Three-Dimensional Grain Boundary Spectroscopy in Transparent High Power Ceramic Laser Mater

合集下载

物理学名词

物理学名词

1/4波片quarter-wave plateCG矢量耦合系数Clebsch-Gordan vector coupling coefficient; 简称“CG[矢耦]系数”。

X射线摄谱仪X-ray spectrographX射线衍射X-ray diffractionX射线衍射仪X-ray diffractometer[玻耳兹曼]H定理[Boltzmann] H-theorem[玻耳兹曼]H函数[Boltzmann] H-function[彻]体力body force[冲]击波shock wave[冲]击波前shock front[狄拉克]δ函数[Dirac] δ-function[第二类]拉格朗日方程Lagrange equation[电]极化强度[electric] polarization[反射]镜mirror[光]谱线spectral line[光]谱仪spectrometer[光]照度illuminance[光学]测角计[optical] goniometer[核]同质异能素[nuclear] isomer[化学]平衡常量[chemical] equilibrium constant[基]元电荷elementary charge[激光]散斑speckle[吉布斯]相律[Gibbs] phase rule[可]变形体deformable body[克劳修斯-]克拉珀龙方程[Clausius-] Clapeyron equation[量子]态[quantum] state[麦克斯韦-]玻耳兹曼分布[Maxwell-]Boltzmann distribution[麦克斯韦-]玻耳兹曼统计法[Maxwell-]Boltzmann statistics[普适]气体常量[universal] gas constant[气]泡室bubble chamber[热]对流[heat] convection[热力学]过程[thermodynamic] process[热力学]力[thermodynamic] force[热力学]流[thermodynamic] flux[热力学]循环[thermodynamic] cycle[事件]间隔interval of events[微观粒子]全同性原理identity principle [of microparticles][物]态参量state parameter, state property[相]互作用interaction[相]互作用绘景interaction picture[相]互作用能interaction energy[旋光]糖量计saccharimeter[指]北极north pole, N pole[指]南极south pole, S pole[主]光轴[principal] optical axis[转动]瞬心instantaneous centre [of rotation][转动]瞬轴instantaneous axis [of rotation]t 分布student's t distributiont 检验student's t testK俘获K-captureS矩阵S-matrixWKB近似WKB approximationX射线X-rayΓ空间Γ-spaceα粒子α-particleα射线α-rayα衰变α-decayβ射线β-rayβ衰变β-decayγ矩阵γ-matrixγ射线γ-rayγ衰变γ-decayλ相变λ-transitionμ空间μ-spaceχ 分布chi square distributionχ 检验chi square test阿贝不变量Abbe invariant阿贝成象原理Abbe principle of image formation阿贝折射计Abbe refractometer阿贝正弦条件Abbe sine condition阿伏伽德罗常量Avogadro constant阿伏伽德罗定律Avogadro law阿基米德原理Archimedes principle阿特伍德机Atwood machine艾里斑Airy disk爱因斯坦-斯莫卢霍夫斯基理论Einstein-Smoluchowski theory 爱因斯坦场方程Einstein field equation爱因斯坦等效原理Einstein equivalence principle爱因斯坦关系Einstein relation爱因斯坦求和约定Einstein summation convention爱因斯坦同步Einstein synchronization爱因斯坦系数Einstein coefficient安[培]匝数ampere-turns安培[分子电流]假说Ampere hypothesis安培定律Ampere law安培环路定理Ampere circuital theorem安培计ammeter安培力Ampere force安培天平Ampere balance昂萨格倒易关系Onsager reciprocal relation凹面光栅concave grating凹面镜concave mirror凹透镜concave lens奥温电桥Owen bridge巴比涅补偿器Babinet compensator巴耳末系Balmer series白光white light摆pendulum板极plate伴线satellite line半波片halfwave plate半波损失half-wave loss半波天线half-wave antenna半导体semiconductor半导体激光器semiconductor laser半衰期half life period半透[明]膜semi-transparent film半影penumbra半周期带half-period zone傍轴近似paraxial approximation傍轴区paraxial region傍轴条件paraxial condition薄膜干涉film interference薄膜光学film optics薄透镜thin lens保守力conservative force保守系conservative system饱和saturation饱和磁化强度saturation magnetization本底background本体瞬心迹polhode本影umbra本征函数eigenfunction本征频率eigenfrequency本征矢[量] eigenvector本征振荡eigen oscillation本征振动eigenvibration本征值eigenvalue本征值方程eigenvalue equation比长仪comparator比荷specific charge; 又称“荷质比(charge-mass ratio)”。

基于WO_(3)作为空穴注入层的量子点发光二极管的构筑

基于WO_(3)作为空穴注入层的量子点发光二极管的构筑
图 3 显示了 QLEDs 的 J -V 和 L -V 特性曲线。 显然,基于 WO3 的 QLEDs 的漏电流比基于 PEDOT: PSS 的漏电流要低得多,这说明 WO3 基 QLEDs 的载 流子输运更加平衡。 此外,WO3 基器件的阈值电压 (2.5 V) 明显低于 PEDOT:PSS 器件的阈值电压(3.2 V) ,即 WO3 能很好地匹配 TFB 空穴传输层,并降低 空穴的注入势垒,从而实现空穴有效注入。 为了确 定 WO3 与 TFB 之间的空穴传输势垒,我们用 UPS 测试了 WO3 的导带位置在 5.15 eV ,而空穴传输层 TFB 的最高占据分子轨道( HOMO) 位置在 5.35 eV, 因此较低的接触势垒( 0.2 eV) 有利于 WO3 的导带 从 TFB 的 HOMO 能级提取电子而形成空穴的有效 注入。 当外加偏压大于 2.5 V 时,WO3 基器件的电 流强度急剧增加,表现出优良的整流特性。 WO3 和 PEDOT:PSS 基 QLEDs 器 件 的 最 大 亮 度 分 别 为 18 560 cd·m-2和 21 005 cd·m-2,即这两种器件的 亮度基本上是一个数量级。 WO3 基 QLEDs 的器件 结构示意图如图 3 插图所示。
仪器) 、紫外光电子能谱( UPS) ( Kratos) 对样品进行 了表征。 安捷伦 4255C 配备校准的硅光电探测器 用 来 测 量 电 流 亮 度⁃电 压 特 性, 用 电 致 发 光 光 谱 仪 ( HR4000) 记录了发光谱图。 用 N6705B 器件寿命 测试系统测试 QLEDs 器件寿命。
在本工作中,我们以 W 粉和 H2O2 为前驱体,采 用简单的溶胶⁃凝胶法制备了 WO3 纳米晶薄膜,并 将其作为空穴注入层应用在 QLEDs 中,其亮度、电 流效率和寿命分别为 18 560 cd·m-2、11.8 cd·A-1 和 11 844 h。

三维荧光光谱及平行因子分析法在CDOM研究中的应用_刘笑菡

三维荧光光谱及平行因子分析法在CDOM研究中的应用_刘笑菡
第一作者简介:刘 笑 菡 (1988-),女,主 要 研 究 方 向 为 水 光 学 及 溶 解 性 有 机 物 生 物 地 球 化 学 循 环 ,E-mail:liuxiao- han7763@163.com
* 通 讯 作 者 :E-mail:ylzhang@niglas.ac.cn 收 稿 日 期 :2011-07-11
荧光光谱分析法已经广泛应用于分析水 体中 DOM 的 来 源,时 间 以 及 反 应 活 性。 然 而,DOM 中每种组分荧光光谱对 DOM 荧光
发射和吸收的仪器响应还没有一致的标准。
有研究者运用制造商提供的发射和吸收校正 文档,估 测 3 个 不 同 的 荧 光 计:Fluoromax-3 荧 光 计 (Horiba集 团Jobin Yvon 公 司 ),Cary Eclipse荧 光 计 (美 国 Varian 仪 器 公 司 ), LS50B 荧光计(Perkin Elmer仪器公司)对于 DOM 荧 光 光 谱 的 响 应。 研 究 结 果 显 示,尽 管样品在不同荧光计上的测定结果在校准前 差异显著,且 不 同 仪 器 生 产 商 提 供 的 仪 器 校 准因子有差别,但 是 经 校 准 后 同 一 样 品 测 定 的荧光谱图 的 重 叠 度 提 高。 因 而,根 据 同 一 资料 组 DOM 荧 光 数 据 趋 势 得 出 的 结 论,不 受所使用的仪器种类的影响 。 [15]
摘 要:文章对有色可溶性有机物(Chromophoric dissolved organic matter:CDOM)三 维 荧 光 特 性 的研究进行了综述,指出了三维荧光光谱分析在水 体 CDOM 特 性 研 究 中 存 在 的 优 缺 点;阐 述 了 平 行因子分析法在水体 CDOM 研究中 的 具 体 应 用 程 序 及 运 用 此 方 法 识 别 得 到 的 水 体 组 分;汇 总 了 当前表征 CDOM 荧光特性的常用指标;总结了国 内 外 在 三 维 荧 光 光 谱 研 究 水 体 CDOM 特 性 方 面 的进展,详述了 不 同 类 型 水 体 中 CDOM 的 组 分 特 性、生 物 地 球 化 学 循 环 的 研 究 热 点 以 及 影 响 CDOM 三维荧光光谱特性的一些主要因素;最后,对 三 维 荧 光 光 谱 技 术 在 未 来 的 发 展 及 应 用 进 行 了展望。 关 键 词 :CDOM;三 维 荧 光 光 谱 ;平 行 因 子 分 析 法 ;荧 光 指 数 中 图 分 类 号 :O644 文 献 标 识 码 :A 文 章 编 号 :1003-6482(2012)03-0133-13

