒容积V(cm 3)最大, 则EF 长 为 cm . 三、解答题:(共70分。

2018届高三数学9月考题(含答案).docx

2018届高三数学9月考题(含答案).docx

[X 2 + y 2 < 1 < x + y > — 111. 已知乂,丫满足1 yvO ,贝ijz = x-y 的取值范围是() A.[-返叮 B.[・ 1,1] C.[-返返] D. [ - 1,返] 12.已知定义在R 上的函数f (x)在(-8, -2)上是减函数,若g (x) =f (x - 2)是奇函数,且g (2)=0,则不等式xf (x) W0的解集是(A. ( - °°, - 2] U [2, +°°) C. ( - 8, - 4]U[ - 2, +8)二、填空题(20分)13. 已知f (x )= log 3(x 2-2x)?则函数f(x)的单调递减区间是 _____________ .14. 已知函数f(x) = x 3 + ax 2 + bx + a 2(a,b 6 R)且函数f(x)在x = 1处有极值10,则实数b 的值为15. _________ 已知f (x) = |e x -l|,又g(x) =f 2(x)-tf(x)(tG R),若满足g(x) = 一1的x 有三个,贝吐的取值范 围是 ____________ •16. 设f(x)是定义在R 上的偶函数,且当x > 0时,f(x) = 2X ,若对任意的xG [a,a + 2],不等式 f(x + a) >『(x)恒成立,则实数a 的取值范围是 _____________ .=、解答题:木题共6道题,共70分.17. 锐角AABC 的内角A, B, C 的对边分别为a, b, c,己知AABC 的外接圆半径为R,旦满足R = t asinA (1) 求角A 的大小;(2)若a = 2,求AABC 周长的最大值.A. ( -- 3] B. [ - 3, +°°) C. ( - °°, VS] D. [V3, +8))B. [-4, -2]U[0, +°o) D. ( - °°, - 4] U [0, +8)2018届高三数学9月考题(含答案)2017-9-28一、选择题(60分)1. 若集合A={x|x> - 1},则( )A. OCAB. {0}cAC. {0}£AD. 0£A2. 设集合A = (X|X2-2X-3 < 0},B = {x|y = ln(2-x)},则A n B =()A. {x|-l < x < 3}B. {x|-l < x < 2}C. {x|-3 < x < 2}D. {x|l < x < 2}2 _3. 若复&z =屮i为虚数单位,^z=()A. 1 + iB. 1-iC. -1-iD. -1-i4. 已知命题p:Vx > 0,总有(x + l)e x > 1,则「p为()A. 3x o 三°,使得do + l)e X°三1B. 3x o > 0,使得do + l)e X°三1C. 3x o > °,使得(X。

高三数学-2018届江苏省南京市高三质量检测数学试卷精品

高三数学-2018届江苏省南京市高三质量检测数学试卷精品

过 A 作 AN⊥ PD于 N,
∵ PD =( a,2a,-2a) ,
设 PN =λPD ,
∴ AN = AP + PN =(λa,2 λa,2a-2λa)
∵ AN⊥ PD,
∴ AN ·PD =0.
∴ a·aλ+2a·2aλ-2a·(2a-2λa) =0.
解得 λ= 4 . 9
∴ AN =( 4 a, 8 a,
17.(本小题满分 12 分,第一小问满分 6 分,第二小问满分 6 分)
已知数列( an )是等差数列, ( bn )是等比数列,且 a1=b1=2,b4=54,a1+a3=b2+b3.
(1)求数列 { b n }的通项公式
(2)求数列 { a n }的前 10 项和 S10 .
18.(本小题满分 14 分,第一小问满分 6 分,第二小问满分 8 分)
在直角坐标系中, O 为坐标原点,设直线 l 经过点 P( 3, 2 ),且与 x 轴交于点 F( 2,0).
(1)求直线 l 的方程;
(2)如果一个椭圆经过点 P,且以点 F 为它的一个焦点,求椭圆的标准方程;
(3)若在(Ⅰ)(Ⅱ)的情况下, 设直线 l 与椭圆的另一个交点 Q,且 PM PQ ,当| OM |
∴ < ME , NA >=arccos= 10 . 10
∴二面角 A-PD-E的大小为 arccos 10 . 10
( 3) 解法一: ∵∠ EAB=∠ABC=∠ DEA=90°,
BC=DE=a,AB=AE=2a,
取 AE 中点 F,连 CF,
10 分
8分 10 分
∵ AF∥ =BC,
∴四边形 ABCF为平行四边形.

