Abstract Gaussian-selection-based non-optimal search for speaker identification
语音信号当中降噪算法的实现方法

语音信号当中降噪算法的实现方法1.语音信号的降噪算法可以通过滤波器来实现。
The noise reduction algorithm of speech signals can be implemented through filters.2.降噪算法可以利用数字信号处理技术进行实现。
The noise reduction algorithm can be implemented using digital signal processing techniques.3.常见的降噪算法包括中值滤波和小波变换。
Common noise reduction algorithms include median filtering and wavelet transforms.4.中值滤波是一种简单且有效的降噪技术。
Median filtering is a simple and effective noise reduction technique.5.小波变换可以将信号分解成不同频率的子信号进行处理。
Wavelet transform can decompose the signal into sub-signals of different frequencies for processing.6.降噪算法的实现需要考虑运算速度和处理效果的平衡。
The implementation of noise reduction algorithm needs to consider the balance between computational speed and processing effect.7.降噪算法的性能评价可以使用信噪比等指标进行量化。
The performance evaluation of noise reduction algorithm can be quantified using metrics such as signal-to-noise ratio.8.自适应滤波是一种根据信号特性进行动态调整的降噪技术。
kosel包的中文名字:基于修正碰撞法的变量选择方法说明书

Package‘kosel’October13,2022Title Variable Selection by Revisited Knockoffs ProceduresVersion0.0.1Description Performs variable selection for many types of L1-regularised regressions using the revis-ited knockoffs procedure.This procedure uses a matrix of knockoffs of the covariates indepen-dent from the response variable Y.The idea is to determine if a covariate be-longs to the model depending on whether it enters the model before or after its knock-off.The procedure suits for a wide range of regressions with various types of response vari-ables.Regression models available are exported from the R packages'glmnet'and'ordinal-Net'.Based on the paper linked to via the URL below:Gegout A.,Gueudin A.,Kar-mann C.(2019)<arXiv:1907.03153>.URL https:///pdf/1907.03153.pdfLicense GPL-3Depends R(>=1.1)Encoding UTF-8LazyData trueRoxygenNote6.1.1Imports glmnet,ordinalNetSuggests graphicsNeedsCompilation noAuthor Clemence Karmann[aut,cre],Aurelie Gueudin[aut]Maintainer Clemence Karmann<**************************>Repository CRANDate/Publication2019-07-1810:44:06UTCR topics documented:ko.glm (2)ko.ordinal (3)ko.sel (4)Index812ko.glm ko.glm Statistics of the knockoffs procedure for glmnet regression models.DescriptionReturns the vector of statistics W of the revisited knockoffs procedure for regressions available in the R package glmnet.Most of the parameters come from glmnet().See glmnet documentation for more details.Usageko.glm(x,y,family="gaussian",alpha=1,type.gaussian=ifelse(nvars<500,"covariance","naive"),type.logistic="Newton",type.multinomial="ungrouped",nVal=50,random=FALSE)Argumentsx Input matrix,of dimension nobs x nvars;each row is an observation vector.Can be in sparse matrix format(inherit from class"sparseMatrix"as in packageMatrix;not yet available for family="cox")y Response variable.Quantitative for family="gaussian",or family="poisson"(non-negative counts).For family="binomial"should be either a factor with twolevels,or a two-column matrix of counts or proportions(the second column istreated as the target class;for a factor,the last level in alphabetical order is thetarget class).For family="multinomial",can be a nc>=2level factor,or amatrix with nc columns of counts or proportions.For either"binomial"or"multinomial",if y is presented as a vector,it will be coerced into a factor.Forfamily="cox",y should be a two-column matrix with columns named’time’and’status’.The latter is a binary variable,with’1’indicating death,and’0’indicating right censored.The function Surv()in package survival producessuch a matrix.family Response type:"gaussian","binomial","poisson","multinomial","cox".Not avail-able for"mgaussian".alpha The elasticnet mixing parameter,with0<=alpha<=1.alpha=1is the lasso penalty,and alpha=0the ridge penalty.The default is1.type.gaussian See glmnet documentation.type.logistic See glmnet documentation.type.multinomialSee glmnet documentation.nVal Length of lambda sequence-default is50.random If TRUE,the matrix of knockoffs is different for every run.If FALSE,a seed is used so that the knockoffs are the same.The default is FALSE.ko.ordinal3ValueA vector of dimension nvars corresponding to the statistics W.See Alsoko.selExamples#see ko.selko.ordinal Statistics of the knockoffs procedure for ordinalNet regression models.DescriptionReturns the vector of statistics W of the revisited knockoffs procedure for regressions available in the R package ordinalNet.Most of the parameters come from ordinalNet().See ordinalNet documentation for more details.Usageko.ordinal(x,y,family="cumulative",reverse=FALSE,link="logit",alpha=1,parallelTerms=TRUE,nonparallelTerms=FALSE,nVal=100,warn=FALSE,random=FALSE)Argumentsx Covariate matrix,of dimension nobs x nvars;each row is an observation vector.It is