分式及分式方程精典练习题分析

合集下载

难点详解北师大版八年级数学下册第五章分式与分式方程专题训练练习题(含详解)

难点详解北师大版八年级数学下册第五章分式与分式方程专题训练练习题(含详解)

北师大版八年级数学下册第五章分式与分式方程专题训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.求前一小时的行驶速度.设前一小时的行驶速度为x km/h ,则可列方程( )A .180218013 1.5x x-=+ B .180218013 1.5x x +=+ C .180218013 1.5x x x --=+ D .180218013 1.5x x x ++=+ 2、飞沫一般认为是直径大于5微米(5微米=0.000005米)的含水颗粒.飞沫传播是新型冠状病毒的主要传播途径之一,日常面对面说话、咳嗽、打喷嚏都可能造成飞沫传播.因此有效的预防措施是戴口罩并尽量与他人保持1米以上社交距离.将0.000005用科学记数法表示应为( ).A .50.510-⨯B .60.510-⨯C .5510-⨯D .6510-⨯3、若把分式2x y xy+的x ,y 同时扩大2倍,则分式的值为( ) A .扩大为原来的2倍 B .缩小为原来的14C .不变D .缩小为原来的12 4、如果分式31x x -+的值等于0,那么x 的值是( )A .1x =-B .3x =C .1x ≥-D .3x ≠ 5、若关于x 的方程11ax x =+的解大于0,则a 的取值范围是( ) A .1a >B .1a <C .1a >-D .1a <- 6、分式a a b--可变形为( ) A .a a b -- B .+a a b C .a a b -- D .+a a b- 7、科学家借助电子显微镜发现新型冠状病毒的平均直径约为0.000000125米,则数据0.000000125用科学记数法表示正确的是( )A .1.25×108B .1.25×10﹣8C .1.25×107D .1.25×10﹣78、下列约分正确的是( )A .632x x x = B .22x y x y x y +=++ C .+=+x m x y m y D .1555262-=--b a a b 9、x 满足什么条件时分式211x x --有意义( ). A .1x ≠ B .1x ≠- C .0x ≠ D .1x ≠±10、下列是最简分式的是( )A .26m nB .633mn m n +C .22m nD .2m n mn第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、为了了解某池塘里背蛙的数量,先从池塘里捕捞30只青蛙,作上标记后放回池塘,经过一段吋间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,估计这个池塘里大约有 _____只青蛙.2、若分式521x x -+的值为0,则x =________.3、已知分式211xx-+的值为0,那么x的值是_____________.4、甲做360个零件与乙做480个零件所用的时间相同,已知两人每天共做140个零件,若设甲每天做x个零件,则可列方程______.5、若分式1212xx+-有意义,则x的取值范围是 _____.三、解答题(5小题,每小题10分,共计50分)1、2022年元旦及春节来临之际,我市对城市亮化工程招标,按照甲、乙两个工程队的投标书,甲、乙两队施工一天的工程费分别为1.5万元和1.2万元,根据甲乙两队的投标书测算,应有三种施工方案:①甲队单独做这项工程刚好如期完成.②乙队单独做这项工程,要比规定日期多3天完成.③若甲、乙两队合作2天后,余下的工程由乙队单独做,也正好如期完成.(1)求规定如期完成的天数.(2)在确保如期完成的情况下,你认为以上三种方案哪种方案最节省工程款;通过计算说明理由.2、(1)计算:[(x+y)2﹣(x﹣y)2]÷(2xy)(2)化简求值:2281661122x xx x x-+⎛⎫÷-+⎪++⎝⎭,其中x选取﹣2,0,1,4中的一个合适的数.3、计算或因式分解:(1)计算:(a2﹣4)2aa+÷;(2)因式分解:a2(x﹣y)+b2(y﹣x).4、解分式方程:1312xx x-+=+.5、星期六,小明与妈妈到离家12km的张家界市博物馆参观.小明从家骑自行车先走,1h后妈妈骑摩托车从家出发,沿相同路线前往博物馆,结果他们同时到达.已知妈妈骑摩托车的平均速度是小明骑自行车平均速度的3倍,求妈妈骑摩托车的平均速度.-参考答案-一、单选题1、C【分析】根据原计划的时间=实际所用时间+提前的时间可以列出相应的分式方程.【详解】解:设前一小时的行驶速度为x km/h,由题意可得:18040180160 1.5xx x--=+,即180218013 1.5xx x--=+,故选:C.【点睛】本题主要是考查了列分式方程,熟练地根据题意找到等量关系,通过等量关系列出对应的分式方程,这是解题的关键.2、D【分析】将0.000005写成a×10n(1<|a|<10,n为整数)的形式即可.【详解】解:0.000005=5×10-6.【点睛】本题主要考查了科学记数法,将原数写成a ×10n (1<|a |<10,n 为整数)的形式,确定a 、n 的值成为解答本题的关键.3、D【分析】分别用2x 和2y 去代换原分式中的x 和y ,利用分式的基本性质化简即可.【详解】 解:根据题意得:22222x y x y +⨯⋅=2()8x y xy +=1=422x y x y xy xy++⨯, 即把分式2x y xy+的x ,y 同时扩大2倍,则分式的值缩小为原来的12, 故选:D .【点睛】本题主要考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.4、B【分析】根据分式的值为0的条件可得30,10x x -=-≠,即可求得答案【详解】 解:分式31x x -+的值等于0, ∴30,10x x -=-≠3x ∴=【点睛】本题考查了分式的值为0的条件,解题的关键是理解分式的值为0的条件是分子为0,分母不为0.5、A【分析】先去分母,求出分式方程的解,进而得到关于a 的不等式组,即可求解.【详解】 解:由11ax x =+,解得:11x a =-, ∴101a >-且a -1≠0, ∴1a >,故选A .【点睛】本题主要考查解分式方程以及不等式,掌握去分母,把分式方程化为整式方程,是解题的关键.6、C【分析】根据分式的基本性质进行分析判断.【详解】 解:==+a a a a b a b a b-----, 故C 的变形符合题意,A 、B 和D 的变形不符合题意,故答案为:C .【点睛】本题考查分式的基本性质,理解分式的基本性质(分式的分子,分母同时乘以或除以同一个不为零的数或式子,分式仍然成立)是解题关键.7、D【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于1时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:70.000000125 1.2510-=⨯故选D .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.8、D【分析】根据分式分基本性质分式分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,可得答案.