2018.9高三数学理科九月考试题答案

2018.9高三数学理科九月考试题答案

数学(理)答案2018.9一、选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共4小题,每小题5分,共20分.请答案填在横线上. 13. 12e -14. 12- 15.1a ≥ 16.10,e ⎛⎫ ⎪⎝⎭三、解答题: 本大题共6小题,共70分.解答应写出文字说明, 演算步骤或证明过程.17. 解: (Ⅰ)f(x)=2sinx(32sinx +12cosx)=3×1-cos2x 2+12sin2x =sin(2x -π3)+32.函数f(x)的最小正周期为T =π由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,解得-π12+k π≤x ≤5π12+k π,k ∈Z ,所以函数f(x)的单调递增区间是[-π12+k π,5π12+k π],k ∈Z .(Ⅱ)当x∈[0,π2]时,2x -π3∈[-π3,2π3], sin(2x -π3)∈[-32,1],f(x)∈[0,1+32].所以当x∈[0,π2]时,函数f(x)的值域为[0,1+32]. 18. 解:(Ⅰ)由 解得 所以(Ⅱ)19. 解:(Ⅰ)正弦定理得又(Ⅱ)在,根据余弦定理得即又又 ,20.解:(Ⅰ)取BC 中点O ,连结AO .∵△ABC 为正三角形,∴AO ⊥BC . ∵在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1,∴AO ⊥平面BCC 1B 1. 取B 1C 1中点O 1,以O 为原点,OB ,1OO ,OA 的方向为x ,y ,z 轴的正方向建立空间 直角坐标系: O xyz -,如图所示,则B (1,0,0),D (-1,1,0), A 1(0,2,A (0,0,B 1(1,2,0),∴(11,2,AB =,()2,1,0BD =-,(1BA =-. ∴10AB BD ⋅=,110AB BA ⋅=,∴1AB BD ⊥,11AB BA ⊥,∴AB 1⊥平面A 1BD . (Ⅱ)设平面A 1AD 的法向量为(),,x y z =n . 1,1,3()AD =--,1,2,0(0)AA =.∵AD ⊥n ,1AA ⊥n ,∴100AD AA ⋅=⋅⎧⎪⎪⎩=⎨n n,∴020x y y ⎧-+-==⎪⎨⎪⎩,0y x ==⎧⎪⎨⎪⎩,令1z =得(3,,1)0=n 为平面A 1AD 的一个法向量.由(1)知AB 1⊥平面A 1BD ,1AB 为平面A 1BD 的法向量,∴111cos AB AB AB ⋅-===⋅n n,n . ∴锐二面角A -A 1D -B 的大小的余弦值为21. 解:(Ⅰ)证明:当1a =时,函数()2x f x e x =-.则()'2x f x e x =-,令()2x g x e x =-,则()'2x g x e =-,令()'0g x =,得l n 2x =.当()0,l n 2x ∈时,()'0g x <,当()ln2,x ∈+∞时,()'0g x >∴()f x 在[)0,+∞单调递增,∴()()01f x f ≥=. (Ⅱ)()f x 在()0,+∞有两个零点⇔方程2e 0x ax -=在()0,+∞有两个根,2x e a x ⇔=在()0,+∞有两个根,即函数y a =与()2xe G x x=的图像在()0,+∞有两个交点.()()3e 2'x x G x x -=,当()0,2x ∈时,()'0G x <,()G x 在()0,2递减当()2x ∈+∞,时,()'0G x >,()G x 在()2+∞,递增所以()G x 最小值为()2e 24G =, 当0x →时,()G x →+∞,当x →+∞时,()G x →+∞,∴()f x 在()0,+∞有两个零点时,错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理南京市2018届高三年级学情调研数学2017.09参考公式:柱体的体积公式:V =Sh ,其中S 为柱体的底面积,h 为柱体的高.一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置.......上. 1.若集合P ={-1,0,1,2},Q ={0,2,3},则P ∩Q =▲. 2.若(a +b i)(3-4i)=25(a ,b ∈R ,i 为虚数单位),则a +b 的值为▲.3.某高校甲、乙、丙、丁四个专业分别有150,150,400,300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业中抽取40名学生进行调查,则应从丙专业抽 取的学生人数为▲.4.如图所示的算法流程图,若输出y 的值为,则输入x 的值为▲.5.记函数f (x )=的定义域为D .若在区间[-5,5]上随机取一个数x ,则x ∈D 的概率为▲. 6.