recommended that categorical covariates are converted to a set of indicatorvariables with a variable for each category(i.e.no baseline category);otherwisethe choice of baseline category will affect the modelfit.y Response variable.Can be a factor,ordered factor,or a matrix where each row isa multinomial vector of counts.A weightedfit can be obtained using the matrixoption,since the row sums are essentially observation weights.Non-integermatrix entries are allowed.family Specifies the type of model family.Options are"cumulative"for cumulative probability,"sratio"for stopping ratio,"cratio"for continuation ratio,and"acat"for adjacent category.reverse Logical.If TRUE,then the"backward"form of the model isfit,i.e.the model is defined with response categories in reverse order.For example,the reversecumulative model with K+1response categories applies the link function to thecumulative probabilities P(Y>=2),...,P(Y>=K+1),rather then P(Y<=1),...,P(Y<=K).link Specifies the link function.The options supported are logit,probit,complemen-tary log-log,and cauchit.alpha The elastic net mixing parameter,with0<=alpha<=1.alpha=1corresponds to the lasso penalty,and alpha=0corresponds to the ridge penalty.parallelTerms Logical.If TRUE,then parallel coefficient terms will be included in the model.parallelTerms and nonparallelTerms cannot both be FALSE.nonparallelTermsLogical.if TRUE,then nonparallel coefficient terms will be included in themodel.parallelTerms and nonparallelTerms cannot both be FALSE.Defaultis FALSE.nonparallelTerms=TRUE is highly discouraged.nVal Length of lambda sequence-default is100.warn Logical.If TRUE,the following warning message is displayed whenfitting a cu-mulative probability model with nonparallelTerms=TRUE(i.e.nonparallel orsemi-parallel model)."Warning message:For out-of-sample data,the cumula-tive probability model with nonparallelTerms=TRUE may predict cumulativeprobabilities that are not monotone increasing."The warning is displayed bydefault,but the user may wish to disable it.random If TRUE,the matrix of knockoffs is different for every run.If FALSE,a seed is used so that the knockoffs are the same.The default is FALSE.ValueA vector of dimension nvars corresponding to the statistics W.NotenonparallelTerms=TRUE is highly discouraged because the knockoffs procedure does not suit well to this setting.See Alsoko.selExamples#see ko.selko.sel Variable selection with the knockoffs procedure.DescriptionPerforms variable selection from an object(vector of statistics W)returned by ko.glm or ko.ordinal.Usageko.sel(W,print=FALSE,method="stats")ArgumentsW A vector of length nvars corresponding to the statistics W.Object returned by the functions ko.glm or ko.ordinal.print Logical.If TRUE,positive statistics W are displayed in increasing order.If FALSE,nothing is displayed.If method= manual ,print is automaticallyTRUE.method Can be stats , gaps or manual .If stats ,the threshold used is the W-threshold.If gaps ,the threshold used is the gaps-threshold.If manual ,the user can choose its own threshold using the graph of the positive statistics Wsorted in increasing order.ValueA list containing two elements:•threshold A positive real value corresponding to the threshold used.•estimation A binary vector of length nvars corresponding to the variable selection:1*(W>= threshold).1indicates that the associated covariate belongs to the estimated model.ReferencesGegout-Petit Anne,Gueudin Aurelie,Karmann Clemence(2019).The revisited knockoffs method for variable selection in L1-penalised regressions,arXiv:1907.03153.See Alsoko.glm,ko.ordinalExampleslibrary(graphics)#linear Gaussian regressionn=100p=20set.seed(11)x=matrix(rnorm(n*p),nrow=n,ncol=p)beta=c(rep(1,5),rep(0,15))y=x%*%beta+rnorm(n)W=ko.glm(x,y)ko.sel(W,print=TRUE)#logistic regressionn=100p=20set.seed(11)x=matrix(runif(n*p,-1,1),nrow=n,ncol=p)u=runif(n)beta=c(c(3:1),rep(0,17))y=rep(0,n)a=1/(1+exp(0.1-x%*%beta))y=1*(u>a)W=ko.glm(x,y,family= binomial ,nVal=50)ko.sel(W,print=TRUE)#cumulative logit regressionn=100p=10set.seed(11)x=matrix(runif(n*p),nrow=n,ncol=p)u=runif(n)beta=c(3,rep(0,9))y=rep(0,n)a=1/(1+exp(0.8-x%*%beta))b=1/(1+exp(-0.6-x%*%beta))y=1*(u<a)+2*((u>=a)&(u<b))+3*(u>=b)W=ko.ordinal(x,as.factor(y),nVal=20)ko.sel(W,print=TRUE)#adjacent logit regressionn=100p=10set.seed(11)x=matrix(rnorm(n*p),nrow=n,ncol=p)U=runif(n)beta=c(5,rep(0,9))alpha=c(-2,1.5)M=2y=rep(0,n)for(i in1:n){eta=alpha+sum(beta*x[i,])u=U[i]Prob=rep(1,M+1)for(j in1:M){Prob[j]=exp(sum(eta[j:M]))}Prob=Prob/sum(Prob)C=cumsum(Prob)C=c(0,C)j=1while((C[j]>u)||(u>=C[j+1])){j=j+1}y[i]=j}W=ko.ordinal(x,as.factor(y),family= acat ,nVal=10) ko.sel(W,method= manual )0.4#How to use randomness?n=100p=20set.seed(11)x=matrix(rnorm(n*p),nrow=n,ncol=p)beta=c(5:1,rep(0,15))y=x%*%beta+rnorm(n)Esti=0for(i in1:100){W=ko.glm(x,y,random=TRUE)Esti=Esti+ko.sel(W,method= gaps )$estimation }EstiIndexko.glm,2,4,5ko.ordinal,3,4,5ko.sel,3,4,48。
