用蚂蚁算法解决多目标TSP问题

合集下载

基于蚁群算法的TSP问题求解

基于蚁群算法的TSP问题求解
度 : 表 示本 次循 环所 有 蚂 蚁在 路径 上 (,) 释放 的信 息 素浓 度 之和 。 △ iJ 所 3问题 求 解 3 1设 定 3 城市 的坐 标位 置 . O个
C= 32 l5 5 4 : 1 : : 9 9 6 1 : 4 0 1 : 4 6 1 : [ : : :4 7 3 1 0 8 7 : :0 2 1 :7 3 1 : 2 9
在运 动过 程 中, 据各 条路 径上 的信 息素 的浓度 决定转 移方 r, ) 根 N p ( 表示在 t ,
时刻 刻蚂蚁 k从送 货 点 i 移 到送 货点 J的概率 , 转 其计 算公 式为
3 2 参数 设置 : . 最大 迭代 次数 :C m x2 0 N a= 0 : 蚂蚁 个数 := 0 m3 : 信息 素重 要程 度 :lh = : Ap a l 启发 式因子 重要 程度 :ea 5 B t= ; 信 息 素蒸 发系 数 :h = . : Ro O 1 信 息 素增加 强度 系数 := 0 : Q 10 R b s 代表 最佳路 线 :- e t 代 表最 佳路线 的 长度 。 et L bs 3 3 编制 函数
1 1 1 ; 1 6 8: 1 7 l 2 7 4 2 0; 7 9 5 9 1 4: 0 7: 0 2 9 9 2 6 1 1 1 : 5 1 1 1 2 l 1 5 1 2 1
前 行 。与此 同时释 放 出与路线 长度 有关 的信 息素 。路径越 长 , 放 的激素浓 释 度 越低 。当后 来的蚂 蚁再 次碰 到这个 路 口的时 候 , 选择 激素 浓度 较高 路径 概 率 就会相 对较 大 。这样 形成 了一个 正反 馈 。最 优路 径上 的激 素浓度 越 来越 大 而 其它 的路 径上 激素 浓度 却会 随着 时 间的流 逝而 消减 。这样 , 整个 蚁群 最 终 会 找 出最 优 路 径 。

自适应蚁群算法在TSP问题中的应用

自适应蚁群算法在TSP问题中的应用

a it er htego a p i l ouina db s etr tb l n sig n y. bl yt sac lb l t lt n aeb t a it a dat e c . i o h o ma s o es i y n
Ke r s ACA; efa a t e p eo n ; i lt d a n a e r h n y wo d : s l d p i ; h r mo e s - v mu ae n e l a c i g s
Ab t a t A e a a t e i p o o e o e ta i o a n l o i m a i p e r g p e o i u n s r c : n w d p i s r p s d f rt r d t n l t g r h e s l a p a i r c co sa d v h i a a t y n sa i b h v o h n me o n t i p p r tt e a i r p e o n n i h s a e .An h r d t n lp rm ee f p e o n f a t c ln c d t e ta i o a a a t r o h r mo e o n o o y i ag rt m s s l a a t et e r s l r n ia e h tt e n w d p i e a tc l n l o i m a e tr lo i h i e f d p i . e u t a e id c td t a h e a a t n o o y ag rt - v h s v h h sa b t e
中 图分 类 号 :T 1 P8 文 献标 识 码 :A 文章 编 号 : 17— 3 42 1)10 5 -4 6 2 70 (0 10- 04- - 0

基于蚁群和粒子群优化的混合算法求解TSP问题

基于蚁群和粒子群优化的混合算法求解TSP问题


0 0
维普资讯 | || i t l l l i
20年第 2 08 期
*I -N 氇 | ≈强罄 。| 辣毫警毪琵 矗 曩c 一… 毫薯 I 曩臻 氆 : 鬻 § 晕%毫 胀 誊 誊 薯 E 强 辛薯 毪囊一 鼍誊强 琵 懿棼毒 蜥
T P是典型的组合优化问题 。若用 S 】 穷举 搜索算 法 , 则需 考 虑所 有可 能的 情 况。找 出所 有的路径 ,再对其 进行 比较 , 来找到最佳的路径。这种方法随着城市数 F 的 上升算法 时 间随 n按指数规律 增长 , I 即存在所谓的指数爆炸问题。事实上 ,在
n个 城 市 的 TS P问 题 中 ,一 条有 效 的路 径 可 以 看 成 n个 城 市 的一 种 排 列 。n 个城 市 有 n!种排列 ,注意到两个顺序完全相反 的 方 案其 行 程 相 同 , 而对 一种 排 列 从 哪 个
w s u f r r t s le T P r be . H ui i a p t o wa d O ov S po lm e rs c t
有相 当快的逼近最优解的速度 ,可以有效 进化 的进行 ,t abU 中的 元素 不断加 , 地对系统的参数进 行优化。因此本文提出 alwe k 0 1…,—1一 妇b 。 l d:{ ,, 0 } o u表示蚂蚁k 了一种基于蚁 群优 化和粒子群优化的混合 下 一步允许 选择 的城市 ; n.是 能见度 , . 算 法 求 ,并 将 此 用 于 解 决 旅 行 商 问 题 取路径(,) ij长度的倒数 ;O, D调节信息 r . (r vl g S ls n P o l T a e n aema rbe i m,T P ,得 素浓度 S与 能见度 n的相对重要程度。随 S) 到 了令人满 意的结 果 。 着时 间的推移 ,以前 留在各条路径 上的信 息 素 逐 渐 消 失 ,用 参 数 1 p 示 信 息 素 一 表 1 S T P问题 的描述