【详解】解:A 、分式分基本性质分式分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,642x x x=,故A 错误; B 、分式分基本性质分式分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,原式=22x y x y++,故B 错误; C 、分式分基本性质分式分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,不满足分式基本性质,故C 错误;D 、分式分基本性质分式分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,()()53155526232b a b a a b b a --==----,故D 正确; 故选:D .【点睛】本题考查了分式的基本性质,分式分基本性质分式分子分母都乘以(或除以)同一个不为零的整式,分式的值不变.9、D【分析】直接利用分式有意义的条件解答即可.【详解】 解:要使分式211x x --有意义, ∴210x -≠,解得:1x ≠±,故选:D【点睛】本题考查了分式有意义的条件,熟练掌握分式有意义的条件—分母不等于零,是解题的关键.10、C【详解】解:A 、263m m n n =,不是最简分式,此项不符题意; B 、6233mn mn m n m n=++,不是最简分式,此项不符题意; C 、22m n是最简分式,此项符合题意;D、2m nmmn=,不是最简分式,此项不符题意;故选:C.【点睛】本题考查了最简分式,熟记最简分式的定义(分子与分母没有公因式的分式,叫做最简分式)是解题关键.二、填空题1、300【分析】设池塘大约有x只,根据题意,得到30440x=,计算即可.【详解】设池塘大约有x只,根据题意,得到30440x=,解得x=300,经检验,x=300是原方程的根,故答案为:300.【点睛】本题考查了分式方程的应用,正确列出分式方程是解题的关键.2、5【分析】求出分式的分子等于0且分母不为0时的x的值即可.【详解】解:由题意得:50 210xx-=⎧⎨+≠⎩,解得5x=,故答案为:5.【点睛】本题考查了分式值为零的条件,解答此题的关键是要明确:分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少.3、1【分析】根据分式值为0的条件:分子为0,分母不为0,进行求解即可.【详解】解:∵分式211xx-+的值为0,∴211xx-=+,∴21010xx⎧-=⎨+≠⎩,∴1x=,故答案为:1.【点睛】本题主要考查了分式值为0的条件,熟知分式值为0的条件是解题的关键.4、360480140x x=-【分析】设甲每天做x 个零件,则乙每天做()140x - 个零件,根据“甲做360个零件与乙做480个零件所用的时间相同,”列出方程,即可求解.【详解】解:设甲每天做x 个零件,则乙每天做()140x - 个零件,根据题意得:360480140x x=- . 故答案为:360480140x x=- 【点睛】 本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.5、12x ≠【分析】根据分式有意义的条件,即可求解.【详解】解:根据题意得:120x -≠ , 解得:12x ≠ . 故答案为:12x ≠【点睛】本题主要考查了分式有意义的条件,熟练掌握当分式的分母不等于0时分式有意义是解题的关键.三、解答题1、(1)按规定用6天如期完成;(2)方案①最节省工程款且不误期.【分析】(1)设工程期为x 天,则甲队单独完成用x 天,乙队单独完成用(x +3 )天,由“若甲、乙两队合作2天后,余下的工程由乙队单独做,也正好如期完成”列出方程并解答.(2)方案①、③不耽误工期,符合要求,可以求费用,方案②显然不符合要求.【详解】(1)解:设工程期为x 天,则甲队单独完成用x 天,乙队单独完成用(x +3)天.213x x x +=+ 解得x =6,经检验:x =6是原方程的解,且适合题意,答:按规定用6天如期完成;(2)在不耽误工期的情况下,有方案①和方案③两种方案合乎要求,但方案①需工程款1.5×6=9 (万元),方案③需工程款1.5×2+1.2×6=10.2(万元),因为10.2>9,故方案①最节省工程款且不误期.【点睛】此题主要考查了分式方程的应用,找到合适的等量关系是解决问题的关键.在既有工程任务,又有工程费用的情况下.先考虑完成工程任务,再考虑工程费用.2、(1)2;(2)4x,当x =1时,原式=4. 【分析】(1)首先利用完全平方公式和平方差公式化简,然后括号里面合并同类项,最后根据单项式除以单项式运算法则求解即可;(2)首先对分子分母因式分解和括号里面式子通分,然后根据分式的混合运算法则化简,最后代入求解即可.【详解】(1)[(x +y )2﹣(x ﹣y )2]÷(2xy )=(x 2+2xy +y 2﹣x 2+2xy ﹣y 2)÷2xy=4xy ÷2xy=2;(2)解:原式=2(4)(2)x x x -+÷(6222x x x +-++)+1 =2(4)2(2)4x x x x x-++-+1 =4x x -+x x=4x要使分式有意义,()20x x +≠,40x -≠,∴0x ≠,2x ≠-,4x ≠,∴当x =1时,原式=4.【点睛】此题考查了整式的混合运算,分式的化简求值问题,解题的关键是熟练掌握整式的混合运算和分式的混合运算法则.3、(1)22a a +;(2)()()()a b a b x y +--【分析】(1)根据平方差公式和分式的除法计算法则求解即可;(2)利用提取公因式和平方差公式分解因式即可.【详解】解:()224a a a+-÷ ()()222a a a a =+-⋅+ ()2a a =+22a a =+;(2)()()22a x y b y x -+-()()22a x y b x y =---()()22a b x y =--()()()a b a b x y =+--.【点睛】本题主要考查了分解因式,分式与整式的混合运算,熟知相关计算法则是解题的关键.4、1x =【分析】此题只需按照求分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1,最后进行检验即可.【详解】 解:1312x x x -+=+ 去分母得,(1)(2)3(2)x x x x x -++=+去括号得,22232x x x x x +-+=+移项得,22232x x x x x +--+=合并得,22x =x=系数化为1,得:1x=是原方程的解,经检验,1x=∴原方程的解是:1【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.5、妈妈骑摩托车的平均速度是24km/h【分析】设小明骑自行车的平均速度为x km/h,则妈妈骑摩托车的平均速度为3x km/h,根据时间=路程÷速度,结合小明比妈妈多用1h,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:设小明自行车的平均速度为x km/h,则妈妈骑摩托车的速度为3x km/h,根据题意得,1212-=,1x x3解得,x=8,经检验,x=8是原方程的根,∴3x=3×8=24(km/h)答:妈妈骑摩托车的平均速度是24km/h.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.。