Abstract Gaussian Filter for Nonlinear Filtering Problems

@ @ @ ;A (x) = @x ai j (x) @x (x) ; @x (ai (x) (x)) : i j i
1 @ ai j = ( 2 t )i j and ai = fi ; @x ai j :
Байду номын сангаас
d(x(t) ; x(t) = (f (x(t)) ; fd)(t))) dt ^ (x
d ;L(1)(t)(h(x(t)) ; h(x)(t)) dt
If the measure t (dx) = E (x(t) 2 smooth density (t x) with respect to the Lebesgue measure, it is easy checked that (t x) satis es the Kushner equation d (t) + A (t) dt = (h ; t h]) (t) (dy(t) ; t h] dt) (1.4) R where (0 x) = p0 (x) and t h] = Rn h(x) (t x) dx. From (1.3) and (1.4) the optimal state estimate x(t) = E x(t)jFty satis es ^
j dx)jFty ] admits a
d dx(t) = fd)(t) dt + L(t)(dy(t) ; h(x)(t) dt) ^ (x Z
R
(1.5)
where and
d t ] + t A ]dt = ( t h ] ; t ] t h])(dy(t) ; t h]dt)
(1.3)
where the generator A is the formal adjoint operator to A with
遗传算法及其MATLAB程序代码

遗传算法及其MATLAB程序代码遗传算法及其MATLAB实现主要参考书:MATLAB 6.5 辅助优化计算与设计飞思科技产品研发中⼼编著电⼦⼯业出版社2003.1遗传算法及其应⽤陈国良等编著⼈民邮电出版社1996.6主要内容:遗传算法简介遗传算法的MATLAB实现应⽤举例在⼯业⼯程中,许多最优化问题性质⼗分复杂,很难⽤传统的优化⽅法来求解.⾃1960年以来,⼈们对求解这类难解问题⽇益增加.⼀种模仿⽣物⾃然进化过程的、被称为“进化算法(evolutionary algorithm)”的随机优化技术在解这类优化难题中显⽰了优于传统优化算法的性能。
⽬前,进化算法主要包括三个研究领域:遗传算法、进化规划和进化策略。
其中遗传算法是迄今为⽌进化算法中应⽤最多、⽐较成熟、⼴为⼈知的算法。
⼀、遗传算法简介遗传算法(Genetic Algorithm, GA)最先是由美国Mic-hgan⼤学的John Holland于1975年提出的。
遗传算法是模拟达尔⽂的遗传选择和⾃然淘汰的⽣物进化过程的计算模型。
它的思想源于⽣物遗传学和适者⽣存的⾃然规律,是具有“⽣存+检测”的迭代过程的搜索算法。
遗传算法以⼀种群体中的所有个体为对象,并利⽤随机化技术指导对⼀个被编码的参数空间进⾏⾼效搜索。
其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定等5个要素组成了遗传算法的核⼼内容。
遗传算法的基本步骤:遗传算法是⼀种基于⽣物⾃然选择与遗传机理的随机搜索算法,与传统搜索算法不同,遗传算法从⼀组随机产⽣的称为“种群(Population)”的初始解开始搜索过程。
种群中的每个个体是问题的⼀个解,称为“染⾊体(chromos ome)”。
染⾊体是⼀串符号,⽐如⼀个⼆进制字符串。
这些染⾊体在后续迭代中不断进化,称为遗传。
在每⼀代中⽤“适值(fitness)”来测量染⾊体的好坏,⽣成的下⼀代染⾊体称为后代(offspring)。
代数中常用英语词汇

(0,2) 插值||(0,2) interpolation0#||zero-sharp; 读作零井或零开。
0+||zero-dagger; 读作零正。
1-因子||1-factor3-流形||3-manifold; 又称“三维流形”。
AIC准则||AIC criterion, Akaike information criterionAp 权||Ap-weightA稳定性||A-stability, absolute stabilityA最优设计||A-optimal designBCH 码||BCH code, Bose-Chaudhuri-Hocquenghem codeBIC准则||BIC criterion, Bayesian modification of the AICBMOA函数||analytic function of bounded mean oscillation; 全称“有界平均振动解析函数”。
BMO鞅||BMO martingaleBSD猜想||Birch and Swinnerton-Dyer conjecture; 全称“伯奇与斯温纳顿-戴尔猜想”。
B样条||B-splineC*代数||C*-algebra; 读作“C星代数”。
C0 类函数||function of class C0; 又称“连续函数类”。
CA T准则||CAT criterion, criterion for autoregressiveCM域||CM fieldCN 群||CN-groupCW 复形的同调||homology of CW complexCW复形||CW complexCW复形的同伦群||homotopy group of CW complexesCW剖分||CW decompositionCn 类函数||function of class Cn; 又称“n次连续可微函数类”。
Cp统计量||Cp-statisticC。
【优秀毕业论文】gmsk调制解调技术研究

重庆大学硕士学位论文GMSK调制解调技术研究硕士研究生:熊于菽指导教师:吴玉成教授学科、专业:电路与系统重庆大通信工程学院二OO七年九月Master Degree Dissertation of Chongqing UniversityStudy on Modulation and DemodulationTechnique of GMSKCandidate: Xiong YushuSupervisor: Prof. Wu YuchengMajor: Circuits and SystemCollege of Communication EngineeringChongqing UniversitySept. 2007摘要在数字通信系统中,全数字接收机已经得到了广泛的应用。
利用数字化方法设计通信系统中的调制解调技术是实际应用中的一项重要技术。
最小高斯频移键控(GMSK)是一种典型的连续相位调制方式,具有包络恒定、频谱紧凑、抗干扰能力强等特点,可有效降低邻道干扰,提高非线性功率放大器的效率,已在移动通信(如GSM系统)、航天测控等场合得到广泛应用。
传统方法设计的GMSK调制解调器不能很好满足全数字化接收机可编程、多模式等需要。
论文重点研究利用全数字化技术设计GMSK调制解调器,以便更广泛地使用GMSK调制解调技术。
主要研究工作有:1. 针对传统GMSK调制技术实现中存在的设计复杂、有相位累计误差等不足,基于相关文献思想,设计实现了一种改进的波形存储正交法GMSK调制信号生产方案。
该方法不存在传统方法相位累加过程中的累计误差,而且无需滤波器,降低了数字化实现中的器件资源。
仿真及FPGA实现结果表明,该方法计算量小、占用资源少,更容易实现高旁瓣抑制度的GMSK信号。
2. 研究了GMSK信号的数字化解调技术,针对突发通信系统的需要,对1比特差分解调和2bit差分解调技术进行研究,设计实现了1bit差分解调。
PS菜单中英文对照表

一、File<文件>1.New<新建>2.Open<打开>3.Open As<打开为>4.Open Recent<最近打开文件>5.Close<关闭>6.Save<存储>7.Save As<存储为> 8.Save for Web<存储为Web所用格式> 9.Revert<恢复> 10.Place<置入> 11.Import<输入> <1>PDF Image <2>Annotations<注释> 12.Export<输出> 13.Manage Workflow<管理工作流程> <1>Check In<登记> <2>Undo Check Out<还原注销> <3>Upload To Server<上载到服务器> <4>Add To Workflow<添加到工作流程> <5>Open From Workflow<从工作流程打开>14.Automate<自动> <1>Batch<批处理> <2>Create Droplet<创建快捷批处理> <3>Conditional Mode Change<条件模式更改> <4>Contact Sheet<联系表> <5>Fix Image<限制图像> <6>Multi <7>Picture package<图片包> <8>Web Photo Gallery15.File Info<文件简介> 16.Print Options<打印选项> 17.Page Setup<页面设置> 18.Print<打印> 19.Jump to<跳转到> 20.Exit<退出>二、Edit<编辑>1.Undo<还原>2.Step Forward<向前>3.Step Backward<返回>4.Fade<消退>5.Cut<剪切>6.Copy<拷贝>7.Copy Merged<合并拷贝>8.Paste<粘贴>9.Paste Into<粘贴入> 10.Clear<清除> 11.Fill<填充> 12.Stroke<描边> 13.Free Transform<自由变形>14.Transform<变换> <1>Again<再次> <2>Sacle<缩放> <3>Rotate<旋转> <4>Skew<斜切> <5>Distort<扭曲> <6>Prespective<透视> <7>Rotate 180°<旋转180度> <8>Rotate 90°CW<顺时针旋转90度> <9>Rotate 90°CCW<逆时针旋转90度> <10> Flip Hpeizontal<水平翻转> <11> Flip Vertical<垂直翻转>15.Define Brush<定义画笔> 16.Define Pattern<设置图案>17.Define Custom Shape<定义自定形状>18.Purge<清除内存数据> <1> Undo<还原> <2> Clipboard<剪贴板> <3> Histories<历史纪录> <4> All<全部>19.Color