3ω法测量钛酸钡薄膜的热导率

3ω法测量钛酸钡薄膜的热导率

Abstract:With the
of the perovskite type with a high dielectric constant,and has been widely used in an inorganic compound electronics industry.By developing a 3甜measuring system.the thermal conductivities of BTO samples prepared by polymer assisted deposition on SiO,thin films were measured.By employing the relation between thermal conductivity and thermal
in Dongguan,University of Electronic Science and Technology of hina,Dongguan 523808,China)
miniaturization of electrical devices,the problems caused by heating effect make increaseing the thermal conductivity and decreaseing the jnterfacial thermal resistance become an critical factor to improve the reliability of thin film devices.So.it is erueial to characterize the thermal properties of thin film devices in electronics industry.Barium

立方聚合氮(cg-N)的高压低温拉曼光谱研究

立方聚合氮(cg-N)的高压低温拉曼光谱研究

立方聚合氮(cg-N)的高压低温拉曼光谱研究刘珊; 蒲梅芳; 张峰; 雷力【期刊名称】《《光散射学报》》【年(卷),期】2019(031)003【总页数】6页(P235-240)【关键词】聚合氮; 高能密度材料; 拉曼散射; 多声子模型【作者】刘珊; 蒲梅芳; 张峰; 雷力【作者单位】四川大学原子与分子物理研究所成都610065【正文语种】中文【中图分类】O51343; O521+31 引言压力(强)和温度是决定物质存在状态的基本热力学要素。

在超高压极端条件下,物质原有的结构会被破坏,导致结构相变、物性改变、甚至核子间的强相互作用。

低温下物质的热力学膨胀效应的降低和体积收缩会导致物质晶格振动发生变化。

将高压和低温这两个极端热力学条件结合起来对物质的性质研究具有重要意义。

但是相比常温高压或高温(<1000 K)高压的原位光学测量,低温高压原位光学测量具有更大的技术难度。

早在20世纪80年代,研究者们就开始致力于解决低温高压原位光学测量这一难题。

1981年,美国康奈尔大学Golopentia等人[1]设计了一种低温高压装置。

装置利用液氦降温,通过改变不同负载加压。

但装置无法进行光学测量,且无法准确地测量样品压力。

1985年,美国哈佛大学Isaac等人[2]利用液氦和液氮来控制样品温度,利用杠杆施力加压,设计了带有光学窗口的装置。

装置可以通过测量红宝石较为准确地标定压力,但是温度控制仍然是一个问题。

1990年,苏联科学院高压物理研究所Eremets等人[3]设计出了基于金刚石压砧(diamond anvil cell,DAC)的低温高压装置,实现了高压低温光学原位测量,但是压力仅为20 GPa。

目前,能够原位光学测量的低温高压仪器已经成为一种市面上销售的产品,但是由于温压限制,要实现在100 GPa以上的超高压下对样品低温性质的研究仍然是一个难题,目前报道的高压低温实验的实验压力大多数在50 GPa左右,国际上鲜有在低温下100 GPa以上超高压原位光学测量研究的报道 [4-7],国内暂无此相关内容的报道。