在平面直角坐标系xOy 中,双曲线-=1的焦点到其渐近线的距离为▲.7.已知实数x ,y 满足条件则z =3x -2y 的最大值为▲.8.将一个正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为27πcm 3,则该圆柱的侧面积为▲cm 2. 9.若函数f (x )=A sin(?x +?)(A >0,?>0,|?|<?)的部分图象如图所示,则f (-?)的值为▲.10.记等差数列{a n }前n 项和为S n .若a m =10,S 2m -1=110,则m 的值为▲.11.已知函数f (x )是定义在R 上的奇函数,且在(-∞,0]上为单调增函数.若f (-1)=-2,则满足f (2x -3)≤2的x 的取值范围是▲.12.在△ABC 中,AB =3,AC =2,∠BAC =120?,=λ.若·=-,则实数λ的值为▲.13.在平面直角坐标系xOy 中,若圆(x -2)2+(y -2)2=1上存在点M ,使得点M 关于x 轴的xO y(第9题)?2对称点N 在直线kx +y +3=0上,则实数k 的最小值为▲.14.已知函数f (x )=若存在唯一的整数x ,使得>0成立,则实数a 的取值范围为▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分)在直三棱柱ABC -A 1B 1C 1中,AB =AC ,E 是BC 的中点,求证:(1)平面AB 1E ⊥平面B 1BCC 1; (2)A 1C //平面AB 1E . 16.(本小题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,cos B =. (1)若c =2a ,求的值; (2)若C -B =,求sin A 的值. 17.(本小题满分14分)某工厂有100名工人接受了生产1000台某产品的总任务,每台产品由9个甲型装置和3个乙型装置配套组成,每个工人每小时能加工完成1个甲型装置或3个乙型装置.现将工人分成两组分别加工甲型和乙型装置.设加工甲型装置的工人有x 人,他们加工完甲型装置所需时间为t 1小时,其余工人加工完乙型装置所需时间为t 2小时.设f (x )=t 1+t 2. (1)求f (x )的解析式,并写出其定义域; (2)当x 等于多少时,f (x )取得最小值?18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C :+=1(a >b >0)的离心率为,2),且过点(1,,2)).过椭圆C 的左顶点A 作直线交椭圆C 于另一点P ,交直线l :x =m (m >a )于点M .已知点B (1,0),直线PB 交l 于点N . (1)求椭圆C 的方程;(2)若MB 是线段PN 的垂直平分线,求实数m 的值. 19.(本小题满分16分)已知函数f (x )=2x 3-3(a +1)x 2+6ax ,a ∈R .(1)曲线y =f (x )在x =0处的切线的斜率为3,求a 的值;(2)若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值范围; (3)若a >1,设函数f (x )在区间[1,2]上的最大值、最小值分别为M (a )、m (a ),记h (a )=M (a )-m (a ),求h (a )的最小值.20.(本小题满分16分)已知数列{a n }的各项均为正数,记数列{a n }的前n 项和为S n ,数列{a n 2}的前n 项和为T n , 且3T n =S n 2+2S n ,n ∈N *.A 1B 1C 1 ABCE(第15题)(1)求a 1的值;(2)求数列{a n }的通项公式;(3)若k ,t ∈N *,且S 1,S k -S 1,S t -S k 成等比数列,求k 和t 的值.南京市2018届高三年级学情调研卷数学附加题2017.09注意事项:1.附加题供选修物理的考生使用. 2.本试卷共40分,考试时间30分钟.3.答题前,考生务必将自己的姓名、学校写在答题卡上.试题的答案写在答题卡...上对应题目的答案空格内.考试结束后,交回答题卡.21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答卷卡指定区域内........作答.解答应写出文字说明、证明过程或演算步骤.A .选修4—1:几何证明选讲如图,CD 是圆O 的切线,切点为D ,CA 是过圆心O 的割线且交圆O 于点B , DA =DC .求证:CA =3CB .B .选修4—2:矩阵与变换设二阶矩阵A =. (1)求A -1;(2)若曲线C 在矩阵A 对应的变换作用下得到曲线C :6x 2-y 2=1,求曲线C 的方程. C .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为(t 为参数),圆C 的参数方程为(θ为参数).若直线l 与圆C 相切,求实数a 的值.D .