Settings<颜色设置> 20.Preset Manager<预置管理器>21.Preferences<预设> <1> General<常规> <2> Saving Files<存储文件> <3> Display & Cursors<显示与光标> <4> Transparency & Gamut<透明区域与色域> <5> Units & Rulers<单位与标尺> <6> Guides & Grid<参考线与网格> <7> Plug <8> Memory & Image Cache<内存和图像高速缓存> <9> Adobe Online <10> Workflows Options<工作流程选项>三、Image<图像>1.Mode<模式> <1> Bitmap<位图> <2> Grayscale<灰度> <3> Duotone<双色调> <4> Indexed Color<索引色> <5> RGB Color <6> CMYK Color <7> Lab Color <8> Multichannel<多通道> <9> 8 Bits/Channel<8位通道> <10> 16 Bits/Channel<16位通道> <11> Color Table<颜色表> <12>Assing Profile<制定配置文件> <13>Convert to Profile<转换为配置文件>2.Adjust<调整> <1> Levels<色阶>> <2> Auto Laves<自动色阶> <3> Auto Contrast<自动对比度> <4> Curves<曲线>> <5> Color Balance<色彩平衡> <6> Brightness/Contrast<亮度/对比度> <7> Hue/Saturation<色相/饱和度> <8> Desaturate<去色> <9> Replace Color<替换颜色><10> Selective Color<可选颜色> <11> Channel Mixer<通道混合器> <12> Gradient Map<渐变映射> <13> Invert<反相> <14> Equalize<色彩均化> <15> Threshold<阈值> <16> Posterize<色调分离> <17> Variations<变化>3.Duplicate<复制>4.Apply Image<应用图像>5.Calculations<计算>6.Image Size<图像大小>7.Canvas Size<画布大小>8.Rotate Canvas<旋转画布> <1> 180°<180度> <2> 90°CW<顺时针90度> <3> 90°CCW<逆时针90度> <4> Arbitrary<任意角度> <5> Flip Horizontal<水平翻转> <6> Flip Vertical<垂直翻转>9.Crop<裁切> 10.Trim<修整> 11.Reverl All<显示全部> 12.Histogram<直方图> 13.Trap<陷印> 14.Extract<抽出> 15.Liquify<液化>四、Layer<图层>1.New<新建> <1> Layer<图层> <2> Background From Layer<背景图层> <3> Layer Set<图层组> <4> Layer Set From Linked<图层组来自链接的> <5> Layer via Copy<通过拷贝的图层> <6> Layer via Cut<通过剪切的图层>2.Duplicate Layer<复制图层>3.Delete Layer<删除图层>yer Properties<图层属*>yer Style<图层样式> <1> Blending Options<混合选项> <2> Drop Shadow<投影> <3> Inner Shadow<内*影> <4> Outer Glow<外发光> <5> Inner Glow<内发光> <6> Bevel and Emboss<斜面和浮雕> <7> Satin<光泽> <8> Color Overlay<颜色叠加> <9> Gradient Overlay<渐变叠加> <10> Pattern Overlay<图案叠加> <11> Stroke<描边> <12> Copy Layer Effects<拷贝图层样式> <13> Paste Layer Effects<粘贴图层样式> <14> Paste Layer Effects To Linked<将图层样式粘贴的链接的> <15> Clear Layer Effects<清除图层样式> <16> Global Light<全局光> <17> Create Layer<创建图层> <18> Hide All Effects<显示/隐藏全部效果> <19> Scale Effects<缩放效果>6.New Fill Layer<新填充图层> <1> Solid Color<纯色> <2> Gradient<渐变> <3> Pattern<图案>7.New Adjustment Layer<新调整图层> <1>Levels<色阶> <2>Curves<曲线> <3>Color Balance<色彩平衡> <4>Brightness/Contrast<亮度/对比度> <5>Hue/Saturation<色相/饱和度> <6>Selective Color<可选颜色> <7>Channel Mixer<通道混合器> <8>Gradient Map<渐变映射> <9>Invert<反相> <10>Threshold<阈值> <11>Posterize<色调分离>8.Change Layer Content<更改图层内容>yer Content Options<图层内容选项>10.Type<文字> <1> Create Work Path<创建工作路径> <2> Convert to Shape<转变为形状> <3> Horizontal<水平> <4> Vertical<垂直> <5> Anti-Alias None<消除锯齿无> <6> Anti-Alias Crisp<消除锯齿明晰> <7> Anti-Alias Strong<消除锯齿强> <8> Anti-Alias Smooth<消除锯齿平滑> <9> Covert To Paragraph Text<转换为段落文字> <10> Warp Text<文字变形> <11>Update All Text Layers<更新所有文本图层> <12>Replace All Missing Fonts<替换所以缺欠文字>11.Rasterize<栅格化> <1>Type<文字> <2>Shape<形状> <3>Fill Content<填充内容> <4>Layer Clipping Path<图层剪贴路径> <5>Layer<图层> <6>Linked Layers<链接图层> <7>All Layers<所以图层>12.New Layer Based Slice<基于图层的切片>13.Add Layer Mask<添加图层蒙板> <1> Reveal All<显示全部> <2> Hide All<隐藏全部> <3>Reveal Selection<显示选区> <4> Hide Selection<隐藏选区>14.Enable Layer Mask<启用图层蒙板>15.Add Layer Clipping Path<添加图层剪切路径> <1>Reveal All<显示全部> <2>Hide All<隐藏全部> <3>Current Path<当前路径>16.Enable Layer Clipping Path<启用图层剪切路径>17.Group Linked<于前一图层编组>18.UnGroup<取消编组>19.Arrange<排列> <1> Bring to Front<置为顶层> <2> Bring Forward<前移一层> <3> Send Backward<后移一层> <4> Send to Back<置为底层>20.Arrange Linked<对齐链接图层> <1> Top Edges<顶边> <2> Vertical Center<垂直居中> <3> Bottom Edges<底边> <4> Left Edges<左边> <5> Horizontal Center<水平居中> <6> Right Edges<右边>21.Distribute Linked<分布链接的> <1> Top Edges<顶边> <2> Vertical Center<垂直居中> <3> Bottom Edges<底边> <4> Left Edges<左边> <5> Horizontal Center<水平居中> <6> Right Edges<右边>22.Lock All Linked Layers<锁定所有链接图层>23.Merge Linked<合并链接图层>24.Merge Visible<合并可见图层> 25.Flatten Image<合并图层>26.Matting<修边> <1> Define<去边> <2> Remove Black Matte<移去黑色杂边> <3> Remove White Matte<移去白色杂边>五、Selection<选择>1.All<全部>2.Deselect<取消选择>3.Reselect<重新选择>4.Inverse<反选>5.Color Range<色彩范围>6.Feather<羽化>7.Modify<修改> <1> Border<扩边> <2> Smooth<平滑> <3> Expand<扩展> <4> Contract<收缩>8.Grow<扩大选区> 9.Similar<选区相似> 10.Transform Selection<变换选区> 11.Load Selection<载入选区> 12.Save Selection<存储选区>六、Filter<滤镜>st Filter<上次滤镜*作>2.Artistic<艺术效果> <1> Colored Pencil<彩色铅笔> <2> Cutout<剪贴画> <3> Dry Brush<干笔画> <4> Film Grain<胶片颗粒> <5> Fresco<壁画> <6> Neon Glow<霓虹灯光> <7> Paint Daubs<涂抹棒> <8> Palette Knife<调色刀> <9> Plastic Wrap<塑料包装> <10> Poster Edges<海报边缘> <11> Rough Pastels<粗糙彩笔> <12> Smudge Stick<绘画涂抹> <13> Sponge<海绵> <14> Underpainting<底纹效果> <15> Watercolor<水彩>3.Blur<模糊> <1> Blur<模糊> <2> Blur More<进一步模糊> <3> Gaussian Blur<高斯模糊><4> Motion Blur<动态模糊> <5> Radial Blur<径向模糊> <6> Smart Blur<特殊模糊>4.Brush Strokes<画笔描边> <1> Accented Edges<强化边缘> <2> Angled