硫系薄膜材料相变温度光功率测量法研究

硫系薄膜材料相变温度光功率测量法研究

第51卷第2期2024年北京化工大学学报(自然科学版)Journal of Beijing University of Chemical Technology (Natural Science)Vol.51,No.22024引用格式:吴国栋,金森林,付俊杰,等.硫系薄膜材料相变温度光功率测量法研究[J].北京化工大学学报(自然科学版),2024,51(2):93-100.WU GuoDong,JIN SenLin,FU JunJie,et al.An optical power method for measuring the phase change temperature of chal⁃cogenide thin film materials[J].Journal of Beijing University of Chemical Technology (Natural Science),2024,51(2):93-100.硫系薄膜材料相变温度光功率测量法研究吴国栋1,2 金森林2,3 付俊杰1 李 硕2,3 任玲玲2,3 贺建芸1*(1.北京化工大学机电工程学院,北京 100029;2.中国计量科学研究院国家市场监管技术创新中心(石墨烯计量与标准技术),北京 100029;3.深圳中国计量科学研究院技术创新研究院国家石墨烯材料产业计量测试中心(深圳),深圳 518107)摘 要:相变温度是衡量相变薄膜材料性能的关键参数,对相变存储器的数据保持力㊁热稳定性和功耗有着巨大的影响,因此相变温度的准确测量非常重要㊂目前,国内外测量薄膜材料相变温度的主要方法有变温X 射线衍射法和差示扫描量热法,前者测量精度有限,后者是破坏性测量㊂本文根据薄膜材料相变前后光学性质会发生较大改变的特性,首先设计了薄膜材料相变温度测量仪的硬件部分,主要包含高温加热炉㊁样品台㊁光路模块等;其次探究了高温加热炉腔的温场均匀性及温度模块的控制能力,结果表明均符合实验要求;最后,利用此装置测量了典型硫系材料GeTe 和Ge 2Sb 2Te 5薄膜的相变温度,10次测量平均值分别为212.7℃和145.4℃,标准偏差分别为1.70和2.32,测量结果稳定性良好,达到实验预期㊂关键词:相变存储器;相变温度;高温加热炉;光功率;光功率测量法中图分类号:TH71 DOI :10.13543/j.bhxbzr.2024.02.010收稿日期:2023-04-10第一作者:男,1996年生,硕士生*通信联系人E⁃mail:jyhe@引 言近年来,随着集成电路㊁量子计算机的迅速发展,使得人们对数据快速存取及超大存储有着极高的要求[1-3]㊂相变随机存储器简称相变存储器(phase change memory,PCM),具有高存储㊁编程速度快㊁低成本㊁低操作功耗㊁可扩展性等诸多优势,已成为下一代非易失性存储器中最具有竞争力的替代品之一[4-6]㊂在相变存储器中,相变温度是决定材料性能的关键参数,能够影响相变存储器的数据保持能力㊁器件的功耗以及在发热时器件的稳定性㊂如果能够准确测量薄膜材料的相变温度,则可以通过精确施加一段电流脉冲来确保器件达到相变温度点,从而实现器件的相变,以满足器件的正常工作要求;同时,可以防止温度过高㊁能量损耗,避免过热而导致稳定性的缺失[7-8]㊂目前,薄膜相变材料相变温度测量的方法主要有变温X 射线衍射法(XRD)和差示扫描量热法(DSC)[9-10];X 射线的衍射特性表明,当大量原子之间发生散射时会形成一种新的光谱,从而揭示出晶体内部的物质结构和物质的分布情况;薄膜材料的相变过程从非晶态到晶态㊁单晶态到多晶态㊁α晶态到β晶态,各个晶态会有不同的晶相结构㊂对相变薄膜材料进行X 射线衍射表征,可以间接反映薄膜在不同温度下发生相变的温度,即变温X 射线衍射方法;基于这一原理,研究者们根据NaCl 晶体在高温下的结构稳定性,设计了以其晶格常数为基础的晶体温度计㊂Ohyanagi 等[11]通过XRD 分析发现,GeTe 在退火前后均为非定型六面体;他们精确测量了两种结构变化时的温度变化,并利用这一发现研制出GeTe 加热型开关器件㊂由于变温XRD 的测量精度有限,并且在高温下由于晶体的热涨会引起较大的误差,且由于测量方法的限制,XRD 所测量的样品的相变温度属于某一范围的值,同时样品所在的腔室空间较大,样品实际温度与其所测量的温度相差较大,因此XRD难以精确测量薄膜材料的相变温度㊂差示扫描量热法是在程序控制温度下,测量输给物质和参比物的功率差与温度关系的一种技术[12]㊂通过差热式扫描,可以实现对输入物体和被检测物体之间的功率变化情况进行精确的程序控制,从而获得准确的结果㊂每次测量记录一条以温度或时间为横坐标,热流速度差或热功率差为纵坐标的曲线,并且在恒定压力条件下,测量相变材料的熔融温度㊁结晶温度㊁熔融焓变和结晶焓变,以此来反映物质的热性能,从而确定相变过程中所需要的能量㊂为了更好地模拟实验过程,在试样和参比物容器下安装了2组补偿加热丝㊂当试样受热时,由于热效应产生的温差会影响补偿电热比,因此,采用差热放大电路和差动热量补偿放大器,将热量传递给补偿电热比,实现对热量变化的及时补偿,记录下两组补偿加热丝的热功率之差随时间的变化情况㊂丁恩勇等[13]发现,利用高纯金属(如铟)在DSC相变曲线上熔融峰前沿的斜率可以有效地消除相变温度测量中存在的误差,从而将实际测定误差降低到±0.1℃以内㊂差示扫描量热法属于破坏性测量,由于盛放样品的坩埚较小,测试时必须将薄膜样品刮成粉末或破碎,这样会导致膜层结构被破坏,从而影响测量结果的准确性㊂在薄膜相变温度方面,尺寸效应会对其产生影响,当前尚无有效解决办法㊂此外由于灵敏度的限制,通常需要样品重量超过几毫克,较薄的薄膜样品则无法进行测量㊂因此亟需一种无损㊁原位㊁稳定可靠的测量方法和装置㊂本文根据薄膜材料相变前后光学性质会发生突变这一特性,提出光功率反射法并在此原理上搭建了相关测量装置来测量薄膜材料的相变温度[14]㊂1 光功率法原理研究发现薄膜材料由非晶态向晶态转变的过程中,由于密度不同会在薄膜中引入较大的应力从而导致晶面间距减小㊂结晶度越高,晶粒尺寸越大,薄膜变得更加紧密,其透射率降低,反射率增高㊂以硫系相变材料为例,有序晶态和无序非晶态的光反射率的差异可高达80%[15-17]㊂本文搭建薄膜材料相变温度原位无损测量系统,当待测样品温度达到相变温度时,材料的光反射率会发生突变㊂定义反射光功率随温度变化最快点,即反射光功率P关于温度T一阶导数峰值点,所对应的温度即为所测量样品相变温度㊂图1 相变温度数据处理原理图Fig.1 Schematic diagram of phase changetemperature data processing设计如图2的光路图,激光器发射一束激光水平射入分束镜,激光通过分束镜后,调节光路,使激光准直射入样品上,反射激光通过分束镜向上,照射在光电探测器上,完成对反射光功率的探测㊂光电探测器接收待测样品反射光功率,利用光电二极管组成电路,将光信号转换为电信号,该信号通过计算机相关软件接收㊂同时计算机通过温度传感器接收待测样品表面热电偶的温度信号㊂温度信号㊁反射光功率信号通过时间这一中间变量联系起来,计算机通过函数变换处理接收到的温度信号和反射光功率信号,从而得到温度-反射光功率信号图像㊂图2 光功率法原理图Fig.2 Schematic diagram of the optical power method 2 系统设计2.1 高温加热炉利用SolidWorks软件设计如图3的炉腔结构,㊃49㊃北京化工大学学报(自然科学版) 2024年炉体材料为304不锈钢,其主要由竖直炉腔及水平炉腔组成㊂竖直炉腔为加热炉主体部分,其包含顶部玻璃窗,主要为满足后续光学实验的进行㊂炉腔门利用铰链连接,可以满足左右转动,在门上加装玻璃窗口以便于随时观察样品情况㊂在门右侧安装小阀门,用来控制炉内外气压㊂水平炉腔主要包含匣板阀㊁分子泵等装置㊂此外加热炉采用干泵和分子泵二级真空处理,最大真空度可以达到0.01Pa,以保证在加热过程中样品不会被氧化㊂图3 炉腔整体结构三维模型渲染图Fig.3 3D model rendering of the overall structureof the furnace cavity图4 竖立式加热腔Fig.4 Vertical heating chamber2.2 竖直加热炉腔竖立式加热相变腔采用电阻丝加热,金属电阻丝呈 之”形均匀分布在陶瓷管壁内,使用具有高热传导率的陶瓷材料作为腔体的导热材料,腔体直径为80mm,高180mm,两端不封闭,样品台放置于腔体中间,周围环境保持真空状态,如图4所示㊂同时为了测量真空加热炉内温度场的分布情况,采用多热电偶联合测温的方法,即在样品台处放置4个热电偶,通过温度控制模块(proportional integral deriv⁃ative,PID)实现高精度控温和测温㊂2.3 接触式样品台实验过程中热电偶没有与样品接触,导致热电偶所测量的温度并非样品实际温度,而是炉腔温度,从而造成较大的系统误差㊂因此对样品台进行改造升级,保证热电偶与样品接触㊂但热电偶与样品接触点压力不同,所测量的温度也会有较大差异,因此所设计的新样品台需要保证热电偶与样品每次接触时的压力一致㊂本文设计卡槽式样品台,如图5所示将热电偶放置在样品台下方的中心位置,利用热电偶测温点将样品顶在样品台顶部,这样就可以保证每次测温时,热电偶一定和样品接触,从而保证热电偶测量温度为样品实际温度㊂考虑到加工方便,将样品台分为上下两个部分,利用M1.6螺栓将上下两部分固定㊂样品台中心处留一矩形孔,使得入射激光作用在样品台中心处㊂这样设计可以保证热电偶与样品接触测温,同时保证热电偶测温区域即为激光光束直接作用区域㊂图5 样品台设计图Fig.5 Sample stage design样品台支撑部分包含支撑杆㊁支撑台㊁动杆㊁圆盘卡槽及底座部分㊂将热电偶放入陶瓷管内,利用顶丝将陶瓷管固定在可以上下移动的杆件中,本文称为动杆㊂支撑杆则是连接样品台㊁支撑台,以及底座的主体支撑部分㊂支撑杆上端设计M4螺纹与样品台底部连接,中间穿过支撑台部分,用侧顶丝将支撑杆与支撑台连接,下端部分留有M6外螺纹,将其穿过底座,用螺母将支撑杆与底座固定㊂支撑台则是支撑动杆的重要零部件㊂圆盘卡槽作用则是固定整个样品支撑部分,保证在加热时,样品台不发生晃动,接收掉落样品㊂在动杆上添加刻度线,刻度线刻㊃59㊃第2期 吴国栋等:硫系薄膜材料相变温度光功率测量法研究度距离为0.5mm,最大限度减少误差㊂移动动杆,侧面用M4螺栓通过支撑台将动杆固定㊂在测量同一种样品时,只需保证每次同一刻度线与支撑台上端面对齐,即可保证热电偶向上移动距离一致,从而保证热电偶每次和样品接触点的压力一致,如图6所示㊂图6 样品台实际加工图Fig.6 Actual processing diagram of the sample stage2.4 自制光电探测模块和普通二极管一样,光电二极管在反向电压作用下处于截止状态,但其在设计和制作上会使PN 结面积较大,以便可以更好地接收光信号㊂光电二极管在反向电压的电路中工作,无光照下,电阻无穷大,闭合电路中的电流很小,叫作暗电流㊂在光照射下,共价键上的束缚电子将会被光子传递能量,这将会使电子获得能量从而克服共价键上的束缚能量,从而产生电子-空穴对,这种现象被称为光生载流子㊂光的强度越大,光生载流子浓度越高,如果电路中外接负载,则负载两端的电压也就越大㊂根据上述原理设计如图7所示,电路包含直流电源(生产厂家:ZJXED,型号:S -120-12)㊁光电二极管㊁2000Ω定值电阻㊁NIUSB -6211数据采集卡㊂电源可以输出12V 的直流电源,将其和光电二极管反接,再串联一个定值电阻㊂在定值电阻两端并联一个采集卡,用于采集电阻两端电压值㊂在实验过程中调整光路,将样品反射激光照射到光电二极管中,此时二极管为导通工作状态,在直流电压作用下,闭合电路中产生电流,定值电阻两端产生电压㊂光照越强,闭合电路中电流越图7 光电探测器电路示意图Fig.7 Circuit diagram of the photodetector大,定值电阻两端电压也就越大㊂采集卡实时采集定值两端电压值,并传输给计算机保存,从而可以得到电压变化值,即反射光信号变化值㊂利用此装置,将光信号转换为电信号,并完成对反射光信号的采集㊂2.5 光路模块部分根据光功率法原理搭建了测量反射光信号的光学模块,如图8所示㊂表1是光功率模块主要元件及其相关信息㊂每次实验时激光器功率调节为30mW,光斑直径为900μm㊂图8 光学模块Fig.8 Optical module3 测试结果3.1 加热腔温度稳定性通过控制程序设置加热温度,通过4个热电偶对温度场的分布进行测量㊂分别设置加热至200℃和500℃,并对其保温以反映PID 控制能力,同时观察4个热电偶值,以判断炉腔内温度分布的均匀性㊂本次实验共测得40组数据,每次时间相隔两分钟记录㊂其测量结果如图9㊁图10所示,标准差为0.39和0.09,平均值为199.37℃㊁499.82℃,与设置值相差0.63℃㊁0.18℃,可以判断该仪器PID 控制能㊃69㊃北京化工大学学报(自然科学版) 2024年表1 光学模块主要元件组成及参数Table 1 The main components and parameters of the optical module名称型号参数数量/个厂家激光器MGL -Ⅲ-532-200波长532nm,功率0~200mW 1Thorlabs GSR 接杆GSR12-2杆直径12mm,长度50mm3飞创义达PL 压板PL -4长度为42mm1飞创义达分束镜CCM5-BO016立方体边长16mm,透反比50∶501Thorlabs 直流电源S -120-12电压12V,电流10A 1ZJXDE 采集卡USB -621116Inputs,16bit,250KS /s1NI 光电探测器自制1图9 200℃保温图像Fig.9 Image of insulation at 200℃图10 500℃保温图像Fig.10 Image of insulation at 500℃力良好;同时4组热电偶温度极其接近,可以判断炉腔内温度分布的均匀性良好,可以满足后续实验要求㊂3.2 两种薄膜材料相变温度利用图8装置测量10组典型硫系材料的相变温度,分别为膜厚为10nm 的GeTe 材料和膜厚为100nm 的Ge 2Sb 2Te 5材料㊂实验时绘制了以温度为横坐标,样品反射光强度为纵坐标的图像,再对其求导,导数最大值点所对应的温度即为材料的相变温度㊂测量结果分别为表2和表3㊂其中GeTe 第6次实验结果如图11,Ge 2Sb 2Te 5第2次实验结果如图12㊂两种材料10次实验相变温度结果统计图如图13和图14所示㊂表2 Ge 2Sb 2Te 510次实验结果Table 2 Results of 10experiments for Ge 2Sb 2Te 5实验次数相变温度/℃1143.02143.63142.34145.75145.56147.67147.88141.49146.210147.3平均值145.4标准偏差2.32表3 GeTe 10次实验结果Table 3 Results of 10experiments for GeTe实验次数相变温度/℃1210.62211.43211.94212.85213.16213.77214.18216.79211.910211.1平均值212.7标准偏差1.70㊃79㊃第2期 吴国栋等:硫系薄膜材料相变温度光功率测量法研究图11 GeTe 第6次实验结果图Fig.11 Plot of the results of the sixthexperiment forGeTe图12 Ge 2Sb 2Te 5第2次实验结果图Fig.12 Plot of the results of the secondGe 2Sb 2Te 5experiment图13 10次GeTe 样品相变温度实验结果Fig.13 10Experimental results of phase changetemperature of GeTe sample4 结论本文根据薄膜材料相变前后反射光发生突变这一性质,利用反射光功率测量薄膜材料相变温度㊂首先设计并加工出高温加热炉㊁设计了热电偶与样品接触式样品台,自制了光电探测模块并图14 10次Ge 2Sb 2Te 5样品相变温度实验结果Fig.14 10Experimental values of the phase changetemperature of the Ge 2Sb 2Te 5sample搭建了光学测量模块㊂其次探究了高温加热炉的温场均匀性,实验表明加热炉温场均匀性良好㊂最后利用此装置完成了对厚度为10nm GeTe 薄膜材料和厚度为100nm 的Ge 2Sb 2Te 5薄膜材料两种最典型硫系材料相变温度的测量㊂测其平均值分别为212.7℃和145.4℃,标准偏差分别为1.70和2.32,测量结果稳定性良好,符合实验预期要求㊂本文搭建的薄膜材料相变温度测量装置初步解决了对薄膜材料相变温度的无损㊁原位㊁稳定的测量要求㊂参考文献:[1] LARGE M C J,ARGYROS A.Impact of polymer materi⁃al properties on microstructured optical fibres [J].Fron⁃tiers of Optoelectronics in China,2010,3(1):99-102.