选修4—5:不等式选讲 解不等式:|x -2|+|x +1|≥5.【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内........作答.解答应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AB ⊥AD ,AD ∥BC ,AP =AB =AD =1.(1)若直线PB 与CD 所成角的大小为,求BC 的长; (2)求二面角B -PD -A 的余弦值.23.(本小题满分10分)袋中有形状和大小完全相同的四种不同颜色的小球,每种颜色的小球各有4个,分别编号为1,2,3,4.现从袋中随机取两个球.(1)若两个球颜色不同,求不同取法的种数;DPADAB CO (第21A 题)(2)在(1)的条件下,记两球编号的差的绝对值为随机变量X ,求随机变量X 的概率分布与数学期望.南京市2018届高三年级学情调研数学参考答案及评分标准说明:1.本解答给出的解法供参考.如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的内容和难度,可视影响的程度决定给分,但不得超过该部分正确解答应得分数的一半;如果后续部分的解答有较严重的错误,就不再给分. 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,填空题不给中间分数.一、填空题(本大题共14小题,每小题5分,计70分.) 1.{0,2}2.73.164.-5. 6.37.68.18?9.-110.611.(-∞,2]12.13.-14.[0,2]∪[3,8]二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卡的指定区域内) 15.(本小题满分14分)证明:(1)在直三棱柱ABC -A 1B 1C 1中,CC 1?平面ABC .因为AE ?平面ABC ,所以CC 1?AE .……………2分因为AB =AC ,E 为BC 的中点,所以AE ?BC . 因为BC ?平面B 1BCC 1,CC 1?平面B 1BCC 1, 且BC ∩CC 1=C ,所以AE ?平面B 1BCC 1.………………5分 因为AE ?平面AB 1E ,所以平面AB 1E ?平面B 1BCC 1.……………………………7分 (2)连接A 1B ,设A 1B ∩AB 1=F ,连接EF .在直三棱柱ABC -A 1B 1C 1中,四边形AA 1B 1B 为平行四边形, 所以F 为A 1B 的中点.……………………………9分又因为E 是BC 的中点,所以EF ∥A 1C .……………………………11分 因为EF ?平面AB 1E ,A 1C ?平面AB 1E ,所以A 1C ∥平面AB 1E .……………………………14分16.(本小题满分14分) 解:(1)解法1在△ABC 中,因为cos B =,所以=.………………………2分 因为c =2a ,所以=,即=,所以=,10).……………………………4分 又由正弦定理得=,A 1B 1C 1ABCE(第15题)F所以=,10).……………………………6分解法2因为cos B=,B∈(0,?),所以sin B==.………………………2分因为c=2a,由正弦定理得sin C=2sin A,所以sin C=2sin(B+C)=cos C+sin C,即-sin C=2cos C.………………………4分又因为sin2C+cos2C=1,sin C>0,解得sin C=,5),所以=,10).………………………6分(2)因为cos B=,所以cos2B=2cos2B-1=.…………………………8分又0<B<π,所以sin B==,所以sin2B=2sin B cos B=2××=.…………………………10分因为C-B=,即C=B+,所以A=π-(B+C)=-2B,所以sin A=sin(-2B)=sincos2B-cossin2B………………………………12分=,2)×-(-,2))×=,50).…………………………………14分17.(本小题满分14分)解:(1)因为t1=,………………………2分t2==,………………………4分所以f(x)=t1+t2=+,………………………5分定义域为{x|1≤x≤99,x∈N*}.………………………6分(2)f(x)=1000(+)=10[x+(100-x)](+)=10[10++].………………………10分因为1≤x≤99,x∈N*,所以>0,>0,所以+≥2?)=6,…………………12分当且仅当=,即当x=75时取等号.…………………13分答:当x=75时,f(x)取得最小值.………………………14分18.(本小题满分16分)解:(1)因为椭圆C的离心率为,2),所以a2=4b2.………………………2分又因为椭圆C过点(1,,2)),所以+,b2)=1,………………………3分解得a2=4,b2=1.所以椭圆C的方程为+y2=1.