分式方程的增根和无解

合集下载

分式方程的增根和无解

分式方程的增根和无解

分式方程的增根和无解
增根和无解是分式方程中常见的两种情况。

增根是指分式方程化为整式方程后,产生的使分式方程的分母为$0$的根。

分式方程的增根问题是分式方程去分母的过程中,方程两边同乘了一个能使最简公分母为零的整式,致使未知数的取值范围扩大。

无解是指分式方程本身就是一个矛盾等式,不论未知数取何值都不能使方程两边的值相等。

分式方程无解包括两种情况:一种情况是分式方程变形后,整式方程本身无解;另一种情况是整式方程有解,但这个解使原方程的分母为$0$,即为分式方程的增根,所以原分式方程无解。

总的来说,分式方程的增根和无解是两个不同的概念,增根是分式方程的一种特殊情况,而无解则是分式方程的一种极端情况。

分式方程的增根与无解详解(最新整理)

分式方程的增根与无解详解(最新整理)

x-2 (x-3)=m
整理得:
x=6-m
∵原方程有解,故 6-m 不是增根。
∴6-m≠3 即 m≠3
∵x>0
∴m<6
由此可得答案为 m 的取值范围是 m<6 且 m≠3。 一、分式方程有增根,求参数值
2
x2 4xa 例 7 a 为何值时,关于 x 的方程 x 3 =0 有增根?
解:原方程两边同乘以(x-3)去分母整理,得 x2-4x+a=0(※) 因为分式方程有增根,增根为 x=3,把 x=3 代入(※)得,9-12+a=0 a=3
整理得(a-1)x=-10

1
若原方程无解,则有两种情形: (1)当 a-1=0(即 a=1)时,方程②为 0x=-10,此方程无解,所以原方程无解。 (2)如果方程②的解恰好是原分式方程的增根,那么原分式方程无解.原方程若有增根,增根为 x=2 或-2,把 x=2 或-2 代入方程②中,求出 a=-4 或 6. 综上所述,a=1 或 a=一4或 a=6 时,原分式方程无解. 例 5:(2005 扬州中考题)
入(※)得 m=-2
3 所以 m=- 2 或-2 时,原分式方程有增根
k
2
点评:分式方程有增根,不一定分式方程无解(无实根),如方程 x 1 +1= ( x 1)( x 2) 有增根,可求得 k=-
2
8
3 ,但分式方程这时有一实根 x= 3 。
二、分式方程是无实数解,求参数值
x2 m 例 9 若关于 x 的方程 x 5 = x 5 +2 无实数,求 m 的值。
整理得:
m(x+1)=7-x2
当 x= -1 时,此时 m 无解;
当 x=1 时,解得 m=3。

分式方程中无解与增根有什么区别,做题时有什么不同的

分式方程中无解与增根有什么区别,做题时有什么不同的

分式方程中无解与增根有什么区别,做题时有什么不同的
解分式方程一般都要去分母化为整式方程,而整式方程只有:有解与无解二种情况.
当整式方程无解时,那么原来的分式方程也一定无解.
当整式方程有解时,原来的分式方程就不一定也有解,因为分式方程有产生增根的可能,
若整式方程的解代入原分式方程的所有分母中,只要有一个分母为0,
这个整式方程的解就不是原分式方程的根,它是一个增根.
若整式方程的解代入原分式方程的所有分母中全不为0,这个整式方程的解
才是原分式方程的解.
若整式方程的所有解都不是原分式方程的根(即都是增根),这时才能说
此分式方程无解.
无解与增根的关系不太大,有增根不一定无解,无解也不一定是因为有了增根才无解的.
这与解题毫无关系.。