蚁群算法实现TSP

蚁群算法实现TSP

蚁群算法实现TSP蚁群算法(Ant Colony Optimization, ACO)是一种模拟蚂蚁觅食行为的算法,常被用来解决旅行商问题(Traveling Salesman Problem, TSP)。

旅行商问题是一个经典的组合优化问题,目标是找到一条最短的路径,使得旅行商能够访问所有城市并返回起始城市。

蚁群算法的基本思想是模拟蚂蚁寻找食物的行为,每只蚂蚁在过程中释放信息素,并根据信息素浓度和距离选择下一个城市。

信息素的释放和更新规则是蚁群算法的核心。

蚁群算法的实现步骤如下:1.初始化蚁群:随机放置一定数量的蚂蚁在不同城市。

2.计算路径长度:根据蚂蚁的选择规则,计算每只蚂蚁的路径长度。

3.更新信息素:根据路径长度,更新城市之间的信息素浓度。

4.更新蚂蚁的选择规则:根据信息素浓度和距离,更新蚂蚁的选择规则。

5.重复步骤2-4,直到达到指定的迭代次数或找到最优解。

在蚂蚁的选择规则中,信息素浓度和距离是两个重要的因素。

信息素浓度越高,蚂蚁越有可能选择该路径;距离越短,蚂蚁越倾向于选择该路径。

为了平衡这两个因素,通常使用一个参数来调节它们的权重。

在更新信息素时,一般采用全局信息素更新和局部信息素更新两种方式。

全局信息素更新是将所有蚂蚁路径上的信息素浓度进行更新,以加强优质路径的信息素浓度。

局部信息素更新是只更新最优路径上的信息素浓度,以加强当前最优路径的信息素浓度。

蚁群算法的优点是能够找到近似最优解,并且具有较好的鲁棒性和适应性。

然而,蚁群算法也存在一些问题,例如易陷入局部最优解、收敛速度较慢等。

针对TSP问题,蚁群算法的实现可以按照上述步骤进行。

具体来说,可以通过以下几个方面的设计来优化算法的性能:1.蚂蚁的选择规则:可以采用轮盘赌选择法,即根据信息素浓度和距离计算每个城市被选择的概率,然后根据概率选择下一个城市。

2.信息素更新:可以采用全局信息素更新和局部信息素更新相结合的方式,以平衡全局和局部的效果。

改进的蚁群算法及其在TSP问题中的应用

改进的蚁群算法及其在TSP问题中的应用
Absr c t a t: As a t c ln p i z to s a y t al n o t e o a p i l h i lo ih tb o e n o o y o tmiain i e s o fl t h lc lo tma ,t s a g rt m a o s t i h o t lp t pi ah,u d t s h r mo e y h ie, nd h n e rhe g i . Th s a r uc e su l ov s ma p ae p e o n b c o c a t e s a c s a a n i p pe s c s f l s le y Ei .s r b e l 1 tp p o lm.Th x rme tlr s l ho t a h e ag rt m sfa i e a d ef ci e S e e pe i n a e ut s w tt e n w o h i e sbl n f tv . s h l i e Ke r s: a tc lny o i z t n;o tma a ;ta ei ae ma r b e y wo d n oo pt miai o pi l p t h rv l ng s e n oo y o tm ia in a d i p l a i n i P m r v d a tc l n p i z to n t a p i t n TS s c o
YE Ti g tn .S n .i g UN . n He mi g 。XI W e E i
0 引言
蚁 群 优 化 算 法 ( n cln pi ztn 简 称 at o yot ai , o mi o A O) 二 十 世 纪 九 十 年 代 由 意 大 利 学 者 Mac C 是 ro Dro oi 等人 在 蚂蚁觅食 行为 的启 发下 提 出 的一 种元 g 启发 式算法 , 要针 对 解 决离 散 的组合 优 化 问 。蚁 主