[2] ZHAO D M,MAO H D,ZHENG C W,et al.The propa⁃gation properties and kurtosis parametric characteristics of Hermite⁃cosh⁃Gaussian beams passing through fractional Fourier transformation systems [J].Optik⁃International Journal for Light and Electron Optics,2005,116(10):461-468.[3] LONG P Y,TONG H,MIAO X S.Phonon propertiesand low thermal conductivity of phase change material with superlattice⁃like structure [J].Applied Physics Ex⁃press,2012,5(3):108-113.[4] FORIER R P,HIERNAUT J P,CAKENBERGHE J V.Influence of X⁃ray irradiation on a phase transition inCsCl thin films [J ].Physica Status Solidi,2010,18(2):K69-K72.[5] 徐时清,赵康,谷臣清,等.掺杂VO 2相变薄膜的电阻㊃89㊃北京化工大学学报(自然科学版) 2024年突变特性研究[J].硅酸盐学报,2002,30(5):637-640.XU S Q,ZHAO K,GU C Q,et al.Abrupt electrical re⁃sistance change of doped VO2phase transition thin films[J].Journal of The Chinese Ceramic Society,2002,30(5):637-640.(in Chinese)[6] KUMAR M,SINGH J P,CHAE K H,et al.Annealingeffect on phase transition and thermochromic properties ofVO2thin films[J].Superlattices and Microstructures,2020,106335:137-142.[7] 金森林,李硕,姚雅萱,等.薄膜材料相变温度测量方法介绍[J].计量科学与技术,2021,1:8-13.JIN S L,LI S,YAO Y X,et al.Introduction to phasechange temperature measurement method for thin film ma⁃terials[J].Metrology Science and Technology,2021,1:8-13.(in Chinese)[8] 余志高.薄膜材料相变温度的计量技术和标准物质研究[D].武汉:华中科技大学,2020.YU Z G.Metrology technology and reference materialstudy of phase transition temperature of thin film materials[D].Wuhan:Huazhong University of Science and Tech⁃nology,2020.(in Chinese)[9] GUO S,HUANG T,XU L P,et al.Observation of anintermediate phase in tungsten doped Sb2Te phase changethin films by temperature dependent measurements ofstructural,optical,and electronic properties[J].Journalof Physics D:Applied Physics,2016,49(26):265-271.[10]HERAND Y C,HSU Y S.Optical properties and crystal⁃lization characteristics of Ge⁃doped Sb70Te30phase changerecording film[J].Japanese Journal of Applied Physics,2014,42(2):804-808.[11]OHYANAGI T,KITAMURA M,KATO S,et al.XRD a⁃nalysis of TRAM composed from[Sb2Te3/GeTe]super⁃lattice film and its switching characteristics[J].Materi⁃als Research Society,2015,1729:41-45. [12]刑红立,刘欣伟,刘丽,等.D2000-MIBK/3HDI固化体系非等温DSC固化研究[J].电镀与涂饰,2019,38(20):1113-1119.XING H L,LIU X W,LIU L,et al.Non⁃isothermal DSCstudy on curing of D2000-MIBK/3HDI system[J].Electroplating&Finishing,2019,38(20):1113-1119.(in Chinese)[13]刘丽华,薛锋,丁恩勇.纤维素在离子液体中的均相热塑化改性[J].高分子材料科学与工程,2014,30(10):95-99.LIU L H,XUE F,DING E Y.Homogeneous thermoplas⁃ticization modification of cellulose in ionic liquids[J].Polymer Materials Science and Engineering,2014,30(10):95-99.(in Chinese)[14]童浩,黄开瑾,缪向水.超晶格相变薄膜材料的热导率研究[C]∥TFC’15全国薄膜技术学术研讨会.武汉,2015.TONG H,HUANG K J,MIAO X S.Thermal conductivi⁃ty study of superlattice phase change thin film materials[C]∥TFC’15National Symposium on Thin Film Tech⁃nology.Wuhan,2015.(in Chinese)[15]KUBO W,OGATA Y,FRAME J,et al.Polarization⁃de⁃pendent phase transition temperature in plasmonic thinfilms[J].Japanese Journal of Applied Physics,2020,59(5):52-56.[16]尹本浩,刘芬芬,王延.弹载电子设备相变热沉装置散热性能研究[J].电子机械工程,2015,31(6):6-10.YIN B H,LIU F F,WANG Y.Study on heat dissipationperformance of phase change material heat sink in missileelectronics[J].Electro⁃Mechanical Engineering,2015,31(6):6-10.(in Chinese)[17]JILTE R,AFZAL A,PANCHAL S.A novel battery ther⁃mal management system using nano-enhanced phasechange materials[J].Energy,2021,219:119564.㊃99㊃第2期 吴国栋等:硫系薄膜材料相变温度光功率测量法研究㊃001㊃北京化工大学学报(自然科学版) 2024年An optical power method for measuring the phase changetemperature of chalcogenide thin film materialsWU GuoDong1,2 JIN SenLin2,3 FU JunJie1 LI Shuo2,3 REN LingLing2,3 HE JianYun1*(1.College of Mechanical and Electrical Engineering,Beijing University of Chemical Technology,Beijing100029;2.Key Inncenter of Graphene Metrology and Standardization for State Market Regulation,National Institute of Metrology,Beijing100029;3.National Graphene Material Industrial Metrology Testing Center(Shenzhen),Shenzhen Institute forTechnology Innovation(NIM),Shenzhen518107,China)Abstract:Phase change temperature is a key parameter that determines the material properties of phase change films and has a huge impact on the data retention force,thermal stability and power consumption of phase change memory.Accurate measurements of phase change temperature are therefore very important.Currently,the main methods for measuring the phase transition temperature of thin film materials in China and elsewhere are variable temperature X⁃ray diffraction methods and differential scanning calorimetry.The former has limited measurement accuracy,while the latter is a destructive measurement method.Based on the fact that the optical properties of thin film materials will change greatly before and after a phase change,a new phase change temperature measuring in⁃strument for thin film materials has been designed.The hardware part includes a high⁃temperature heating furnace, a sample stage,and an optical path module.The temperature field uniformity of the high⁃temperature heating fur⁃nace cavity and the ability to control the temperature module were shown to meet the experimental requirements.Fi⁃nally,films of typical chalcogenide materials,GeTe and Ge2Sb2Te5,were studied using the device.The average phase change temperatures of10measurements were212.7℃and145.4℃,and the standard deviation was1.70 and2.32,respectively.The measurement results are stable and meet the expected requirements.Key words:phase change memory;phase change temperature;high temperature heating furnace;optical power;optical power measurement(责任编辑:李 蕾)。