专题12 分式与分式方程重难点题型分类(解析版)—八年级数学上册重难点题型分类高分必刷题(人教版)

专题12 分式与分式方程重难点题型分类(解析版)—八年级数学上册重难点题型分类高分必刷题(人教版)

专题12分式与分式方程重难点题型分类-高分必刷题(解析版)专题简介:本份资料包含《分式与分式方程》这一章在各次月考、期末中除应用题和压轴题之外的全部主流题型,所选题目源自各名校月考、期末试题中的典型考题,具体包含十一类题型:分式的定义、分式有意义、分式值为0、分式的性质、整体代入法求分式值、最简分式、分式的先化简后求值、整数指数幂计算、解分式方程、含参分式方程中参数的取值范围、分式方程的增根与无解问题。

本专题资料适合于培训机构的老师给学生作复习培训时使用或者学生月考、期末考前刷题时使用。

题型一分式的定义1.(2022·永州)在1x ,13,12x +,21x +,2x x+中分式的个数有()A .2个B .3个C .4个D .5个【详解】解:1x ,21x +,2x x+的分母中含有字母,都是分式,共有3个.故选:B .2.(2022·岳阳)下列代数式①x ,②2a b +,③π,④m n -中,分式有()A .1个B .2个C .3个D .4个【详解】解:①和④分母中含有字母,是分式;②③分母中不含有字母,不是分式,故选:B .3.(2022·永州)有如下式子13+;②31x +;③22x y π-;④2()xyx y +,其中是分式的有()A .①③B .②③C .③④D .②④【详解】解:①13x +,是整式,不是分式,不符合题意;②31x +,是分式,符合题意;③22x y π-,是整式,不符合题意;④2()xyx y +,是分式,符合题意.所以②④是分式故选:D .题型二分式有意义(分母不为0)4.(2021·衡阳)要使分式21x x --有意义,则x 的取值范围是()A .1x =B .2x =C .1x ≠D .2x ≠【详解】解:要使分式21x x --有意义,必须x -1≠0,解得:x ≠1,故选:C .5.(2019·长沙)分式3||1xx -有意义,则x 的取值范围是()A .1x >B .1x <C .11x -<<D .1x ≠±【详解】∵31xx +-有意义,∴||10x -≠,解得:1x ≠±,故选:D .6.(2018·1xx -x 的取值范围是__________【详解】解:由题意得,x≥0且x-1≠0,解得0x ≥且1x ≠,故填:0x ≥且1x ≠.7.(2022··12xx -有意义,那么x 的取值范围是______.【详解】解:根据题意得:1020x x -≥⎧⎨+≠⎩解得1x ≤且2x ≠-,故答案为:1x ≤且2x ≠-.题型三分式值为0(分子=0且分母≠0)8.(2022·洪江)若分式||326x x -+的值为零,则x 的值是()A .3B .﹣3C .±3D .4【详解】解:∵分式||326x x -+的值为零,∴30x -=,且260x +≠,解得3x =.故选:A .9.(博才)如果分式22x --的值为0,那么x 的值为()A .2x =B .0x =C .0x =或2x =D .以上答案都不对【解答】解:由题意,知x(x-2)=0且x -2≠0.解得x =0.故选:B .10.(2022·长沙)若分式242x x -+的值为0,则x =______.【详解】由题意得240x -=,20x +≠,2x ∴=±,2x ≠-,2x ∴=,即当2x =时,分式的值是0.故答案为:2.11.(青竹湖)若分式293x x -+的值为0,则x 的值为____________。