Stroke<成角的线条> <3> Crosshatch<*影线> <4> Dark Strokes<深色线条> <5> Ink Outlines<油墨概况> <6> Spatter<喷笔> <7> Sprayed Strokes<喷色线条> <8> Sumi5.Distort<扭曲> <1> Diffuse Glow<扩散亮光> <2> Displace<置换> <3> Glass<玻璃> <4>Ocean Ripple<海洋波纹> <5> Pinch<挤压> <6> Polar Coordinates<极坐标> <7> Ripple<波纹> <8> Shear<切变> <9> Spherize<球面化> <10> Twirl<旋转扭曲> <11> Wave<波浪> <12> Zigzag<水波>6.Noise<杂色> <1> Add Noise<加入杂色> <2> Despeckle<去斑> <3> Dust &Scratches<蒙尘与划痕> <4> Median<中间值>7.Pixelate<像素化> <1> Color Halftone<彩色半调> <2> Crystallize<晶格化> <3> Facet<彩块化> <4> Fragment<碎片> <5> Mezzotint<铜版雕刻> <6> Mosaic<马赛克> <7> Pointillize<点状化>8.Render<渲染> <1> 3D Transform<3D 变换> <2> Clouds<云彩> <3> Difference Clouds<分层云彩> <4> Lens Flare<镜头光晕> <5> Lighting Effects<光照效果> <6> Texture Fill<纹理填充>9.Sharpen<锐化> <1> Sharpen<锐化> <2> Sharpen Edges<锐化边缘> <3> Sharpen More<进一步锐化> <4> Unsharp Mask10.Sketch<素描> <1> Bas Relief<基底凸现> <2> Chalk &Charcoal<粉笔和炭笔> <3> Charcoal <3> Chrome<铬*> <4> Conte Crayon<彩色粉笔> <5> Graphic Pen<绘图笔> <6> Halftone Pattern<半色调图案> <7> Note Paper<便条纸> <8> Photocopy<副本> <9> Plaster<塑料效果> <10> Reticulation<网状> <11> Stamp<图章> <12> Torn Edges<撕边> <13> Water Paper<水彩纸>11.Stylize<风格化> <1> Diffuse<扩散> <2> Emboss<浮雕> <3> Extrude<突出> <4> Find Edges<查找边缘> <5> Glowing Edges<照亮边缘> <6> Solarize<曝光过度> <7> Tiles<拼贴> <8> Trace Contour<等高线> <9> Wind<风>12.Texture<<纹理> <1> Craquelure<龟裂缝> <2> Grain<颗粒> <3> Mosained Tiles<马赛克拼贴> <4> Patchwork<拼缀图> <5> Stained Glass<染色玻璃> <6> Texturixer<纹理化>13.Video<视频> <1> De <2> NTSC Colors14.Other<其它> <1> Custom<自定义> <2> High Pass<高反差保留> <3> Maximum<最大值> <4> Minimum<最小值> <5> Offset<位移>15.Digimarc <1>Embed Watermark<嵌入水印> <2>Read Watermark<读取水印>七、View<视图>1.New View<新视图>2.Proof Setup<校样设置> <1>Custom<自定> <2>Working CMYK<处理CMYK> <3>Working Cyan Plate<处理青版> <4>Working Magenta Plate<处理洋红版> <5>Working Yellow Plate<处理*版> <6>Working Black Plate<处理黑版> <7>Working CMY Plate<处理CMY版> <8>Macintosh RGB <9>Windows RGB <10>Monitor RGB<显示器RGB> <11>Simulate Paper White<模拟纸白> <12>Simulate Ink Black<模拟墨黑>3.Proof Color<校样颜色>4.Gamut Wiring<色域警告>5.Zoom In<放大>6.Zoom Out<缩小>7.Fit on Screen<满画布显示>8.Actual Pixels<实际象素>9.Print Size<打印尺寸> 10.Show Extras<显示额外的>11.Show<显示> <1> Selection Edges<选区边缘> <2> Target Path<目标路径> <3> Grid<网格> <4> Guides<参考线> <5> Slices<切片> <6> Notes<注释> <7> All<全部> <8> None<无> <9>Show Extras Options<显示额外选项>12.Show Rulers<显示标尺> 13.Snap<对齐>14.Snap To<对齐到> <1> Guides<参考线> <2> Grid<网格> <3> Slices<切片> <4> DocumentBounds<文档边界> <5> All<全部> <6> None<无>15.Show Guides<锁定参考线> 16.Clear Guides<清除参考线>17.New Guides<新参考线> 18.Lock Slices<锁定切片> 19.Clear Slices<清除切片>八、Windows<窗口>1.Cascade<层叠>2.Tile<拼贴>3.Arrange Icons<排列图标>4.Close All<关闭全部>5.Show/Hide Tools<显示/隐藏工具>6.Show/Hide Options<显示/隐藏选项>7.Show/Hide Navigator<显示/隐藏导航>8.Show/Hide Info<显示/隐藏信息>9.Show/Hide Color<显示/隐藏颜色> 10.Show/Hide Swatches<显示/隐藏色板> 11.Show/Hide Styles<显示/隐藏样式> 12.Show/Hide History<显示/隐藏历史记录> 13.Show/Hide Actions<显示/隐藏动作> 14.Show/Hide Layers<显示/隐藏图层> 15.Show/Hide Channels<显示/隐藏通道> 16.Show/Hide Paths<显示/隐藏路径> 17.Show/Hide Character<显示/隐藏字符> 18.Show/Hide Paragraph<显示/隐藏段落> 19.Show/Hide Status Bar<显示/隐藏状态栏> 20.Reset Palette Locations<复位调板位置>。
Photoshop 常用术语的英文翻译

最佳答案Photoshop 常用术语的英文翻译一、File-(文件)1.New-(新建)2.Open-(打开)3.Open As-(打开为)4.Open Recent-(最近打开文件)5.Close-(关闭)6.Save-(存储)7.Save As-(存储为)8.Save for Web-(存储为Web所用格式)9.Revert-(恢复)10.Place-(置入)11.Import-(输入)-(1)PDF Image-(2)Annotations-(注释)12.Export-(输出)13.Manage Workflow-(管理工作流程)-(1)Check In-(登记)-(2)Undo Check Out-(还原注销)-(3)Upload To Server-(上载到服务器)-(4)Add To Workflow-(添加到工作流程)-(5)Open From Workflow-(从工作流程打开)14.Automate-(自动)-(1)Batch-(批处理)-(2)Create Droplet-(创建快捷批处理)-(3)Conditional Mode Change-(条件模式更改)-(4)Contact Sheet-(联系表)-(5)Fix Image-(限制图像)-(6)Multi-(7)Picture package-(图片包)-(8)Web Photo Gallery15.File Info-(文件简介)16.Print Options-(打印选项)17.Page Setup-(页面设置)18.Print-(打印)19.Jump to-(跳转到)20.Exit-(退出)二、Edit-(编辑)1.Undo-(还原)2.Step Forward-(向前)3.Step Backward-(返回)4.Fade-(消退)5.Cut-(剪切)6.Copy-(拷贝)7.Copy Merged-(合并拷贝)8.Paste-(粘贴)9.Paste Into-(粘贴入)10.Clear-(清除)11.Fill-(填充)12.Stroke-(描边)13.Free Transform-(自由变形)14.Transform-(变换)-(1)Again-(再次)-(2)Sacle-(缩放)-(3)Rotate-(旋转)-(4)Skew-(斜切)-(5)Distort-(扭曲)-(6)Prespective-(透视)-(7)Rotate 180°-(旋转180度)-(8)Rotate 90°CW-(顺时针旋转90度)-(9)Rotate 90°CCW-(逆时针旋转90度)-(10)Flip Hpeizontal-(水平翻转)-(11)Flip V ertical-(垂直翻转)15.Define Brush-(定义画笔)16.Define Pattern-(设置图案)17.Define Custom Shape-(定义自定形状)18.Purge-(清除内存数据)-(1)Undo-(还原)-(2)Clipboard-(剪贴板)-(3)Histories-(历史纪录)-(4)All-(全部)19.Color Settings-(颜色设置)20.Preset Manager-(预置管理器)21.Preferences-(预设)-(1)General-(常规)-(2)Saving Files-(存储文件)-(3)Display &Cursors-(显示与光标)-(4)Transparency &Gamut-(透明区域与色域)-(5)Units &Rulers-(单位与标尺)-(6)Guides &Grid-(参考线与网格)-(7)Plug-(8)Memory &Image Cache-(内存和图像高速缓存)-(9)Adobe Online-(10)Workflows