………………………5分(2)解法1设P(x0,y0),-2<x0<2,x0≠1,则+y02=1.因为MB是PN的垂直平分线,所以P关于B的对称点N(2-x0,-y0),所以2-x0=m.………………………7分由A(-2,0),P(x0,y0),可得直线AP的方程为y=(x+2),令x=m,得y=,即M(m,).因为PB⊥MB,所以k PB·k MB=-1,所以k PB·k MB=·,m-1))=-1,………………………10分即=-1.因为+y02=1.所以=1.………………………12分因为x0=2-m,所以化简得3m2-10m+4=0,解得m=,3)).………………………15分因为m>2,所以m=,3)).………………………16分解法2①当AP的斜率不存在或为0时,不满足条件.………………………6分②设AP斜率为k,则AP:y=k(x+2),联立+y2=1,,y=k(x+2),))消去y得(4k2+1)x2+16k2x+16k2-4=0.因为x A=-2,所以x P=,所以y P=,所以P(,).………………………8分因为PN的中点为B,所以m=2-=.(*)……………………10分因为AP交直线l于点M,所以M(m,k(m+2)),因为直线PB与x轴不垂直,所以≠1,即k2≠,所以k PB=,-1))=,k MB=.因为PB⊥MB,所以k PB·k MB=-1,所以·=-1.(**)………………………12分将(*)代入(**),化简得48k4-32k2+1=0,解得k2=,12)),所以m==,3)).………………………15分又因为m>2,所以m=,3)).………………………16分19.(本小题满分16分)解:(1)因为f(x)=2x3-3(a+1)x2+6ax,所以f′(x)=6x2-6(a+1)x+6a,所以曲线y=f(x)在x=0处的切线斜率k=f′(0)=6a,所以6a=3,所以a=.………………………2分(2)f(x)+f(-x)=-6(a+1)x2≥12ln x对任意x∈(0,+∞)恒成立,所以-(a+1)≥.………………………4分令g(x)=,x>0,则g?(x)=.令g?(x)=0,解得x=.当x∈(0,)时,g?(x)>0,所以g(x)在(0,)上单调递增;当x∈(,+∞)时,g?(x)<0,所以g(x)在(,+∞)上单调递减.所以g(x)max=g()=,………………………6分所以-(a+1)≥,即a≤-1-,所以a的取值范围为(-∞,-1-].………………………8分(3)因为f(x)=2x3-3(a+1)x2+6ax,所以f′(x)=6x2-6(a+1)x+6a=6(x-1)(x-a),f(1)=3a-1,f(2)=4.令f′(x)=0,则x=1或a.………………………10分f(1)=3a-1,f(2)=4.①当1<a≤时,当x∈(1,a)时,f?(x)<0,所以f(x)在(1,a)上单调递减;当x∈(a,2)时,f?(x)>0,所以f(x)在(a,2)上单调递增.又因为f(1)≤f(2),所以M(a)=f(2)=4,m(a)=f(a)=-a3+3a2,所以h(a)=M(a)-m(a)=4-(-a3+3a2)=a3-3a2+4.因为h?(a)=3a2-6a=3a(a-2)<0,所以h(a)在(1,]上单调递减,所以当a∈(1,]时,h(a)最小值为h()=.………………………12分②当<a<2时,当x∈(1,a)时,f?(x)<0,所以f(x)在(1,a)上单调递减;当x∈(a,2)时,f?(x)>0,所以f(x)在(a,2)上单调递增.又因为f(1)>f(2),所以M(a)=f(1)=3a-1,m(a)=f(a)=-a3+3a2,所以h(a)=M(a)-m(a)=3a-1-(-a3+3a2)=a3-3a2+3a-1.因为h?(a)=3a2-6a+3=3(a-1)2≥0.所以h(a)在(,2)上单调递增,所以当a∈(,2)时,h(a)>h()=.………………………14分③当a≥2时,当x∈(1,2)时,f?(x)<0,所以f(x)在(1,2)上单调递减,所以M(a)=f(1)=3a-1,m(a)=f(2)=4,所以h(a)=M(a)-m(a)=3a-1-4=3a-5,所以h(a)在[2,+∞)上的最小值为h(2)=1.综上,h(a)的最小值为.………………………16分20.(本小题满分16分)解:(1)由3T1=S12+2S1,得3a12=a12+2a1,即a12-a1=0.因为a1>0,所以a1=1.………………………2分(2)因为3T n=S n2+2S n,①所以3T n+1=S n+12+2S n+1,②②-①,得3a n+12=S n+12-S n2+2a n+1.因为a n+1>0,所以3a n+1=S n+1+S n+2,③………………………5分所以3a n+2=S n+2+S n+1+2,④④-③,得3a n+2-3a n+1=a n+2+a n+1,即a n+2=2a n+1,所以当n≥2时,=2.