分式的知识点及典型例题分析

分式的知识点及典型例题分析

分式的知识点及典型例题分析1、分式的定义:例:下列式子中, 152 9a 、 5a b 、 3a 2b 2 2 、 1 、 5xy 1 、xy 、8a b 、-23 2x y 4 、2- m 6 x a1 、 x 221 、 3xy 、 3 、 a 1 中分式的个数为()2x y m(A ) 2 (B ) 3 (C ) 4(D) 5 练习题:(1)下列式子中,是分式的有.⑴ 2x 7 ; ⑵ x1 ;⑶ 5a 2;⑷ x 2x 2;⑸2 b 2;⑹xyy 2.x 5 2 3a b 2x 2⑵ 下列式子,哪些是分式?a ;x23; y 3; 7 x ; x xy ; 1 b .54y 8 x 2 y 4 52、分式有、无意义 :( 1)使分式有意义:令分母≠ 0 按解方程的方法去求解; ( 2)使分式无意义:令分母 =0 按解方程的方法去求解;例 1:当 x 时,分式 1 有意义;x 5例 2:分式 2x1中,当 x ____ 时,分式没有意义;2 x例 3:当 x 时,分式 1 有意义;2 1 x例 4:当 x 时,分式 x 有意义;2 1 x 例 5: x , y 满足关系时,分式 xy无意义;x y例 6:无论 x 取什么数时,总是有意义的分式是()A . 2x B. x C. 3xx 52 2x 13 1 D.x 2 x 1 x x 有意义的 x 的取值范围为() 例 7:使分式x 2 A . x 2 B . x2 C . x 2 D . x 2例 8:要是分式x 2没有意义,则 x 的值为()1)( x(x3)A. 2B.-1 或-3C. -1D.33、分式的值为零:使分式值为零:令分子 =0 且分母≠ 0,注意:当分子等于 0 使,看看是否使分母 =0 了,如果使分母 =0 了,那么要舍去。

例 1:当 x 时,分式1 2a的值为 0; a 12 x1例 2:当 x 时,分式的值为 0例 3:如果分式a2的值为为零 , 则 a 的值为 ( ) a 2A.2 B.2 C.2 D. 以上全不对例 4:能使分式 x2x 的值为零的所有 x 的值是() x 21A x 0 Bx 1 C x 0 或 x1 D x 0 或 x1例 5:要使分式x 29的值为 0,则 x 的值为()x 25x 6 A.3 或-3 B.3 C.-3 D 2 例 :若 a1 0 , 则 a 是 ( ) 6 aA. 正数B. 负数C. 零D. 任意有理数4、分式的基本性质的应用:分式的基本性质: 分式的分子与分母同乘或除以一个不等于 0 的整式,分式的值不变。

中考数学《分式及分式方程》计算题(附答案)

中考数学《分式及分式方程》计算题(附答案)

[键入文字]中考《分式及分式方程》计算题、答案一.解答题(共30小题)1.(2011•自贡)解方程:.2.(2011•孝感)解关于的方程:.3.(2011•咸宁)解方程.4.(2011•乌鲁木齐)解方程:=+1.5.(2011•威海)解方程:.6.(2011•潼南县)解分式方程:.7.(2011•台州)解方程:.8.(2011•随州)解方程:.9.(2011•陕西)解分式方程:.10.(2011•綦江县)解方程:.11.(2011•攀枝花)解方程:.12.(2011•宁夏)解方程:.13.(2011•茂名)解分式方程:.14.(2011•昆明)解方程:.15.(2011•菏泽)(1)解方程:(2)解不等式组.16.(2011•大连)解方程:.17.(2011•常州)①解分式方程;②解不等式组.19.(2011•巴彦淖尔)(1)计算:|﹣2|+(+1)0﹣()﹣1+tan60°;(2)解分式方程:=+1.20.(2010•遵义)解方程:21.(2010•重庆)解方程:+=122.(2010•孝感)解方程:.23.(2010•西宁)解分式方程:24.(2010•恩施州)解方程:25.(2009•乌鲁木齐)解方程:26.(2009•聊城)解方程:+=127.(2009•南昌)解方程:29.(2008•昆明)解方程:30.(2007•孝感)解分式方程:.答案与评分标准一.解答题(共30小题)1.(2011•自贡)解方程:.考点:解分式方程。