Options-(工作流程选项)三、Image-(图像)1.Mode-(模式)-(1)Bitmap-(位图)-(2)Grayscale-(灰度)-(3)Duotone-(双色调)-(4)Indexed Color-(索引色)-(5)RGB Color-(6)CMYK Color-(7)Lab Color-(8)Multichannel-(多通道)-(9)8 Bits/Channel-(8位通道)-(10)16 Bits/Channel-(16位通道)-(11)Color Table-(颜色表)-(12)Assing Profile-(制定配置文件)-(13)Convert to Profile-(转换为配置文件)2.Adjust-(调整)-(1)Levels-(色阶))-(2)Auto Laves-(自动色阶)-(3)Auto Contrast-(自动对比度)-(4)Curves-(曲线))-(5)Color Balance-(色彩平衡)-(6)Brightness/Contrast-(亮度/对比度)-(7)Hue/Saturation-(色相/饱和度)-(8)Desaturate-(去色)-(9)Replace Color-(替换颜色)-(10)Selective Color-(可选颜色)-(11)Channel Mixer-(通道混合器)-(12)Gradient Map-(渐变映射)-(13)Invert-(反相)-(14)Equalize-(色彩均化)-(15)Threshold-(阈值)-(16)Posterize-(色调分离)-(17)V ariations-(变化)3.Duplicate-(复制)4.Apply Image-(应用图像)5.Calculations-(计算)6.Image Size-(图像大小)7.Canvas Size-(画布大小)8.Rotate Canvas-(旋转画布)-(1)180°-(180度)-(2)90°CW-(顺时针90度)-(3)90°CCW-(逆时针90度)-(4)Arbitrary-(任意角度)-(5)Flip Horizontal-(水平翻转)-(6)Flip V ertical-(垂直翻转)9.Crop-(裁切)10.Trim-(修整)11.Reverl All-(显示全部)12.Histogram-(直方图)13.Trap-(陷印)14.Extract-(抽出)15.Liquify-(液化)四、Layer-(图层)1.New-(新建)-(1)Layer-(图层)-(2)Background From Layer-(背景图层)-(3)Layer Set-(图层组)-(4)Layer Set From Linked-(图层组来自链接的)-(5)Layer via Copy-(通过拷贝的图层)-(6)Layer via Cut-(通过剪切的图层)2.Duplicate Layer-(复制图层)3.Delete Layer-(删除图层)yer Properties-(图层属性)yer Style-(图层样式)-(1)Blending Options-(混合选项)-(2)Drop Shadow-(投影)-(3)Inner Shadow-(内阴影)-(4)Outer Glow-(外发光)-(5)Inner Glow-(内发光)-(6)Bevel and Emboss-(斜面和浮雕)-(7)Satin-(光泽)-(8)Color Overlay-(颜色叠加)-(9)Gradient Overlay-(渐变叠加)-(10)Pattern Overlay-(图案叠加)-(11)Stroke-(描边)-(12)Copy Layer Effects-(拷贝图层样式)-(13)Paste Layer Effects-(粘贴图层样式)-(14)Paste Layer Effects To Linked-(将图层样式粘贴的链接的)-(15)Clear Layer Effects-(清除图层样式)-(16)Global Light-(全局光)-(17)Create Layer-(创建图层)-(18)Hide All Effects-(显示/隐藏全部效果)-(19)Scale Effects-(缩放效果)blend mode 混合模式6.New Fill Layer-(新填充图层)-(1)Solid Color-(纯色)-(2)Gradient-(渐变)-(3)Pattern-(图案)7.New Adjustment Layer-(新调整图层)-(1)Levels-(色阶)-(2)Curves-(曲线)-(3)Color Balance-(色彩平衡)-(4)Brightness/Contrast-(亮度/对比度)-(5)Hue/Saturation-(色相/饱和度)-(6)Selective Color-(可选颜色)-(7)Channel Mixer-(通道混合器)-(8)Gradient Map-(渐变映射)-(9)Invert-(反相)-(10)Threshold-(阈值)-(11)Posterize-(色调分离)8.Change Layer Content-(更改图层内容)yer Content Options-(图层内容选项)10.Type-(文字)-(1)Create Work Path-(创建工作路径)-(2)Convert to Shape-(转变为形状)-(3)Horizontal-(水平)-(4)V ertical-(垂直)-(5)Anti-Alias None-(消除锯齿无)-(6)Anti-Alias Crisp-(消除锯齿明晰)-(7)Anti-Alias Strong-(消除锯齿强)-(8)Anti-Alias Smooth-(消除锯齿平滑)-(9)Covert To Paragraph Text-(转换为段落文字)-(10)Warp Text-(文字变形)-(11)Update All Text Layers-(更新所有文本图层)-(12)Replace All Missing Fonts-(替换所以缺欠文字)11.Rasterize-(栅格化)-(1)Type-(文字)-(2)Shape-(形状)-(3)Fill Content-(填充内容)-(4)Layer Clipping Path-(图层剪贴路径)-(5)Layer-(图层)-(6)Linked Layers-(链接图层)-(7)All Layers-(所以图层)12.New Layer Based Slice-(基于图层的切片)13.Add Layer Mask-(添加图层蒙板)-(1)Reveal All-(显示全部)-(2)Hide All-(隐藏全部)-(3)Reveal Selection-(显示选区)-(4)Hide Selection-(隐藏选区)14.Enable Layer Mask-(启用图层蒙板)15.Add Layer Clipping Path-(添加图层剪切路径)-(1)Reveal All-(显示全部)-(2)Hide All-(隐藏全部)-(3)Current Path-(当前路径)16.Enable Layer Clipping Path-(启用图层剪切路径)17.Group Linked-(于前一图层编组)18.UnGroup-(取消编组)19.Arrange-(排列)-(1)Bring to Front-(置为顶层)-(2)Bring Forward-(前移一层)-(3)Send Backward-(后移一层)-(4)Send to Back-(置为底层)20.Arrange Linked-(对齐链接图层)-(1)Top Edges-(顶边)-(2)V ertical Center-(垂直居中)-(3)Bottom Edges-(底边)-(4)Left Edges-(左边)-(5)Horizontal Center-(水平居中)-(6)Right Edges-(右边)21.Distribute Linked-(分布链接的)-(1)Top Edges-(顶边)-(2)V ertical Center-(垂直居中)-(3)Bottom Edges-(底边)-(4)Left Edges-(左边)-(5)Horizontal Center-(水平居中)-(6)Right Edges-(右边)22.Lock All Linked Layers-(锁定所有链接图层)23.Merge Linked-(合并链接图层)24.Merge V isible-(合并可见图层)25.Flatten Image-(合并图层)26.Matting-(修边)-(1)Define-(去边)-(2)Remove Black Matte-(移去黑色杂边)-(3)Remove White Matte-(移去白色杂边)五、Selection-(选择)1.All-(全部)2.Deselect-(取消选择)3.Reselect-(重新选择)4.Inverse-(反选)5.Color Range-(色彩范围)6.Feather-(羽化)7.Modify-(修改)-(1)Border-(扩边)-(2)Smooth-(平滑)-(3)Expand-(扩展)-(4)Contract-(收缩)8.Grow-(扩大选区)9.Similar-(选区相似)10.Transform Selection-(变换选区)11.Load Selection-(载入选区)12.Save Selection-(存储选区)六、Filter-(滤镜)st Filter-(上次滤镜操作)2.Artistic-(艺术效果)-(1)Colored Pencil-(彩色铅笔)-(2)Cutout-(剪贴画)-(3)Dry Brush-(干笔画)-(4)Film Grain-(胶片颗粒)-(5)Fresco-(壁画)-(6)Neon Glow-(霓虹灯光)-(7)Paint Daubs-(涂抹棒)-(8)Palette Knife-(调色刀)-(9)Plastic Wrap-(塑料包装)-(10)Poster Edges-(海报边缘)-(11)Rough Pastels-(粗糙彩笔)-(12)Smudge Stick-(绘画涂抹)-(13)Sponge-(海绵)-(14)Underpainting-(底纹效果)-(15)Watercolor-(水彩)3.Blur-(模糊)-(1)Blur-(模糊)-(2)Blur More-(进一步模糊)-(3)Gaussian Blur-(高斯模糊)-(4)Motion Blur-(动态模糊)-(5)Radial Blur-(径向模糊)-(6)Smart Blur-(特殊模糊)4.Brush Strokes-(画笔描边)-(1)Accented Edges-(强化边缘)-(2)Angled Stroke-(成角的线条)-(3)Crosshatch-(阴影线)-(4)Dark Strokes-(深色线条)-(5)Ink Outlines-(油墨概况)-(6)Spatter-(喷笔)-(7)Sprayed Strokes-(喷色线条)-(8)Sumi5.Distort-(扭曲)-(1)Diffuse Glow-(扩散亮光)-(2)Displace-(置换)-(3)Glass-(玻璃)-(4)Ocean Ripple-(海洋波纹)-(5)Pinch-(挤压)-(6)Polar