(完整版)分式方程的增根与无解详解

(完整版)分式方程的增根与无解详解

分式方程的增根与无解讲解2 4x 3例1解方程上 二—.①x 2 x 4 x 2解:方程两边都乘以(x+2) (x-2 ),得2 (x+2) -4x=3 (x-2 ).② 解这个方程,得x=2 .经检验:当x=2时,原方程无意义,所以 x=2是原方程的增根.所以原方程无解.x 13 x 例2解方程2 .x 22 x解:去分母后化为 x — 1 = 3- x + 2 (2 + x ). 整理得0x = 8.因为此方程无解,所以原分式方程无解.例3 (2007湖北荆门)若方程 口 = 旦 无解,则m 二——x 2 2 x解:原方程可化为方程两边都乘以 x — 2,得x — 3=— m. 解这个方程,得x=3 — m因为原方程无解,所以这个解应是原方程的增根.即 x=2 ,所以2=3 — m,解得m=1 故当m=1时,原方程无解.2例4当a 为何值时,关于x 的方程 ---------x 2解:方程两边都乘以(x+2) (x-2 ),得 2 (x + 2) + ax = 3 (x — 2) 整理得(a — 1) x = — 10②若原分式方程有增根,则 x = 2或—2是方程②的根. 把x = 2或一 2代入方程②中,解得,a = — 4或6. 若将此题“会产生增根”改为“无解” ,即:此时还要考虑转化后的整式方程(a — 1) x =— 10本身无解的情况,解法如下:解:方程两边都乘以(x+2) (x-2 ),得 2 (x + 2) + ax = 3 (x — 2)2当a 为何值时,关于x 的方程门 axx 2 4①无解?axx 2 4①会产生增根?整理得(a—1) x = —10 ②若原方程无解,则有两种情形:(1 )当a - 1 = 0 (即a = 1)时,方程②为Ox = - 10,此方程无解,所以原方程无解。

(2)如果方程②的解恰好是原分式方程的增根,那么原分式方程无解•原方程若有增根,增根为 =2或一2,把x = 2或一2代入方程②中,求出 a =- 4或6.综上所述,a = 1或a =—4或a = 6时,原分式方程无解. 例5: (2005扬州中考题)A 、0B 、1C 、-1D 、1 或-1 分析:使方程的最简公分母 (x+1)(x-1)=0 则x=-1或x=1,但不能忽略增根除满足最简公分母为零须是所化整式方程的根。

无解≠增根

无解≠增根
无解≠增根
陈峰
分式方程的无解和增根令许多初学分式 增根和整式方程无解这两种情况讨论。
方程的同学头疼,无解是不是一定意味着这个
解 :将 方 程 两 边 同 时 乘 x(x-1),得 x
方程有增根?本文试通过几道例题来谈谈它 (x-a)-3(x-1)=x(x-1),
们的差别。
整理方程,得(a+2)x=3。
又∵分式方程无解,∴x=1 即为增根。
不能等于 1,而对于变形后的方程来说,x=1。
当增根为 1 时,得 a+2=3,解得 a=1。
因此 x=1 是在去分母过程中“增加”的根,这个
综上所述,当 a=-2 或 a=1 时,该分式方程
根原本是不存在的,这样的根就是增根。
无解。
例1
若方程
x x-3
-2=
m x-3
二、无解可能出现增根,也可能真没解
分式方程的根如果是增根,则分式方程无
解。反之却不一定成立。如果分式方程无解,
还有可能是化为整式方程后,整式方程就是无
解的。
例2
若关于 x 的分式方程
x-a x-1
-
3 x
=
1
无解,则 a=

【分析】分式方程无解,需要分分式方程有
技巧点评:已知分式方程无解,可先考虑
去分母,将它们化成整式方程,然后讨论是整
x=
k
5
3

因为
x<0,所以
k
5
3

k
5
3
≠-3,所以 k≠-12。
所以当 k<3 且 k≠-12 时,原分式方程的解
为负数。
(作者单位:海安高新区仁桥初级中学)
46 策略方法

分式方程的增根与无解详解

分式方程的增根与无解详解

分 式 方 程 的 增 根 与 无 解 讲 解例1解方程—24x 3•①x 2 x 4 x 2解:方程两边都乘以(x+2) (x-2 ),得2 (x+2) -4x=3 (x-2 ).②解这个方程,得x=2.经检验:当x=2时,原方程无意义,所以x=2是原方程的增根.所以原方程无解.例2解方程x 13 x2 .x 22 x解:去分母后化为x — 1 = 3— x + 2 (2+ x ).整理得0x = 8.因为此方程无解,所以原分式方程无解.例3 (2007湖北荆门)若方程 王卫二―丄无解,则m= ------------ .x 22 x解:原方程可化为x 3二—m.x 2 x 2方程两边都乘以x — 2,得x — 3=— m解这个方程,得x=3— m因为原方程无解,所以这个解应是原方程的增根.即 x=2,所以2=3— m 解得m=1.故当m=1时,原方程无解.ax例4当a为何值时,关于x的方程齐厂齐①会产生增根?解:方程两边都乘以(x+2) (x-2 ),得 2 (x + 2)+ ax= 3 (x —2)整理得(a—1) x = —10若原分式方程有增根,则x= 2或-2是方程②的根.把x = 2或一2代入方程②中,解得,a = —4或6.若将此题“会产生增根”改为“无解”,即:2 ax 3当a为何值时,关于x的方程厂2 厂门①无解?此时还要考虑转化后的整式方程(a—1)x二—10本身无解的情况,解法如下:解:方程两边都乘以(x+2) (x-2 ),得 2 (x + 2)+ ax= 3 (x —2)整理得(a—1) x = —10若原方程无解,则有两种情形:(1)当a—1 = 0 (即a= 1)时,方程②为0x =一10,此方程无解,所以原方程无解。