专题:计算题。

分析:方程两边都乘以最简公分母y(y﹣1),得到关于y的一元一方程,然后求出方程的解,再把y的值代入最简公分母进行检验.解答:解:方程两边都乘以y(y﹣1),得2y2+y(y﹣1)=(y﹣1)(3y﹣1),2y2+y2﹣y=3y2﹣4y+1,3y=1,解得y=,检验:当y=时,y(y﹣1)=×(﹣1)=﹣≠0,∴y=是原方程的解,∴原方程的解为y=.点评:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想",把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.2.(2011•孝感)解关于的方程:.考点:解分式方程。

分式方程典型易错点及典型例题分析

分式方程典型易错点及典型例题分析

分式方程典型易错点及典型例题分析一、错用分式的基本性质例1 化简错解:原式分析:分式的基本性质是“分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变”,而此题分子乘以3,分母乘以2,违反了分式的基本性质.正解:原式二、错在颠倒运算顺序例2 计算错解:原式分析:乘除是同一级运算,除在前应先做除,上述错解颠倒了运算顺序,致使结果出现错误.正解:原式三、错在约分例1 当为何值时,分式有意义[错解]原式.由得.∴时,分式有意义.[解析]上述解法错在约分这一步,由于约去了分子、分母的公因式,扩大了未知数的取值范围,而导致错误.[正解]由得且.∴当且,分式有意义.四、错在以偏概全例2 为何值时,分式有意义[错解]当,得.∴当,原分式有意义.[解析]上述解法中只考虑的分母,没有注意整个分母,犯了以偏概全的错误.[正解] ,得,由,得.∴当且时,原分式有意义.五、错在计算去分母例3 计算.[错解]原式=.[解析]上述解法把分式通分与解方程混淆了,分式计算是等值代换,不能去分母,.[正解]原式.六、错在只考虑分子没有顾及分母例4 当为何值时,分式的值为零.[错解]由,得.∴当或时,原分式的值为零.[解析]当时,分式的分母,分式无意义,谈不上有值存在,出错的原因是忽视了分母不能为零的条件.[正解]由由,得.由,得且.∴当时,原分式的值为零.典例分析类型一:分式及其基本性质1.当x为任意实数时,下列分式一定有意义的是()A. B.C.D.2.若分式的值等于零,则x =_______;3.求分式的最简公分母。

【变式1】(1)已知分式的值是零,那么x的值是()A.-1B.0C.1 D.±1(2)当x________时,分式没有意义.【变式2】下列各式从左到右的变形正确的是()A.B.C.D.(一) 通分约分4.化简分式:【变式1】顺次相加法计算:【变式2】整体通分法计算:(二)裂项或拆项或分组运算5.巧用裂项法计算:【变式1】分组通分法计算:【变式2】巧用拆项法计算:类型三:条件分式求值的常用技巧6.参数法已知,求的值.【变式1】整体代入法已知,求的值.【变式2】倒数法:在求代数式的值时,有时出现条件或所求分式不易变形,但当分式的分子、分母颠倒后,变形就非常的容易,这样的问题适合通常采用倒数法.已知:,求的值.【变式3】主元法:当已知条件为两个三元一次方程,而所求的分式的分子与分母是齐次式时,通常我们把三元看作两元,即把其中一元看作已知数来表示其它两元,代入分式求出分式的值.已知:,求的值.解分式方程的基本思想是去分母,课本介绍了在方程两边同乘以最简公分母的去分母的方法,现再介绍几种灵活去分母的技巧.(一)与异分母相关的分式方程7.解方程=【变式1】换元法 解方程:32121---=-xxx (二)与同分母相关的分式方程 8.解方程3323-+=-x x x 【变式1】解方程87178=----xx x 【变式2】解方程125552=-+-xx x9.甲、乙两个小商贩每次都去同一批发商场买进白糖.甲进货的策略是:每次买1000元钱的糖;乙进货的策略是每次买1000斤糖,最近他俩同去买进了两次价格不同的糖,问两人中谁的平均价格低一些?【变式1】 甲开汽车,乙骑自行车,从相距180千米的A 地同时出发到B .若汽车的速度是自行车的速度的2倍,汽车比自行车早到2小时,那么汽车及自行车的速度各是多少【变式2】 A 、B 两地路程为150千米,甲、乙两车分别从A 、B 两地同时出发,相向而行,2小时后相遇,相遇后,各以原来的速度继续行驶,甲车到达B 后,立即沿原路返回,返回时的速度是原来速度的2倍,结果甲、乙两车同时到达A 地,求甲车原来的速度和乙车的速度.【主要公式】1.同分母加减法则:()0b c b ca aaa±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c ac ac ac ac ±±=±=≠≠; 3.分式的乘法与除法:b d bd a c ac •=,b c b d bda d a c ac÷=•= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n6.积的乘方与幂的乘方:(ab)m= a m b n , (a m)n= a mn7.负指数幂: a-p=1a0=1pa8.乘法公式与因式分解:平方差与完全平方式(a+b)(a-b)= a2- b2 ;(a±b)2= a2±2ab+b2。