蚁群算法解决TSP问题实验报告--

蚁群算法解决TSP问题实验报告--

智能系统实验报告一、实验题目TSP问题的蚁群算法实现二、实验目的1熟悉和掌握蚁群算法的基本概念和基本思想;2加深对蚁群算法的理解,理解和掌握蚁群算法的各个操作;3理解和掌握利用遗传算法进行问题求解的基本技能。

三、实验原理1、算法来源蚁群算法的基本原理来源于自然界蚂蚁觅食的最短路径原理,根据昆虫学家的观察,发现自然界的蚂蚁虽然视觉不发达,但它可以在没有任何提示的情况下找到从食物源到巢穴的最短路径,并且能在环境发生变化(如原有路径上有了障碍物)后,自适应地搜索新的最佳路径。

2、单个蚂蚁寻找路径正反馈:单个的蚂蚁为了避免自己迷路,它在爬行时,同时也会释放一种特殊的分泌物——信息素(Pheromone),而且它也能觉察到一定范围内的其它蚂蚁所分泌的信息素,并由此影响它自己的行为。

当一条路上的信息素越来越多(当然,随着时间的推移会逐渐减弱),后来的蚂蚁选择这条路径的概率也就越来越大,从而进一步增加了该路径的信息素浓度,这种选择过程称为蚂蚁的自催化过程。

多样性:同时为了保证蚂蚁在觅食的时候不至走进死胡同而无限循环,蚂蚁在寻找路径的过程中,需要有一定的随机性,虽然在觅食的过程中会根据信息素的浓度去觅食,但是有时候也有判断不准,环境影响等其他很多种情况,还有最终要的一点就是当前信息素浓度大的路径并不一定是最短的路径,需要不断的去修正,多样性保证了系统的创新能力。

正是这两点小心翼翼的巧妙结合才使得蚁群的智能行为涌现出来。

3、具体实现需要解决的两个首要问题(1)如何实现单个蚂蚁寻路的过程(2)如何实现信息素浓度的更新四、蚁群算法解决TSP 问题1、 相关变量的表示和计算(1)n 个城市相互之间的几何距离,i j d(2),t i j τ表示在t 时刻在城市i和j路线上残留的信息量,初始值为一个常数C (3)参数ρ表示信息量的保留度(4)在t+1时刻路径i ,j 上的信息量更新公式如下所示11,,,1,,1t t t i j i j i j mt k i ji jk τρττττ+++==+∆∆=∆∑,k 0k k i jQ L τ⎧⎫⎪⎪∆=⎨⎬⎪⎪⎩⎭第只蚂蚁经过i,j 时当不经过时 (5)i,j η表示i 和j 之间路径长度的反比与信息素量相除得到信息素浓度i,j ,1i jd η=(6)每个蚂蚁在当前节点选择可走的下一个点的时候有一个转移概率概率,信息素浓度越高,概率越大,,,s ,s,0k a i j i j k a k i i i j s allowed j allowed P ββτητη∈⎧⎫∈⎪⎪⎪⎪=⎨⎬⎪⎪⎪⎪⎩⎭∑其他(7),αβ参数用来实现对信息素浓度的调节,以实现对算法的优化。

蚁群算法(ACO)解决TSP问题

蚁群算法(ACO)解决TSP问题

蚁群算法(ACO)解决TSP问题⼀、蚁群算法1.基本原理蚁群算法(Ant Colony Optimization,ACO)是⼀种基于种群寻优的启发式搜索算法,有意⼤利学者M.Dorigo等⼈于1991年⾸先提出。

该算法受到⾃然界真实蚁群集体在觅⾷过程中⾏为的启发,利⽤真实蚁群通过个体间的信息传递、搜索从蚁⽳到⾷物间的最短路径等集体寻优特征,来解决⼀些离散系统优化中的困难问题。

经过观察发现,蚂蚁在寻找⾷物的过程中,会在它所经过的路径上留下⼀种被称为信息素的化学物质,信息素能够沉积在路径上,并且随着时间逐步挥发。

在蚂蚁的觅⾷过程中,同⼀蚁群中的其他蚂蚁能够感知到这种物质的存在及其强度,后续的蚂蚁会根据信息素浓度的⾼低来选择⾃⼰的⾏动⽅向,蚂蚁总会倾向于向信息素浓度⾼的⽅向⾏进,⽽蚂蚁在⾏进过程中留下的信息素⼜会对原有的信息素浓度予以加强,因此,经过蚂蚁越多的路径上的信息素浓度会越强,⽽后续的蚂蚁选择该路径的可能性就越⼤。