………………………8分又由3T2=S22+2S2,得3(1+a22)=(1+a2)2+2(1+a2),即a22-2a2=0.因为a2>0,所以a2=2,所以=2,所以对n∈N*,都有=2成立,所以数列{a n}的通项公式为a n=2n-1,n∈N*.………………………10分(3)由(2)可知S n=2n-1.因为S1,S k-S1,S t-S k成等比数列,所以(S k-S1)2=S1(S t-S k),即(2k-2)2=2t-2k,………………………12分所以2t=(2k)2-3?2k+4,即2t-2=(2k-1)2-3?2k-2+1(*).由于S k-S1≠0,所以k≠1,即k≥2.当k=2时,2t=8,得t=3.………………………14分当k≥3时,由(*),得(2k-1)2-3?2k-2+1为奇数,所以t-2=0,即t=2,代入(*)得22k-2-3?2k-2=0,即2k=3,此时k无正整数解.综上,k=2,t=3.………………………16分南京市2018届高三年级学情调研数学附加题参考答案及评分标准21.【选做题】在A 、B 、C 、D 四小题中只能选做2题,每小题10分,共计20分.请在答题卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.A .选修4—1:几何证明选讲 证明:连接OD ,因为DA =DC ,所以∠DAO =∠C .………………………2分 在圆O 中,AO =DO ,所以∠DAO =∠ADO , 所以∠DOC =2∠DAO =2∠C .………………………5分因为CD 为圆O 的切线,所以∠ODC =90°, 从而?DOC +?C =90°,即2?C +?C =90°, 故∠C =30°,………………………7分 所以OC =2OD =2OB ,所以CB =OB ,所以CA =3CB .………………………10分B .选修4—2:矩阵与变换解:(1)根据逆矩阵公式,可得A -1=,-)).………………………4分(2)设曲线C 上任意一点P (x ,y )在矩阵A 对应的变换作用下得到点P ?(x ?,y ?),则==,所以……………………8分因为(x ?,y ?)在曲线C ?上,所以6x ?2-y ?2=1,代入6(x +2y )2-(3x +4y )2=1, 化简得8y 2-3x 2=1,所以曲线C 的方程为8y 2-3x 2=1.………………………10分C .选修4—4:坐标系与参数方程解:由直线l 的参数方程为,得直线l 的普通方程为x -y +1=0.………………………2分由圆C 的参数方程为,得圆C 的普通方程为(x -a )2+(y -2a )2=1.………………………4分因为直线l 与圆C 相切,所以)=1,………………………8分 解得a =1±.所以实数a 的值为1±.………………………10分 D .选修4—5:不等式选讲解:(1)当x <-1时,不等式可化为-x +2-x -1≥5,解得x ≤-2;……………………2分(2)当-1≤x ≤2时,不等式可化为-x +2+x +1≥5,此时不等式无解;……………4分DAB CO (第21A 题)(3)当x >2时,不等式可化为x -2+x +1≥5,解得x ≥3;……………………6分 所以原不等式的解集为(-∞,-2]∪[3,+∞).…………………………10分 【必做题】第22题、第23题,每题10分,共计20分. 22.(本小题满分10分)解:(1)以{,,}为单位正交基底,建立如图所示的空间直角坐标系A -xyz . 因为AP =AB =AD =1,所以A (0,0,0),B (1,0,0),D (0,1,0),P (0,0,1).设C (1,y ,0),则=(1,0,-1),=(-1,1-y ,0).…………………………2分因为直线PB 与CD 所成角大小为, 所以|cos <,>|=|?,∣∣?∣∣)|=, 即×)=,解得y =2或y =0(舍), 所以C (1,2,0),所以BC 的长为2.………………………5分 (2)设平面PBD 的一个法向量为n 1=(x ,y ,z ).因为=(1,0,-1),=(0,1,-1), 则,,,))即令x =1,则y =1,z =1,所以n 1=(1,1,1).………………………7分 因为平面PAD 的一个法向量为n 2=(1,0,0), 所以cos <n 1,n 2>==,3),所以,由图可知二面角B -PD -A 的余弦值为,3).………………………10分23.(本小题满分10分)解:(1)两个球颜色不同的情况共有C ?42=96(种).………………………3分(2)随机变量X 所有可能的值为0,1,2,3.P (X =0)=,96)=,………………………5分 P (X =1)=?C,96)=, P (X =2)=?C,96)=, P (X =3)=?C,96)=.所以随机变量X 的概率分布列为:………………………8分所以E (X )=0?+1?+2?+3?=.………………………10分X 0123PCDPBA(第22题)xy z。

相关文档
最新文档