分式与分式方程练习及答案

分式与分式方程练习及答案

分式与分式方程练习及答案1.如果代数式√x+3x 有意义,则实数x 的取值范围是 ( )A .x ≥-3B .x ≠0C .x ≥-3且x ≠0D .x ≥32.如果将分式2x x+y 中的字母x 与y 的值分别扩大为原来的10倍,那么这个分式的值 ( )A .扩大为原来的10倍B .扩大为原来的20倍C .缩小为原来的110D .不改变 3.当分式62x -3的值为正整数时,整数x 的取值可能有 ( ) A .4个B .3个C .2个D .1个 4.计算x+1x -1x ,结果正确的是 ( )A .1B .xC .1xD .x+2x5.一项工作,甲单独完成需要a 天,乙单独完成需要b 天,如果甲、乙二人合作,那么每天的工作效率是 ( )A .a+bB .1+1C .1a+bD .ab a+b 6.已知1m -1n =1,则代数式2m -mn -2n m+2mn -n 的值为( ) A .3 B .1 C .-1D .-3 7.如果a -3b=0,那么代数式a -2ab -b 2a ÷a 2-b 2a 的值是 ( ) A .12 B .-12C .14D .1 8.已知分式满足条件“只含有字母x ,且当x=1时无意义”,请写出一个这样的分式: .9.化简a b -a +b a -b 的结果是 .10.化简:x 2-4x+4x 2+2x ÷4x+2-1= . 11.计算m+2-5m -2÷m -32m -4.12.已知:a 2+3a -2=0,求代数式a -3a 2-2a ÷a+2-5a -2的值.参考答案1.C2.D3.C4.A5.B6.D7.A8.1x -1(答案不唯一)9.-1 [解析] 本题考查了分式的加减法,掌握分式加减法的法则是解题的关键.原式=-a a -b +b a -b =-a+b a -b =-1,故答案为-1.10.2−x x [解析] x 2-4x+4x 2+2x ÷4x+2-1=(x -2)2x(x+2)·x+22−x =2−x x. 11.解:m+2-5m -2÷m -32m -4=(m+2)(m -2)-5m -2·2m -4m -3 =m 2-9m -2·2(m -2)m -3=(m -3)(m+3)m -2·2(m -2)m -3 =2m+6.12.解:原式=a -3a 2-2a ÷[(a+2)(a -2)a -2-5a -2] =a -3a 2-2a ÷a 2-4-5a -2=a -3a(a -2)·a -2(a+3)(a -3)=1a(a+3). ∵a 2+3a -2=0,∴a 2+3a=2,∴原式=1a 2+3a =12.分式方程1.关于x 的方程2x -1=1的解是( )A .x=4B .x=3C .x=2D .x=12.将分式方程1-2x x -1=3x -1去分母,得到正确的整式方程是 ( )A .1-2x=3B .x -1-2x=3C .1+2x=3D .x -1+2x=33.若x=3是分式方程a -2x -1x -2=0的根,则a 的值是 ( )A .5B .-5C .3D .-34.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相同,求甲每小时做中国结的个数.如果设甲每小时做x 个,那么可列方程为( )A .30x =45x+6B .30x =45x -6C .30x -6=45xD .30x+6=45x5.如果分式x -3x+1的值为0,那么x 的值是 .6.分式方程2x -3=32x的解为 . 7.若关于x 的方程ax+1x -2=-1的解是正数,则a 的取值范围是 . 8.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快50千米,提速后从北京到上海运行时间缩短了30分钟.已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x 千米/时,依题意,可列方程为 .9.解方程:x x -1-2x =1.10.解分式方程:1x -2+2=1+x 2−x .11. 2017年9月21日,我国自主研发的中国标准动车组“复兴号”正式上线运营,运营速度世界第一的桂冠,中国失而复得.现有甲、乙两列高铁列车在不同的时刻分别从北京出发开往上海.已知北京到上海的距离约1320千米,列车甲行驶的平均速度为列车乙行驶平均速度的43倍,全程运行时间比列车乙少1.5小时,求列车甲从北京到上海运行的时间.12.若关于x 的方程x -1=m 无解,则m= .13.设a ,b ,c ,d 为实数,现规定一种新的运算:|a b c d |=ad -bc.则满足等式|2x+123x+11|=1的x 的值为 .参考答案1.B2.B3.A4.A5.36.x=-97.a>-1且a ≠-128.1320x =1320x -50-30609.解:方程两边同乘x (x -1),得x 2-2(x -1)=x (x -1).去括号,得x 2-2x+2=x 2-x.移项,得-x+2=0.解得x=2.检验:当x=2时,x (x -1)≠0,所以x=2是原方程的解.10.解:方程两边同乘(x -2),得1+2(x -2)=-1-x.解得:x=23.检验:当x=23时,x -2≠0.所以,原分式方程的解为x=23.11.解:设列车甲从北京到上海运行的时间为x小时,则列车乙从北京到上海的运行时间为(x+1.5)小时.根据题意,得1320x =1320x+1.5×43,解得x=4.5,经检验,x=4.5是所列方程的解,且符合实际意义.答:列车甲从北京到上海运行的时间为4.5小时.12.-813.-5。