通常在单位时间内,越短的路径会被越多的蚂蚁所访问,该路径上的信息素强度也越来越强,因此,后续的蚂蚁选择该短路径的概率也就越⼤。

经过⼀段时间的搜索后,所有的蚂蚁都将选择这条最短的路径,也就是说,当蚁巢与⾷物之间存在多条路径时,整个蚁群能够通过搜索蚂蚁个体留下的信息素痕迹,寻找到蚁巢和⾷物之间的最短路径。

蚁群算法中,蚂蚁个体作为每⼀个优化问题的可⾏解。

⾸先随机⽣成初始种群,包括确定解的个数、信息素挥发系数、构造解的结构等。

然后构造蚁群算法所特有的信息素矩阵每只妈蚁执⾏蚂蚊移动算⼦后,对整个群体的蚂蚁做⼀评价,记录最优的蚂蚁。

之后算法根据信息素更新算⼦更新信息素矩阵,⾄此种群的⼀次选代过程完成。

整个蚂蚁群体执⾏⼀定次数的选代后退出循环、输出最优解。

2.术语介绍(1)蚂蚁个体。

每只蚂蚁称为⼀个单独的个体,在算法中作为⼀个问题的解。

(2)蚂蚁群体。

⼀定数量的蚂蚁个体组合在⼀起构成⼀个群体,蚂蚁是群体的基本单位。

蚁群算法旅行商问题代码

蚁群算法旅行商问题代码

蚁群算法旅行商问题代码蚁群算法(Ant Colony Optimization, ACO)是一种基于蚁群行为的优化算法,常用于解决组合优化问题,如旅行商问题(Travelling Salesman Problem, TSP)。

下面是一个简单的Python 实现,使用蚁群算法解决TSP问题:```pythonimport numpy as npclass AntColony:def __init__(self, distances, n_ants, n_best, n_iteration, decay, alpha=1, beta=2): """Args:distances (2D numpy.array): Square matrix of distances. Diagonal is assumed to be np.inf.n_ants (int): Number of ants running per iterationn_best (int): Number of best ants who deposit pheromonen_iteration (int): Number of iterationsdecay (float): Rate it which pheromone decays. The pheromone value is multiplied by decay, so 0.95 will lead to decay, 0.5 to much faster decay.alpha (int or float): exponenet on pheromone, higher alpha gives pheromone more weight. Default=1beta (int or float): exponent on distance, higher beta give distance more weight. Default=2"""self.distances = distancesself.pheromone = np.ones(self.distances.shape) / len(distances)self.all_inds = range(len(distances))self.all_paths = self.gen_all_paths()self.n_ants = n_antsself.n_best = n_bestself.n_iteration = n_iterationself.decay = decayself.alpha = alphaself.beta = betadef gen_all_paths(self):all_paths = []for i in self.all_inds:rest = set(self.all_inds)current = []rest.remove(i)for _ in range(len(self.distances)-1):to_visit = list(rest)probs = self.pheromone[i, to_visit]**self.alpha * ((1.0 / self.distances[i, to_visit])**self.beta)probs /= sum(probs)next_ind = np.random.choice(to_visit, p=probs)current.append((i, next_ind))i = next_indrest.remove(next_ind)all_paths.append(current)return all_pathsdef gen_path_dist(self, path):total_dist = 0for ant in path:total_dist += self.distances[ant]return total_distdef run(self):all_time_best_path = Noneall_time_best_dist = np.inffor i in range(self.n_iteration):all_paths = self.gen_all_paths()self.spread_pheronome(all_paths, self.n_best, self.distances)self.pheromone * self.decayif self.gen_path_dist(all_paths[0]) < all_time_best_dist:all_time_best_path = all_paths[0]all_time_best_dist = self.gen_path_dist(all_paths[0])self.global_best_path_ = all_time_best_pathself.global_best_dist_ = all_time_best_distreturn all_time_best_pathdef spread_pheronome(self, all_paths, n_best, dists):sorted_paths = sorted(all_paths, key=lambda x: self.gen_path_dist(x))for path in sorted_paths[:n_best]:for move in path:self.pheromone[move] += 1.0 / dists[move]# Example Usage:# Define distances between cities (replace this with your own data)distances = np.array([[np.inf, 2, 2, 5, 7],[2, np.inf, 4, 8, 2],[2, 4, np.inf, 1, 3],[5, 8, 1, np.inf, 2],[7, 2, 3, 2, np.inf]])# Create an AntColony instanceant_colony = AntColony(distances, n_ants=5, n_best=2, n_iteration=100, decay=0.95, alpha=1, beta=2)# Run the algorithmbest_path = ant_colony.run()print("Best Path:", best_path)print("Best Distance:", ant_colony.global_best_dist_)```这个示例中,`distances` 表示城市之间的距离矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档