SCI_期刊最新分区表-JCR-中科院-2015最新版

SCI_期刊最新分区表-JCR-中科院-2015最新版

阈值阈值3.4585225序号123456789101112131415161718192021222324252627282930 31 32NanoNanotechnology Biology andPROPHOTOVOLTAICSPROCEEDIEEEJOURNALPROGRESGROWTH ANDCHARACTERIZATION OFMATERIALSACM COMPUPolymCHEMISTRYACPROGRESSCIENCETREBIOTECHNOLOGYADVANCEMATERIALSNANOANNUALBIOMEDICAL ENGINEERINGLAB OINTERMATERIALS REVIEWSBIOTECADVANCESCURRENBIOTECHNOLOGYMaterBIOMAnnual Revand Biomolecular EngineeringSADVANCEANNUALMATERIALS RESEARCHNATURENature NNATURE BIEnergy EducTechnologyPROGRESSSCIENCEMATERIAENGINEERING R-REPORTSNanPROGRESAND COMBUSTION刊111111111111111111111111377分区111111111549-9634NANOMED-NANOTECHNOL1062-7995PROG PHOTOVOLTAICS0018-9219P IEEE1369-7021MATER TODAY0142-9612BIOMATERIALS0021-9517J CATAL1473-0197LAB CHIP0950-6608INT MATER REV0960-8974PROG CRYST GROWTH CH0360-0300ACM COMPUT SURV1558-3724POLYM REV1616-301X ADV FUNCT MATER0734-9750BIOTECHNOL ADV0897-4756CHEM MATER1947-5438ANNU REV CHEM BIOMOL1613-6810SMALL0958-1669CURR OPIN BIOTECH1531-7331ANNU REV MATER RES1936-0851ACS NANO0079-6816PROG SURF SCI0167-7799TRENDS BIOTECHNOLISSN刊名简称1476-1122NAT MATER1748-3387NAT NANOTECHNOL1523-9829ANNU REV BIOMED ENG1区2区期刊数期刊数3区阈值1.931 1.1121087-0156NAT BIOTECHNOL1301-8361ENERGY EDUC SCI TECH0079-6425PROG MATER SCI0935-9648ADV MATER0927-796X MAT SCI ENG R1748-0132NANO TODAY0360-1285PROG ENERG COMBUST1530-6984NANO LETT33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 5051 52 5354 55 56 57 58 59 6061 62CRITICALFOOD SCIENCE ANDCURRENSOLID STATE & MATERIALSIEEE TRANINDUSTRIAL ELECTRONICSMACROMOLCOMMUNICATIONSSOLAMATERIALS AND SOLARJOURNASOURCESINTERNATIOF PLASTICITYBiotechnolMIS QSIAM JouSciencesBIORTECHNOLOGYADVANCEMECHANICSELECTROCOMMUNICATIONSMOLECULAFOOD RESEARCHJOURNALCHEMISTRYMETABOLICSoActa BNaIEEE CoSurveys and TutorialsIEEE SIGNAMAGAZINECAIEEE TRANPATTERN ANALYSIS ANDMACHINE INTELLIGENCEMACRORENESUSTAINABLE ENERGYCRITICALBIOTECHNOLOGYNPG ABIOSEBIOELECTRONICSPROGRESELECTRONICSMRS1111111111111111111111111111110378-7753J POWER SOURCES1040-8398CRIT REV FOOD SCI1388-2481ELECTROCHEM COMMUN1359-0286CURR OPIN SOLID ST M0278-0046IEEE T IND ELECTRON1022-1336MACROMOL RAPID COMM0927-0248SOL ENERG MAT SOL C1613-4125MOL NUTR FOOD RES1744-683X SOFT MATTER1742-7061ACTA BIOMATER0960-8524BIORESOURCE TECHNOL0065-2156ADV APPL MECH1754-6834BIOTECHNOL BIOFUELS0276-7783MIS QUART1053-5888IEEE SIGNAL PROC MAG0008-6223CARBON2040-3364NANOSCALE1936-4954SIAM J IMAGING SCI0162-8828IEEE T PATTERN ANAL0024-9297MACROMOLECULES0749-6419INT J PLASTICITY1553-877X IEEE COMMUN SURV TUT0883-7694MRS BULL0959-9428J MATER CHEM1364-0321RENEW SUST ENERG REV0738-8551CRIT REV BIOTECHNOL1096-7176METAB ENG1884-4049NPG ASIA MATER0956-5663BIOSENS BIOELECTRON0079-6727PROG QUANT ELECTRON63 64 65 6667 68 69 70 71 7273 74 7576 77 7879 8081 82 83 8485 86878889 90 91 92 93 94SENSACTUATORS B-CHEMICALAPPLIED SREVIEWSFOOD CPlaJournal of NMicrofluidicsENIEEE JOSELECTED TOPICS INQUANTUM ELECTRONICSIEEE TRANFUZZY SYSTEMSBIOTECHBIOENGINEERINGIEEE TRANPOWER ELECTRONICSBIOMASSELECTROAnnual RScience and TechnologyNANOTEACM TRANGRAPHICSJOURNALSCIENCETRENDS IN& TECHNOLOGYIEEE JOSELECTED AREAS INORGANICACTA MINTERNATIOF COMPUTER VISIONIEEE TRANEVOLUTIONARYAPPLIEACS ApplInterfacesINTERNATIOF HYDROGEN ENERGYJOURNAL OMATERIALSMEDICAL IMHUMANINTERACTIONMicrobialInternationalSystems222211112222111211111111111111111741-2560J NEURAL ENG1613-4982MICROFLUID NANOFLUID0308-8146FOOD CHEM0360-5442ENERGY0016-2361FUEL1557-1955PLASMONICS0376-7388J MEMBRANE SCI0925-4005SENSOR ACTUAT B-CHEM1077-260X IEEE J SEL TOP QUANT1063-6706IEEE T FUZZY SYST0961-9534BIOMASS BIOENERG0570-4928APPL SPECTROSC REV1941-1413ANNU REV FOOD SCI T0957-4484NANOTECHNOLOGY0730-0301ACM T GRAPHIC0013-4686ELECTROCHIM ACTA0306-2619APPL ENERG1944-8244ACS APPL MATER INTER0006-3592BIOTECHNOL BIOENG0885-8993IEEE T POWER ELECTR0733-8716IEEE J SEL AREA COMM1566-1199ORG ELECTRON1361-8415MED IMAGE ANAL0737-0024HUM-COMPUT INTERACT0360-3199INT J HYDROGEN ENERG1359-6454ACTA MATER1475-2859MICROB CELL FACT0129-0657INT J NEURAL SYST0924-2244TRENDS FOOD SCI TECH0304-3894J HAZARD MATER0920-5691INT J COMPUT VISION1089-778X IEEE T EVOLUT COMPUT9596 979899100 101 102 103 104 105106 107108 109 110 111 112 113 114 115116 117 118119 120 121 122 123 124DENTALCOMPOSAND TECHNOLOGYJOUBIOTECHNOLOGYIEEE CIntelligence MagazineJournal ofBehavior of BiomedicalCOMBUSTIINTERNATIOF ROBOTICS RESEARCHENVIRMODELLING & SOFTWARESCIETECHNOLOGY OFFOOD HYDJournal of Cand ManagementIEEE TRANIMAGE PROCESSINGIEEE COMMAGAZINEFuJOUNANOPARTICLE RESEARCHMARINE BIOJournal of SINFORMATCORROSMICROMICROANALYSISINTERNATIOF NONLINEAR SCIENCESAND NUMERICALSIMULATIONFOOD MIBIOMMICRODEVICESAPPLIED MAND BIOTECHNOLOGYIEEE JOURSTATE CIRCUITSINTERNATIOF FOOD MICROBIOLOGYInternatioNanomedicineCHEMICALJOURNALCurrenBiomechanicMechanobiology2222222222222222222222222222221392-3730J CIV ENG MANAG1057-7149IEEE T IMAGE PROCESS0266-3538COMPOS SCI TECHNOL0168-1656J BIOTECHNOL1388-0764J NANOPART RES1436-2228MAR BIOTECHNOL0163-6804IEEE COMMUN MAG1556-603X IEEE COMPUT INTELL M1548-7660J STAT SOFTW0020-0255INFORM SCIENCES0109-5641DENT MATER1615-6846FUEL CELLS1431-9276MICROSC MICROANAL1751-6161J MECH BEHAV BIOMED0278-3649INT J ROBOT RES1364-8152ENVIRON MODELL SOFTW1178-2013INT J NANOMED0010-2180COMBUST FLAME1468-6996SCI TECHNOL ADV MAT0268-005X FOOD HYDROCOLLOID0010-938X CORROS SCI1385-8947CHEM ENG J1570-1646CURR PROTEOMICS1617-7959BIOMECH MODEL MECHAN0018-9200IEEE J SOLID-ST CIRC0168-1605INT J FOOD MICROBIOL0740-0020FOOD MICROBIOL1387-2176BIOMED MICRODEVICES0175-7598APPL MICROBIOL BIOT1565-1339INT J NONLIN SCI NUM125126127128129130131132133134135136137138139140141142143144145146147148149150151152153Science of ANanoscale IEEE ELECLETTERSIEEE TRANINFORMATION THEORY FUEL PTECHNOLOGY PROGRESSSCIENCES BiofIEEE TRANSOFTWARE ENGINEERINGFOODINTERNATIONAL COMPUTEAND INFRASTRUCTUREENGINEERING JOURNAL OMATERIALS RESEARCHInnovativeEmerging Technologies Journal of Nand Rehabilitation SCRIPTA IBM JORESEARCH AND JOURNAL JOURNALAND COMPATIBLE JOURNALLEARNING RESEARCHVLDB JOUSUPERCRITICAL FLUIDS IEEE TRANNEURAL NETWORKS IEEE TRANSYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS InternatioElectrochemical Science PROCEEDCOMBUSTION INSTITUTE DYES AN IEEE IndusMagazineSEPARPURIFICATION CEL GOLD 222222222222222222222222222220098-5589IEEE T SOFTWARE ENG1947-2935SCI ADV MATER0963-9969FOOD RES INT 1466-8564INNOV FOOD SCI EMERG 1743-0003J NEUROENG REHABIL 0376-0421PROG AEROSP SCI 1758-5082BIOFABRICATION 0741-3106IEEE ELECTR DEVICE L 0018-9448IEEE T INFORM THEORY 0004-5411J ACM0883-9115J BIOACT COMPAT POL 1359-6462SCRIPTA MATER 0378-3820FUEL PROCESS TECHNOL 1532-4435J MACH LEARN RES 1066-8888VLDB J1931-7573NANOSCALE RES LETT 0018-8646IBM J RES DEV0017-1557GOLD BULL 1093-9687COMPUT-AIDED CIV INF 0896-8446J SUPERCRIT FLUID 1045-9227IEEE T NEURAL NETWOR1540-7489P COMBUST INST 1549-3296J BIOMED MATER RES A 1932-4529IEEE IND ELECTRON M 1383-5866SEP PURIF TECHNOL0969-0239CELLULOSE 0143-7208DYES PIGMENTS 1083-4419IEEE T SYST MAN CY B 1452-3981INT J ELECTROCHEM SC154155 156157158 159 160161 162 163164 165166167168 169 