初中数学-《分式与分式方程》测试题含解析

初中数学-《分式与分式方程》测试题含解析

初中数学-《分式与分式方程》测试题班级:___________ 姓名:___________ 得分:___________一.选择题:(每小题3分共36分) 1.在2a b -,x x 1+,5πx +,a ba b+-中,是分式的有( )A .1个B .2个C .3个D .4个2.每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为( ) A .y x my nx ++元 B .y x ny mx ++元 C .y x n m ++元 D .12x y m n ⎛⎫+ ⎪⎝⎭元3.当x =2时,下列分式中,值为零的是( ) A .2322+--x x x B .942--x x C .21-x D .12++x x4.下列分式是最简分式的是( ) A .11m m -- B .3xy y xy - C .22x y x y -+ D .6132mm -5.若34y x =,则x yx+的值为( ) A .1 B .47 C .54 D .746.计算⎪⎭⎫⎝⎛-÷-x x x x 11所得的正确结论是( ) A.11x - B.1 C. 11x + D.-1 7.a ÷b ×b 1÷c ×c 1÷d ×d1等于( )A .aB .222dc b a C .d a D .ab 2c 2d 28.计算22193m m m --+的结果为: ( ) A .13m + B .-13m - C .-13m + D .13m - 9.分式121x x +-的分子分母都加1,所得的分式22x x +的值比121x x +-( )A .减小了B .不变C .增大了D .不能确定 10.若241()w 1a 42a+⋅=--,则w=( ) A.a 2(a 2)+≠- B.a 2(a 2)-+≠ C.a 2(a 2)-≠ D.a 2(a 2)--≠- 11.关于x 的方式方程232x mx +=-的解是正数,则m 可能是( ) A .﹣4 B .﹣5 C .﹣6 D .﹣7 12.如果关于x 的方程2435x a x b++=的解不是负值,那么a 与b 的关系是( ) A . a >35b B . b≥35a C .5a≥3b D .5a=3b 二、填空题:(每小题3分共12分)13.化简:23410ab ba = .14.已知31=+a a ,则221a a +的值是 。

分式及分式方程典型题训练及答案

分式及分式方程典型题训练及答案

分式及分式方程一、选择题(将唯一正确的答案填在题后括号内)1.函数y=11x +中自变量x 的取值范围是( ). A.x ≠-1 B.x>-1 C.x ≠1 D.x ≠02.如果把分式x y x+2中x 和y 都扩大10倍,那么分式的值( )A. 扩大10倍B. 缩小10倍C. 扩大2倍D. 不变3.计算:211(1)1mm m +÷⋅--的结果是( ) A .221m m --- B .221m m -+-C .221m m -- D .21m -4. 已知2111=-b a ,则b a ab -的值是( )A.21B.-21C.2D.-25.当分式||33x x -+的值为零时,x 的值为( ). A.0B.3C.-3D.±36.化简2239m mm --的结果是( ) A. 3m m + B.-3m m +C.3mm - D.3mm- 7.化简2129m -+23m +的结果是( )A. 269m m +-B. 23m -C.23m + D. 2299m m +- 8.暑假期间,小荷文学社的全体同学包租一辆面包车前去某景点游览,面包车的租价为180元.出发时又增加了两名同学,结果每个同学比原来少摊了3元车费.若设“文学社”有x 人,则所列方程为( )A.32x 180x 180=-- B.32x 180x 180=+- C.3x1802x 180=-+D.3x1802-x 180=- 9.当x=( ) 时,424xx--的值与54x x --的值相等。

A.-1B.4C.5D.010.化简22424422x x xx x x x ⎛⎫--+÷ ⎪-++-⎝⎭,其结果是( ) A .82x --B .82x -C .82x -+D .82x + 二、填空题11.当x = 时,分式23x -没有意义.12、方程的解是xx 211=- . 13.当x=______时,分式232x x --的值为1. 14.已知a+1a=3,则a 2+21a =_______.15.已知x 1-y 1=3,则分式2322x xy yx xy y+---的值为________. 16.关于x 的分式方程3155ax x +=++有增根,则a=_______ 三、解答题17.化简:(1)(21-x -442+-x x x )÷241x -(2)18. 先化简再求值:19.解方程:(1)120112x xx x-+=+- (2)x x x -=+--2122120.小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km?21.在某次捐款活动中,某同学对甲、乙两班捐款情况进行了统计:甲班捐款人数比乙班捐款人数多3人,甲班共捐款2400元,乙班共捐款1800元,乙班平均每人捐款的钱数是甲班平均每人捐款钱数的45倍.求甲、乙两班各有多少人捐款?22.22. 在某年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式及分式方程精典练习题
一、填空题:
⒈当x 时,分式1
223+-x x 有意义;当x 时,分式x x --112的值等于零. ⒉分式ab c 32、bc a 3、ac
b 25的最简公分母是 ; ⒊化简:2
42--x x = . ⒋当x 、y 满足关系式________时,
)(2)(5y x x y --=-25 ⒌化简=-+-a
b b b a a . ⒍分式方程3
13-=+-x m x x 有增根,则m = . ⒎若121-x 与)4(3
1+x 互为倒数,则x= . ⒏某单位全体员工在植树节义务植树240棵.原计划每小时植树口棵。