Coordinates-(极坐标)-(7)Ripple-(波纹)-(8)Shear-(切变)-(9)Spherize-(球面化)-(10)Twirl-(旋转扭曲)-(11)Wave-(波浪)-(12)Zigzag-(水波)6.Noise-(杂色)-(1)Add Noise-(加入杂色)-(2)Despeckle-(去斑)-(3)Dust &Scratches-(蒙尘与划痕)-(4)Median-(中间值)7.Pixelate-(像素化)-(1)Color Halftone-(彩色半调)-(2)Crystallize-(晶格化)-(3)Facet-(彩块化)-(4)Fragment-(碎片)-(5)Mezzotint-(铜版雕刻)-(6)Mosaic-(马赛克)-(7)Pointillize-(点状化)8.Render-(渲染)-(1)3D Transform-(3D 变换)-(2)Clouds-(云彩)-(3)Difference Clouds-(分层云彩)-(4)Lens Flare-(镜头光晕)-(5)Lighting Effects-(光照效果)-(6)Texture Fill-(纹理填充)9.Sharpen-(锐化)-(1)Sharpen-(锐化)-(2)Sharpen Edges-(锐化边缘)-(3)Sharpen More-(进一步锐化)-(4)Unsharp Mask10.Sketch-(素描)-(1)Bas Relief-(基底凸现)-(2)Chalk &Charcoal-(粉笔和炭笔)-(3)Charcoal-(3)Chrome-(铬黄)-(4)Conte Crayon-(彩色粉笔)-(5)Graphic Pen-(绘图笔)-(6)Halftone Pattern-(半色调图案)-(7)Note Paper-(便条纸)-(8)Photocopy-(副本)-(9)Plaster-(塑料效果)-(10)Reticulation-(网状)-(11)Stamp-(图章)-(12)Torn Edges-(撕边)-(13)Water Paper-(水彩纸)11.Stylize-(风格化)-(1)Diffuse-(扩散)-(2)Emboss-(浮雕)-(3)Extrude-(突出)-(4)Find Edges-(查找边缘)-(5)Glowing Edges-(照亮边缘)-(6)Solarize-(曝光过度)-(7)Tiles-(拼贴)-(8)Trace Contour-(等高线)-(9)Wind-(风)12.Texture-(-(纹理)-(1)Craquelure-(龟裂缝)-(2)Grain-(颗粒)-(3)Mosained Tiles-(马赛克拼贴)-(4)Patchwork-(拼缀图)-(5)Stained Glass-(染色玻璃)-(6)Texturixer-(纹理化)13.Video-(视频)-(1)De-(2)NTSC Colors14.Other-(其它)-(1)Custom-(自定义)-(2)High Pass-(高反差保留)-(3)Maximum-(最大值)-(4)Minimum-(最小值)-(5)Offset-(位移)15.Digimarc-(1)Embed Watermark-(嵌入水印)-(2)Read Watermark-(读取水印)七、View-(视图)1.New V iew-(新视图)2.Proof Setup-(校样设置)-(1)Custom-(自定)-(2)Working CMYK-(处理CMYK)-(3)Working Cyan Plate-(处理青版)-(4)Working Magenta Plate-(处理洋红版)-(5)Working Yellow Plate-(处理黄版)-(6)Working Black Plate-(处理黑版)-(7)Working CMY Plate-(处理CMY版)-(8)Macintosh RGB-(9)Windows RGB-(10)Monitor RGB-(显示器RGB)-(11)Simulate Paper White-(模拟纸白)-(12)Simulate Ink Black-(模拟墨黑)3.Proof Color-(校样颜色)4.Gamut Wiring-(色域警告)5.Zoom In-(放大)6.Zoom Out-(缩小)7.Fit on Screen-(满画布显示)8.Actual Pixels-(实际象素)9.Print Size-(打印尺寸)10.Show Extras-(显示额外的)11.Show-(显示)-(1)Selection Edges-(选区边缘)-(2)Target Path-(目标路径)-(3)Grid-(网格)-(4)Guides-(参考线)-(5)Slices-(切片)-(6)Notes-(注释)-(7)All-(全部)-(8)None-(无)-(9)Show Extras Options-(显示额外选项)12.Show Rulers-(显示标尺)f13.Snap-(对齐)14.Snap To-(对齐到)-(1)Guides-(参考线)-(2)Grid-(网格)-(3)Slices-(切片)-(4)Document Bounds-(文档边界)-(5)All-(全部)-(6)None-(无)15.Show Guides-(锁定参考线)16.Clear Guides-(清除参考线)17.New Guides-(新参考线)18.Lock Slices-(锁定切片)19.Clear Slices-(清除切片)八、Windows-(窗口)1.Cascade-(层叠)2.Tile-(拼贴)3.Arrange Icons-(排列图标)4.Close All-(关闭全部)5.Show/Hide Tools-(显示/隐藏工具)6.Show/Hide Options-(显示/隐藏选项)7.Show/Hide Navigator-(显示/隐藏导航)8.Show/Hide Info-(显示/隐藏信息)9.Show/Hide Color-(显示/隐藏颜色)10.Show/Hide Swatches-(显示/隐藏色板)11.Show/Hide Styles-(显示/隐藏样式)12.Show/Hide History-(显示/隐藏历史记录)13.Show/Hide Actions-(显示/隐藏动作)14.Show/Hide Layers-(显示/隐藏图层)15.Show/Hide Channels-(显示/隐藏通道)16.Show/Hide Paths-(显示/隐藏路径)17.Show/Hide Character-(显示/隐藏字符)18.Show/Hide Paragraph-(显示/隐藏段落)19.Show/Hide Status Bar-(显示/隐藏状态栏)20.Reset Palette Locations-(复位调板位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Gaussian-selection-based non-optimal searchfor speaker identificationMarie Roch*San Diego State University,5500Campanile Drive,San Diego,CA 92182-7720,USA Received 3February 2004;received in revised form 28March 2005;accepted 5June 2005AbstractMost speaker identification systems train individual models for each speaker.This is done as individual models often yield better performance and they permit easier adaptation and enrollment.When classifying a speech token,the token is scored against each model and the maximum a priori decision rule is used to decide the classification label.Conse-quently,the cost of classification grows linearly for each token as the population size grows.When considering that the number of tokens to classify is also likely to grow linearly with the population,the total work load increases exponentially.This paper presents a preclassifier which generates an N -best hypothesis using a novel application of Gaussian selec-tion,and a transformation of the traditional tail test statistic which lets the implementer specify the tail region in terms of probability.The system is trained using parameters of individual speaker models and does not require the original feature vectors,even when enrolling new speakers or adapting existing ones.As the correct class label need only be in the N -best hypothesis set,it is possible to prune more Gaussians than in a traditional Gaussian selection application.The N -best hypothesis set is then evaluated using individual speaker models,resulting in an overall reduction of workload.