170171 172173174 175 176 177178 179 180181 182 183 184COMPOSAPPLIED SCIENCE ANDMANUFACTURINGIEEE TRANENERGY CONVERSIONISPRS JPHOTOGRAMMETRY ANDREMOTE SENSINGIEEE PoMagazineBIOCENGINEERING JOURNALPATTERNIEEEEARTHQUJournal ofIEEE TRANSIGNAL PROCESSINGREACTIVEPOLYMERSENERGFOOD ANTOXICOLOGYIEEE TraRoboticsAUTIEEECOMPUTINGANNUALINFORMATION SCIENCEAND TECHNOLOGYIEEE INSYSTEMSJournal ofARTIFICIALADVABIOCHEMICALENGINEERING /BIOTECHNOLOGYINTEGRATEAIDED ENGINEERINGIEEE TRANGEOSCIENCE AND REMOTESENSINGIEEE TRANINTELLIGENTTRANSPORTATIONSYSTEMSRENEWAIEEE-ASMEON MECHATRONICSBIOTECOMPREHEIN FOOD SCIENCE ANDFOOD SAFETYBMC BIOTFOOD22222222222222222222222222222220887-0624ENERG FUEL1359-835X COMPOS PART A-APPL S0924-2716ISPRS J PHOTOGRAMM1540-7977IEEE POWER ENERGY M0272-1732IEEE MICRO0885-8969IEEE T ENERGY CONVER1570-8268J WEB SEMANT1053-587X IEEE T SIGNAL PROCES1381-5148REACT FUNCT POLYM8755-2930EARTHQ SPECTRA1069-2509INTEGR COMPUT-AID E0196-2892IEEE T GEOSCI REMOTE1369-703X BIOCHEM ENG J0031-3203PATTERN RECOGN1552-3098IEEE T ROBOT0005-1098AUTOMATICA1083-4435IEEE-ASME T MECH0736-6205BIOTECHNIQUES1524-9050IEEE T INTELL TRANSP1089-7801IEEE INTERNET COMPUT1942-0862MABS-AUSTIN1541-4337COMPR REV FOOD SCI F0278-6915FOOD CHEM TOXICOL0960-1481RENEW ENERG0956-7135FOOD CONTROL0066-4200ANNU REV INFORM SCI1556-4959J FIELD ROBOT0004-3702ARTIF INTELL1541-1672IEEE INTELL SYST0724-6145ADV BIOCHEM ENG BIOT1472-6750BMC BIOTECHNOL185 186187 188189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204205 206 207 208 209 210 211 212JOURNEUROPEAN CERAMICIEEE PhoINTERNAJOURNALPLANT FOONUTRITIONIEEE CONTMAGAZINECOMPUINTELLIGENCEIEEE TRANPOWER SYSTEMSLEBENWISSENSCHAFT UND-TECHNOLOGIE-FOODSCIENCE ANDJOURNAL OMICROBIOLOGY &BIOTECHNOLOGYCHEMICALSCIENCEEXPERT SAPPLICATIONSIEEE TRANELECTRON DEVICESJOURNAL OTECHNOLOGYJOURNASCIENCETRANSRESEARCH PART B-JOURNALTHERMODYNAMICSAPPLIED SOINFORMANAGEMENTJournal ofMateriaEngineering C-Materials forARCCOMPUTATIONALANNALS OENGINEERINGCEMENT ARESEARCHIEEE TRANMOBILE COMPUTINGCOMPUTEREnterprisSystemsJOURNAL OTECHNOLOGYJOURNELECTROCHEMICAL22222222222222222222222222221367-5435J IND MICROBIOL BIOT0009-2509CHEM ENG SCI0885-8950IEEE T POWER SYST0023-6438LWT-FOOD SCI TECHNOL0018-9383IEEE T ELECTRON DEV0955-2219J EUR CERAM SOC0958-6946INT DAIRY J0921-9668PLANT FOOD HUM NUTR1748-0221J INSTRUM1943-0655IEEE PHOTONICS J1066-033X IEEE CONTR SYST MAG0824-7935COMPUT INTELL-US0957-4174EXPERT SYST APPL0928-4931MAT SCI ENG C-MATER1134-3060ARCH COMPUT METHOD E0090-6964ANN BIOMED ENG1568-4946APPL SOFT COMPUT0378-7206INFORM MANAGE-AMSTER0733-5210J CEREAL SCI0191-2615TRANSPORT RES B-METH0360-1315COMPUT EDUC1751-7575ENTERP INF SYST-UK0008-8846CEMENT CONCRETE RES0021-9614J CHEM THERMODYN0268-3962J INF TECHNOL0013-4651J ELECTROCHEM SOC0733-8724J LIGHTWAVE TECHNOL1536-1233IEEE T MOBILE COMPUT213214 215 216217 218219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237238239 240INTERNATIOF COAL GEOLOGYJOURNAMERICAN SOCIETY FORINFORMATION SCIENCEAND TECHNOLOGYMATERIALAND PHYSICSULTRAMFUTURECOMPUTER SYSTEMSJOURNALINFORMATION SYSTEMSJOURNAL OCOMPOUNDSPhotonics anFundamentals andJOURNAL OMATERIALS RESEARCHPART B-APPLIEDBIOMATERIALSCOMPUTEAPPLIED MECHANICS ANDENGINEERINGJOURNALSCIENCE-MATERIALS INMEDICINEBiomedFOOD QPREFERENCEIEEE WCOMMUNICATIONSIEEE JourTopics in Signal ProcessingSOLAIEEE TRANWIRELESSCOMMUNICACMBioinIEEE TRANAUTOMATIC CONTROLJOURNENGINEERINGAUSTRALIAGRAPE AND WINEMEATIEEE PCOMPUTINGUSER MOUSER-ADAPTEDEVOLCOMPUTATIONIEEE TraAutonomous MentalBIOTECPROGRESS22222222222222222222222222221532-2882J AM SOC INF SCI TEC0925-8388J ALLOY COMPD1569-4410PHOTONIC NANOSTRUCT0167-739X FUTURE GENER COMP SY1552-4973J BIOMED MATER RES B0045-7825COMPUT METHOD APPL M0166-5162INT J COAL GEOL0963-8687J STRATEGIC INF SYST0018-9286IEEE T AUTOMAT CONTR0254-0584MATER CHEM PHYS0957-4530J MATER SCI-MATER M1748-6041BIOMED MATER1932-4553IEEE J-STSP0304-3991ULTRAMICROSCOPY1536-1276IEEE T WIREL COMMUN0001-0782COMMUN ACM1934-8630BIOINTERPHASES0038-092X SOL ENERGY0924-1868USER MODEL USER-ADAP1063-6560EVOL COMPUT0950-3293FOOD QUAL PREFER1536-1284IEEE WIREL COMMUN1322-7130AUST J GRAPE WINE R0309-1740MEAT SCI1536-1268IEEE PERVAS COMPUT1943-0604IEEE T AUTON MENT DE8756-7938BIOTECHNOL PROGR0260-8774J FOOD ENG241 242243 244 245 246 247 248 249250 251252 253 254255 256257 258259 260261262 263 264 265 266267 268269COMPUTERENGINEERINGJOUBIOMATERIALSENERGY COMANAGEMENTIEEE TraIndustrial InformaticsIEEE TRANBIOMEDICAL ENGINEERINGBUILDENVIRONMENTIEEE JOQUANTUM ELECTRONICSIEEECOMPOSITIEEE-ACM TON NETWORKINGMATERIAJOURNAL OINTERIEEE RAUTOMATION MAGAZINECHEMOMINTELLIGENT LABORATORYSYSTEMSINTERNATIOF HEAT AND MASSFLUID PHAIEEE TRANSYSTEMS MAN ANDCYBERNETICS PART A-SYSTEMS AND HUMANSAICHENEURAL CInternatioSemantic Web andIEEE TRANVISUALIZATION ANDCOMPUTER GRAPHICSDESAKNOWLINFORMATION SYSTEMSARTIFJOURNAMERICAN CERAMICJOUMICROMECHANICS ANDJOURNCOMPOSITION ANDDECISIOSYSTEMS222222222222222222222222222220933-2790J CRYPTOL0966-9795INTERMETALLICS0098-1354COMPUT CHEM ENG0196-8904ENERG CONVERS MANAGE1551-3203IEEE T IND INFORM0017-9310INT J HEAT MASS TRAN0378-3812FLUID PHASE EQUILIBR1070-9932IEEE ROBOT AUTOM MAG0018-9294IEEE T BIO-MED ENG1083-4427IEEE T SYST MAN CY A0001-1541AICHE J0885-3282J BIOMATER APPL0169-7439CHEMOMETR INTELL LAB1552-6283INT J SEMANT WEB INF0360-1323BUILD ENVIRON0890-8044IEEE NETWORK0263-8223COMPOS STRUCT0002-7820J AM CERAM SOC0018-9197IEEE J QUANTUM ELECT1063-6692IEEE ACM T NETWORK0167-577X MATER LETT0899-7667NEURAL COMPUT0960-1317J MICROMECH MICROENG0889-1575J FOOD COMPOS ANAL0167-9236DECIS SUPPORT SYST0219-1377KNOWL INF SYST1064-5462ARTIF LIFE1077-2626IEEE T VIS COMPUT GR0011-9164DESALINATION270271272 273 274 275 276 277 278 279 280 281 282 283284 285 286287288 289290 291 292ACM TransaNetworksHYDROMENERGY AMATERIALSENGINEERING A-STRUCTURAL MATERIALSPROPERTIES MICROSTFOOD ADCONTAMINANTSJOURNAL OEDUCATIONIEEE PTECHNOLOGY LETTERSIEEE ENGMEDICINE AND BIOLOGYMAGAZINEINDUENGINEERING CHEMISTRYEUROPEJOURNAL EINTERNATIOF MACHINE TOOLS &MANUFACTUREJOUBIOMATERIALS SCIENCE-NEURALJOURNALTECHNOLOGY ANDBIOTECHNOLOGYBaltic JourBridge EngineeringINTERNATIOF ELECTRICAL POWER &ENERGY SYSTEMSIEEE TRANCIRCUITS AND SYSTEMSFOR VIDEO TECHNOLOGYJOURNAL OELECTROCHEMISTRYJOUMANAGEMENTJOUMICROELECTROMECHANICAL SYSTEMSIEEE TRANSYSTEMS MAN ANDCYBERNETICS PART C-APPLICATIONS AND REJournal of thInformation SystemsMATERIALBULLETIN222222222222222222222221041-1135IEEE PHOTONIC TECH L0739-5175IEEE ENG MED BIOL0304-386X HYDROMETALLURGY0378-7788ENERG BUILDINGS0890-6955INT J MACH TOOL MANU0920-5063J BIOMAT SCI-POLYM E0888-5885IND ENG CHEM RES0921-5093MAT SCI ENG A-STRUCT0893-6080NEURAL NETWORKS0268-2575J CHEM TECHNOL BIOT1550-4859ACM T SENSOR NETWORK1292-8941EUR PHYS J E0025-5408MATER RES BULL1944-0049FOOD ADDIT CONTAM A1822-427X BALT J ROAD BRIDGE E0142-0615INT J ELEC POWER1432-8488J SOLID STATE ELECTR1069-4730J ENG EDUC1057-7157J MICROELECTROMECH S1094-6977IEEE T SYST MAN CY C1536-9323J ASSOC INF SYST0742-1222J MANAGE INFORM SYST1051-8215IEEE T CIRC SYST VID293294295 296297 298 299300 301 302303 304 305 306 307 308 309 310 311312 313314 315 