实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了 小时完成任务
9、已知关于x 的方程32
2=-+x m x 的解是正数,则m 的取值范围为_____________. 二、选择题:
⒈下列约分正确的是( )
A 、326x x x =
B 、0=++y x y x
C 、x xy x y x 12=++
D 、2
14222=y x xy ⒉用换元法解分式方程13101x x x x --+=-时,如果设1x y x
-=,将原方程化为关于y 的整式方程,那么这个整式方程是( )
A .230y y +-=
B .2310y y -+=
C .2310y y -+=
D .2310y y --= ⒊下列分式中,计算正确的是( )
A 、32)(3)(2+=+++a c b a c b
B 、b
a b a b a +=++122 C 、1)()(22
-=+-b a b a D 、x
y y x xy y x -=---1222 ⒋下列各式中,从左到右的变形正确的是( )
A 、y x y x y x y x ---=--+-
B 、y
x y x y x y x +-=--+-
C 、
y x y x y x y x -+=--+- D 、y
x y x y x y x +--=--+- 5.已知2111=-b a ,则b
a a
b -的值是( ) A.21 B.-21 C.2 D.-2 6.设m >n >0,m 2+n 2
=4mn ,则22m n mn -的值等于( )
A.
B.
C. D. 3 三、计算:
(2)|1|2004125.02)21(032-++⨯---
四、解分式方程:
()323331592a a a a ++-++-()1291932x x
-++()422x y x x y
+--()(用两种方法)52242()x x x x x x --+÷-()11244222x x x x +--=-()
22332726
x x ++=+
五、先化简再求值:
1、
()x x x x x x x x x x -+⋅+++÷--=-11442412222,其中。

2、221211, 2.111x x x x x x x ⎛⎫-+-+÷= ⎪+-+⎝⎭
其中
3、⎝ ⎛⎭
⎪⎫1+ 1 x -2÷ x 2-2x +1 x 2-4,其中x =-5.
4、(x -1x -x -2x +1)÷2x 2-x x 2+2x +1
,其中x 满足x 2-x -1=0.
5、先化简22()5525x x x x x x -÷---,然后从不等组23212x x --⎧⎨⎩
p ≤的解集中,选取一个你认为符合题意....
的x 的值代入求值.
31、 (2009年四川省内江市)某服装厂为学校艺术团生产一批演出服,总成本3200元,售价每套40元,服装厂向25名家庭贫困学生免费提供。

经核算,这25套演出服的成本正好是原定生产这批演出服的利润。

问这批演出服生产了多少套?
32、(2009年长春)某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务,求引进新设备前平均每天修路多少米?
33、(2009年锦州)根据规划设计,某市工程队准备在开发区修建一条长300米的盲道.铺设了60米后,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加10米,结果共用了8天完成任务,该工程队改进技术后每天铺设盲道多少米?
34、(2009年桂林市)在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.
(1)乙队单独完成这项工程需要多少天?
(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?
35、(2009年齐齐哈尔市)某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.
(1)今年三月份甲种电脑每台售价多少元?
(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?
(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?
36、(2009年哈尔滨)跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.
(1)求每个甲种零件、每个乙种零件的进价分别为多少元?
(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.
37、(2009年广西梧州)由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3︰2,两队合做6天可以完成.
(1)求两队单独完成此项工程各需多少天?
(2)此项工程由甲、乙两队合做6天完成任务后,学校付给他们20000元报酬,若
按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元?
38、某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.
(1)今年三月份甲种电脑每台售价多少元?
(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?
(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?
39、(2009厦门)22.供电局的电力维修工甲、乙两人要到45千米远的A地进行电力抢修.甲骑摩托车先行,t(t≥0)小时后,乙开抢修车载着所需材料出发.
(1)若t=3
8
(小时),抢修车的速度是摩托车速度的1.5倍,且甲、乙两人同时到
达,求摩托车的速度;
(2)若摩托车的速度是45千米/时,抢修车的速度是60千米/时,且乙不能比甲晚
到,则t的最大值是多少?
40、(2009辽宁朝阳)海峡两岸实现“三通”后,某水果销售公司从台湾采购苹果的成本大幅下降.请你根据两位经理的对话,计算出该公司在实现“三通”前到台湾采购苹果的成本价格.。

相关文档
最新文档