(2)如果方程②的解恰好是原分式方程的增根,那么原分式方程无解•原方程若有增根,增根为x = 2或一2,把x = 2或一2代入方程②中,求出a= —4或6.综上所述,a= 1或a = —4或a=6时,原分式方程无解.例5: (2005扬州中考题)6A 、0B 、1C 、-1D 、1 或-1分析:使方程的最简公分母(x+1)(x-1)=0 则x=-1或x=1,但不能忽略增根除满足最简公 分母为零,还必须是所化整式方程的根。

分式方程有增根或无解

分式方程有增根或无解
方法总结:1.化为整式方程. 2.把整式方程分两种情 况讨论,整式方程无解和整式方程的解为增根.
例4 若分式方程 2x a 1的解是正数,求
x2
a 的取值范围.
解:解方程得
且x≠2
由题意得不等式组:
解得:

思考1.若此方程解为非正数呢?答案是多少? 2.若此方程无解a的值是多少?
方法总结:1.化整式方程求根,但是 不能是增根.2.根据题意列不等式组.
例1 解方程:
xx11x2N41o1 Image (1) 增根是使最简公分母值为零的未知数
的值. (2) 增根是整式方程的根但不是原分式方 程的.所. 以解分式方程一定要验根.
例2 解关于x的方程 2 ax 3
x2 x24 x2
产生增根,则常数a= 。
解:化整式方程得
由题意知增根
x=2或-2是 整式方程的根. 把x=2代入得2a-2 =
复习回顾
1.解分式方程的思路是:
分式 方程
去分母 转化整式Biblioteka 方程2.解分式方程的一般步骤
(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程.
(2)解这个整式方程. (3)把整式方程的根代入最简公分母,看结果是不是为零,使最 简公分母为零的根是原方程的增根,必须舍去. (4)写出原方程的根.
“一化二解三检验四结论”


A.-1
B. 1 C. ±1 D.-2
• 5、若分式方程
m x 1 x 1
• 有增根,则m的值为 -1 。
• 6、分式方程
1 m

x 2 x 1
• 有增根,则增根为( C )

A、2
B、-1

例谈分式方程的增根与无解

例谈分式方程的增根与无解

例谈分式方程的增根与无解
通过解分式方程组,我们可以发现,通常会出现三种情况:有解、增根、无解。

1. 有解的情况
有解的情况就是对方程组所有方程的解,可以为数值,也可以为无理数。

例如:
例1: 8x-4=4x-8
x=-2
例2:令 x=2,则有:
〔4/x-2=(x+1)/2〕
即4/2-2=(2+1)/2,经过计算得出有解:2=-1
2. 增根的情况
增根的情况就是方程组只有由无理方程构成,但所有方程没有共同解的情形。

例如:
例1:〔3/x-2=(x+1)/x〕
由于3/x-2和(x+1)/x只有无理数解,但它们没有共同的解,因此解此方程组为增根。

例2:〔2/x-2=(x+1)/x〕
由于2/x-2和(x+1)/x只有无理数解,但它们没有共同的解,因此解此方程组为增根。

3. 无解的情况
无解的情况就是对方程组所有方程没有解的情形。

例如:
例1:〔3/x-2=1/x〕
由于3/x-2和1/x只有无理数解,但它们没有共同的解,因此解此方程组为无解。

例2:〔2/x+2=1/x〕
由于2/x+2和1/x只有无理数解,但它们没有共同的解,因此解此方程组为无解。

综上所述,当解分式方程组时,通常会出现三种情况:有解、增根、无解,其中增根和无解比较常见。

针对分式方程组的计算,要正确的区分它们的解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档