316317 318 319 320 321BIOPROBIOSYSTEMSSTRUCTUMONITORING-ANINTERNATIONAL JOURNALTRANSRESEARCH PART A-POLICYMECHANIAND SIGNAL PROCESSINGMACROMATERIALS ANDCEMENTCOMPOSITESCOASTALIET NanoDATA MKNOWLEDGE DISCOVERYJournal of DiBIODEGIEEE TRANANTENNAS ANDMECHANICSSMART MSTRUCTURESSTRUCTUINTERNATIOF APPROXIMATEPOWDERJOURNAL OAND ENGINEERINGIEEE TRANNANOTECHNOLOGYELECTROCSOLID STATE LETTERSAPPLIEENGINEERINGSURFACETECHNOLOGYIEEE TRANKNOWLEDGE AND DATAENGINEERINGINTERNATIOF ENERGY RESEARCHCOMPULINGUISTICSINTERNATIOF ADHESION ANDINTERNATIFOR NUMERICAL METHODSIN ENGINEERINGFunctionalIEEE TRANMICROWAVE THEORY ANDTECHNIQUES333333333332222222222222222220965-8564TRANSPORT RES A-POL1438-7492MACROMOL MATER ENG0888-3270MECH SYST SIGNAL PR0888-613X INT J APPROX REASON0032-5910POWDER TECHNOL1615-7591BIOPROC BIOSYST ENG1475-9217STRUCT HEALTH MONIT0378-3839COAST ENG1751-8741IET NANOBIOTECHNOL1099-0062ELECTROCHEM SOLID ST1359-4311APPL THERM ENG1226-086X J IND ENG CHEM1384-5810DATA MIN KNOWL DISC0257-8972SURF COAT TECH1041-4347IEEE T KNOWL DATA EN0958-9465CEMENT CONCRETE COMP1536-125X IEEE T NANOTECHNOL0891-2017COMPUT LINGUIST1551-319X J DISP TECHNOL0018-926X IEEE T ANTENN PROPAG0167-6636MECH MATER1793-6047FUNCT MATER LETT0923-9820BIODEGRADATION0964-1726SMART MATER STRUCT0167-4730STRUCT SAF0363-907X INT J ENERG RES0018-9480IEEE T MICROW THEORY0143-7496INT J ADHES ADHES0029-5981INT J NUMER METH ENG322323 324325 326327 328 329 330 331332 333 334335 336337 338 339 340 341 342 343 344 345 346 347 348349 350 351CHEMIDEPOSITIONSENSACTUATORS A-PHYSICALMATERIAIEEE-ACMComputational Biology andBioinformaticsFoodPLASMA CPLASMA PROCESSINGOPTICALARTIFICAPPLIESCIENCEPROGRESCOATINGSIEEE TraInformation Forensics andJOURNALAND ENGINEERING DATAIEEE TraBiomedical Circuits andACM TRANCOMPUTER SYSTEMSENERGSYNTHEACM TransaCOMACM TRANMATHEMATICALADSORPTIOTHE INTERNATIONALADSORPTION SOCIETYDIAMONDMATERIALSTRANSRESEARCH PART E-LOGISTICS ANDTRANSPORTATION REVIEWTHIN SCOMPUTEIMAGE UNDERSTANDINGIEEE TRANMULTIMEDIAJOURNALCONTROLINTERNATIOF THERMAL SCIENCESJournal of FJOURNPROTECTIONCOMPOPERATIONS RESEARCH3333333333333333333333333333330925-3467OPT MATER0948-1907CHEM VAPOR DEPOS0261-3069MATER DESIGN0734-2071ACM T COMPUT SYST0924-4247SENSOR ACTUAT A-PHYS1545-5963IEEE ACM T COMPUT BI1876-4517FOOD SECUR0272-4324PLASMA CHEM PLASMA P0195-6574ENERG J0018-9162COMPUTER0098-3500ACM T MATH SOFTWARE0021-9568J CHEM ENG DATA1932-4545IEEE T BIOMED CIRC S0169-4332APPL SURF SCI0300-9440PROG ORG COAT1366-5545TRANSPORT RES E-LOG0040-6090THIN SOLID FILMS0929-5607ADSORPTION1556-6013IEEE T INF FOREN SEC1077-3142COMPUT VIS IMAGE UND1520-9210IEEE T MULTIMEDIA0160-564X ARTIF ORGANS0925-9635DIAM RELAT MATER0305-0548COMPUT OPER RES0379-6779SYNTHETIC MET0959-1524J PROCESS CONTR1290-0729INT J THERM SCI1559-1131ACM T WEB1756-4646J FUNCT FOODS0362-028X J FOOD PROTECT352 353354 355 356 357 358359 360361362 363 364 365366 367368 369370 371 372373 374375376377378379380381SIAM JOCOMPUTINGMACHINMEDICAL EPHYSICSGPS SINTERNATIOF DAMAGE MECHANICSBioinspiratioJOURNAMERICAN OIL CHEMISTSCOMPOSENGINEERINGFoodWJOURNALMATERIALSEMPIRICAENGINEERINGAPPLIEAAPGAPPLIED BAND BIOTECHNOLOGYFOOD ANBULLETININTERNATIOF HEAT AND FLUID FLOWSEIET RenGenerationPOLYMADVANCEDKNOWLESYSTEMSIEEE MICWIRELESS COMPONENTSLETTERSInformPOLYMIEEE TRANBROADCASTINGCHEMICALAND PROCESSINGINTERNATIOF CIRCUIT THEORY ANDAPPLICATIONSTRANSRESEARCH PART C-EMERGING TECHNOLOGIESJOURNFRANKLIN INSTITUTE-ENGINEERING ANDAPPLIED MATHEMATICSJOURNALSCIENCE3333333333333333333333333333331056-7895INT J DAMAGE MECH1748-3182BIOINSPIR BIOMIM1350-4533MED ENG PHYS0003-021X J AM OIL CHEM SOC1080-5370GPS SOLUT0142-727X INT J HEAT FLUID FL0097-5397SIAM J COMPUT1359-8368COMPOS PART B-ENG1557-1858FOOD BIOPHYS1382-3256EMPIR SOFTW ENG0885-6125MACH LEARN0149-1423AAPG BULL0273-2289APPL BIOCHEM BIOTECH0379-5721FOOD NUTR BULL1559-128X APPL OPTICS1566-2535INFORM FUSION0142-9418POLYM TEST0043-1648WEAR0022-3115J NUCL MATER1752-1416IET RENEW POWER GEN1042-7147POLYM ADVAN TECHNOL0098-9886INT J CIRC THEOR APP0968-090X TRANSPORT RES C-EMER0018-9316IEEE T BROADCAST0950-7051KNOWL-BASED SYST0016-0032J FRANKLIN I0022-2461J MATER SCI1424-8220SENSORS-BASEL0255-2701CHEM ENG PROCESS1531-1309IEEE MICROW WIREL CO382 383384 385 386387 388389390 391392 393 394395 396397 398399 400 401 402 403 404 405 406407 408IEEE TRANCIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORYAND APPLICATJOUMICROENCAPSULATIONDigesNanomaterials andMODESIMULATION IN MATERIALSSCIENCE ANDENGINEERINGJOURNALMANAGEMENTAd HoEUROPEALIPID SCIENCE ANDMacromolEngineeringCIRPMANUFACTURINGTECHNOLOGYJOURNALSPRAY TECHNOLOGYIEEE TRANDEVICE AND MATERIALSRELIABILITYACM TRANSOFTWARE ENGINEERINGAND METHODOLOGYJOURNSCIENCEAPPLIEDMATERIALS SCIENCE &COMPSTRUCTURESMEXPERIMEINTERNATIOF HUMAN-COMPUTERCurrentJOUMICROSCOPY-OXFORDIEEE TRANINFORMATIONTECHNOLOGY INBIOMEDICINEMETIEEE SIEEE TRANCONTROL SYSTEMSTECHNOLOGYANNUALCONTROLBIOTECHNOMACRORESEARCH3333333333333333333333333330265-2048J MICROENCAPSUL1530-4388IEEE T DEVICE MAT RE1049-331X ACM T SOFTW ENG METH0007-8506CIRP ANN-MANUF TECHN0022-1147J FOOD SCI0947-8396APPL PHYS A-MATER1549-8328IEEE T CIRCUITS-I1059-9630J THERM SPRAY TECHN1996-1944MATERIALS1842-3582DIG J NANOMATER BIOS1063-8016J DATABASE MANAGE1570-8705AD HOC NETW0740-7459IEEE SOFTWARE0965-0393MODEL SIMUL MATER SC1438-7697EUR J LIPID SCI TECH1862-832X MACROMOL REACT ENG0045-7949COMPUT STRUCT1063-6536IEEE T CONTR SYST T1367-5788ANNU REV CONTROL0141-5492BIOTECHNOL LETT1089-7771IEEE T INF TECHNOL B0026-1394METROLOGIA1071-5819INT J HUM-COMPUT ST1573-4137CURR NANOSCI0022-2720J MICROSC-OXFORD1598-5032MACROMOL RES0723-4864EXP FLUIDS409410 411412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430431432433 434 435 436TRIBOLOJOURNALINTELLIGENCE RESEARCHTRIINTERNATIONALMJournal of thof Chemical EngineersDATA & KENGINEERINGDRYING TCOMPUTFORUMMACROTHEORY AND SIMULATIONSCONTROLPRACTICENanoscaleThermophysical EngineeringMETALLUMATERIALSTRANSACTIONS A-PHYSICAL METALLURGYAND MATERIALAUTONOMAND MULTI-AGENTWINDINTERNATIOF REFRACTORY METALS& HARD MATERIALSIEEE TraComputational Intelligence andBIOLOGICAIEEE TransSpeech and LanguageJOURNAELECTROCHEMISTRYIEEE CGRAPHICS ANDJOURNAL OREASONINGCERAMICSLETTERMICROBIOLOGYIEEE TRANVEHICULAR TECHNOLOGYAPPLIED SIEEE TRANULTRASONICSFERROELECTRICS ANDFREQUENCY CONTROLINTERNATIOF ROBUST ANDNONLINEAR CONTROLINTERNATIOF FATIGUE33333333333333333333333333330737-3937DRY TECHNOL0167-7055COMPUT GRAPH FORUM1076-9757J ARTIF INTELL RES0301-679X TRIBOL INT1556-7265NANOSC MICROSC THERM1073-5623METALL MATER TRANS A1022-1344MACROMOL THEOR SIMUL0968-4328MICRON1387-2532AUTON AGENT MULTI-AG1095-4244WIND ENERGY1023-8883TRIBOL LETT0967-0661CONTROL ENG PRACT0018-9545IEEE T VEH TECHNOL1876-1070J TAIWAN INST CHEM E0263-4368INT J REFRACT MET H1943-068X IEEE T COMP INTEL AI0021-891X J APPL ELECTROCHEM0169-023X DATA KNOWL ENG0168-7433J AUTOM REASONING0272-8842CERAM INT0266-8254LETT APPL MICROBIOL0272-1716IEEE COMPUT GRAPH1049-8923INT J ROBUST NONLIN0142-1123INT J FATIGUE0340-1200BIOL CYBERN1558-7916IEEE T AUDIO SPEECH0003-7028APPL SPECTROSC0885-3010IEEE T ULTRASON FERR。

三维原子探针(3DAP)介绍

三维原子探针(3DAP)介绍

三维原子探针(3DAP)介绍
佚名
【期刊名称】《上海大学学报(自然科学版)》
【年(卷),期】2005(011)005
【摘要】材料的性能与显微组织结构密切有关,而显微组织结构又决定于材料的成分和加工工艺.在开发高性能先进材料的过程中,正确利用现代分析仪器对显微组织结构进行观察研究是非常重要的.三维原子探针(3DAP)是在场离子显微镜(FIM)基础上发展起来的一种分析技术,在FIM样品尖端叠加脉冲电压使原子电离并蒸发,用飞行时间质谱仪测定离子的质量/电荷比来确定该离子的种类,【总页数】1页(P517)
【正文语种】中文
【中图分类】TH74
【相关文献】
1.三维原子探针--从探测逐个原子来研究材料的分析仪器 [J], 周邦新
2.电压和激光模式对三维原子探针测试结果的影响 [J], 沈琴;王泽民;李慧;刘文庆
3.用三维原子探针研究压力容器模拟钢中富铜原子团簇的析出 [J], 朱娟娟;王伟;林民东;刘文庆;王均安;周邦新
4.三维原子探针表征10Ni3MnCuAl钢时效过程中析出相NiAl和Cu的变化规律[J], 韩永强;王宇斌;陈旋;吴晓春
5.一种基于改进型裙摆探针的三维原子力显微技术 [J], 张锐;吴森;肖莎莎;胡晓东;施玉书;傅星
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Three-Dimensional Grain Boundary Spectroscopy in Transparent High Power Ceramic Laser Materials

Mariola O. Ramirez1*, Jeffrey Wisdom2, Haifeng Li3, Yan Lin Aung4, Joseph Stitt1, Gary L. Messing1, V. Dierolf5, Zhiwen Liu3, Akio Ikesue4, Robert L. Byer2 and Venkatraman Gopalan1

1Department of Materials Science and Engineering and Materials Research Institute, Pennsylvania State University,

University Park, PA 16802 2 Department of Applied Physics, Ginzton Laboratory, Stanford University, Palo Alto, CA 94304

3 Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802

4 World-Lab Co., Ltd., Atsuta-ku, Nagoya 456-0023, Japan

5 Department of Physics, 16 Memorial Drive, Bethlehem, PA 18015, USA

*Corresponding author: mdr20@psu.edu

Abstract: Using confocal Raman and fluorescence spectroscopic imaging in 3-dimensions, we show direct evidence for Nd3+-Nd3+ interactions across grain boundaries (GBs) in Nd3+:YAG laser ceramics. It is clearly shown that Nd3+ segregation takes place at GBs leading to self-fluorescence quenching which affects a volume fraction as high as 20%. In addition, we show a clear trend of increasing spatial inhomogeneities in Nd3+ concentration when the doping levels exceeds 3 at%, which is not detected by standard spectrometry techniques. These results could point the way to further improvements in what is already an impressive class of ceramic laser materials.

©2007 Optical Society of America OCIS codes: (140.3390) Laser materials processing. (140.5680) Rare earth and transition metal solid-state lasers. (180.6900) Three-dimensional microscopy. (300.6360) Spectroscopy, laser.

References and links 1. A. Ikesue, Y.L. Aung, T. Taira, T. Kamimura, K. Yoshida and G.L Messing, “ Progress in Ceramic Lasers,” Ann. Rev. Mater. Res. 36, 397-429 (2006). 2. A. Ikesue, and Y.L. Aung, “Synthesis and Performance of Advanced Ceramic Lasers,” J. Am. Ceram. Soc. 89, 1936-1944 (2006). 3. J. Wisdom, M. Digonnet and R.L. Byer, “Ceramic Lasers: Ready for Action,” Photonic Spectra 38, 2-8 (2004). 4. G.A. Kumar, J. Lu, A.A. Kaminskii, K. Ueda, H. YAgi, T. YAnagitani and N.V. Unnikrishnan “Spectroscopic and Stimulated Emission Characteristics of Nd3+ in Transparent YAG Ceramics, ” IEEE J. Quantum Electron.40, 747-758 (2004). 5. V. Lupei, N. Pavel, and T. Taira, “1064 nm laser emission of highly doped Nd :Yttrium aluminum garnet under 885 nm diode laser pumping,” Appl. Phys. Lett. 80, 4309-4312, (2002). 6. A. Ikesue, K. Kamata, and K.Yoshida, “Effects of Neodymium Concentration on Optical Characteristics of Polycrystalline Nd:YAG Laser Materials,” J.Am. Ceram. Soc. 79, 1921-1926 (1996). 7. R. Kawai, Y. Miyasaka, K. Otsuka, T. Ohtomo and T. Narita, “Oscillation spectra and dynamics effects in highly-doped microchip Nd :YAG ceramic laser, ” Opt. Express, 12, 2293-2302 (2004). 8. K. Otsuka, T. Narita, Y. Miyasaka, C. Lin and J. Ko, “Nonlinear dynamics in thin-slice Nd :YAG ceramic lasers : Coupled local-mode laser model, ” Appl. Phys. Lett. 89, 081117 (2006). 9. T. Sekino, and Y. Sogabe, “Progress in the YAG Crystal Growth Technique for Solid State Lasers,” Rev. Laser Eng. 21, 827-831 (1995). 10. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc. 78, 1033-1040 (1995). 11. T. Taira, “RE3+ ion-doped YAG ceramic lasers,” IEEE J. Select Topcs Quantum Electron. 13, 789-809 (2007). 12. T. Taira, “Ceramic YAG lasers,” Comptes Rendus Phys. 8, 138-152 (2007). 13. S.H. Lee, S. Kochawattana, G.L. Messing, J. Q. Dumm, G. Quarles and V. Castillo, “Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramic,” J.Am. Ceram. Soc. 89, 1945-1950 (2006). 14. A. Ikesue and K. Yoshida, “Scattering in Polycrystalline Nd :YAG Lasers,” J.Am. Ceram. Soc. 81, 2194-2196 (1998). 15. S. Geller, L.D. Fullmer, P.B. Crandall and G.P. Espinosa, “Thermal-expansion of some garnets,” Mater. Res. Bull. 7, 1219-1224 (1972). 16. J.P.Hurrell, S.P. Porto, I.F. Chang, S.S. Mitra and R.P. Bauman, “Optical Phonons of Yttrium Aluminum Garnet,” Phys. Rev 173, 851-856 (1968). 17. K. Papagelis, G. Kanellis, S. Ves. And G.A. Kourouklis, “Lattice Dynamical Properties of the Rare Earth Aluminum Garnets (RE3Al5O12),” Phys. Stat. Sol (b) 233, 134-150 (2002). 18. Y.F. Chen, P.K. Lim, S.J. Lim, Y.J. Yang, L.J. Hu, H.P. Chiang and W.S. Tse, “Raman scattering investigation of Yb :YAG crystals grown by the Czochralski method,” J. Raman Spectrosc. 34, 882-885 (2003). 19. V. Lupei, A. Lupei, S. Georgescu, T. Taira, Y. Sato and A. Ikesue, “The effect of Nd concentration on the spectroscopic and emission decay properties of highly doped Nd :YAG ceramics,” Phys. Rev. B 64, 092102 (2001). 20. V. Lupei, A. Lupei, S. Georgescu , T. Taira, Y. Sato, S. Kurimira and A. Ikesue “High-resolution spectroscopy and emission decay in concentrated Nd :YAG ceramics,” J. Opt. Soc. Am. B 19, 360-368 (2002). 21. V. Lupei, A. Lupei, and A. Ikesue, “Single crystal and transparent ceramic Nd-doped oxide laser materials : a comparative spectroscopic investigation,” J. Alloys Compd. 380, 61-70 (2004). 22. U.Aschauer and P. Bowen, “Atomistic Modeling Study of Surface Segregation in Nd :YAG,” J.Am. Ceram. Soc. 89, 3812-3816 (2006). 23. J.W. Cahn, “The impurity drag effect in grain boundary motion,” Acta Met. 10 789-798 (1962). 24. S. F. Akhmetov, G. L. Akhmetova, G. A. Gazizova, V. S. Kovalenko, and T. F. Mirenkova, “Rare earth metal aluminum garnets,” Russ. J. Inorg. Chem., 22, 1613–1615, (1977). 25. A.E. Siegman, “Effects of Small-scale phase perturbations on laser oscillator beam quality,” IEEE J. Quantum Electron. 17, 334-337 (1977). 26. W.P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412-1423 (1988).

相关文档
最新文档