Ó2005Elsevier B.V.All rights reserved.Keywords:Speaker recognition;Text-independent speaker identification;Talker recognition;Gaussian selection;Non-optimal search1.IntroductionTraditionally,speaker identification is imple-mented by training a single model for each speaker in the set of individuals to be identified.Identifica-tion is accomplished by scoring a test utterance against each model and using a decision rule,such as the maximum a posteriori (MAP)decision rule where the class of the highest scoring model is selected as the class label.The advantages of such schemes over training a single model with multiple class outputs is that enrollment of new speakers does not require the0167-6393/$-see front matter Ó2005Elsevier B.V.All rights reserved.doi:10.1016/j.specom.2005.06.003*Tel.:+16195945830;fax:+16195946746.E-mail address:marie.roch@Speech Communication xxx (2005)xxx–xxxtraining data for the existing speakers and the training of individual models is faster.The down-side to this approach is that the computational complexity required for identification grows line-arly for the classification of each speaker as the number of the speakers increases.Unless the majority of enrolled speakers are infrequent users of the system,it is reasonable to expect that as the number of registered users increase,the num-ber of classification requests could increase at least linearly.Under this assumption,the system load rises exponentially as the registered population in-creases due to the increase of requests and increase of models to check against.In this work,we develop a preclassifier which produces a hypothesis that a token is most likely to belong to one of a small subset of the possible classes.The token is then rescored against the tra-ditional per class models and afinal class label is assigned.The design goals are to produce a pre-classifier with the following properties:(1)The computational workload of the system isreduced.(2)Enrollment of new speakers should be of lowcost.Regeneration of the preclassifier as newspeakers are enrolled should not be cost pro-hibitive with respect to both time and spacerequirements.(3)There should be minimal or small impact onthe classification error e of the sys-tem should incur no more than a smallpenalty in classification performance.We will show that a system meeting the above criteria can be achieved through a novel applica-tion of Gaussian selection.A Gaussian selection system is constructed which evaluates a subset of the non-outlier Gaussians near each speaker.Un-like traditional Gaussian selection systems like those described in PichenyÕs(1999)review of large vocabulary dictation systems,there is no attempt to capture all of the distributions for which the point is not an outlier.A small subset of the distri-butions is sufficient to identify a set of promising candidates.This candidate set is then rescored using speaker-specific models and the MAP deci-sion rule is applied.It should be noted that the proposed system is non-optimal;there is no guarantee that the hypothesis set will contain the correct class of the token being classified.As will be demonstrated empirically in the experimental section,in most cases this has minimal impact on the classification error rate for the evaluated corpora.The remainder of this paper is organized as fol-lows:Section2describes an overview of existing techniques to reduce the computational load of speaker recognition systems.Next,we review Gaussian selection(Section3)and present a way to specify the outlier test in terms of probability. Section4describes how Gaussian selection can be applied to construct an efficient preclassifier which meets the stated design goals.Section5 describes the experimental methodology,and results are reported in Section6.Finally,we sum-marize ourfindings in Section7.2.BackgroundThe proposed Gaussian-selection-based preclas-sifier differs from other non-optimal search tech-niques such as the well-known beam search (Huang et al.,2001),time-reordered beam search of Pellom and Hansen(1998),and confidence-based pruning(Kinnunen et al.,in press)in that classification speed can be increased without prun-ing candidates before all feature vectors are consid-ered,but the system could of course be combined with such techniques.In terms of system architec-ture,the proposed technique is similar to the two stage classification system of Pan et al.(2000)where two learning vector quantizers(LVQ)of differing size are used forfirst and second pass scoring.There are several partition-based approaches that have been proposed for speech and speaker recognition systems.The partitioning results in a pruning of Gaussian evaluations.These systems can be separated into techniques which provide separate partitions for each model and those that partition the entire feature space.Pruning of Gaussians in these techniques occurs when com-puting the posterior likelihood for thefinal classi-fication decision,and in all cases it is not part of a N-best match strategy.2M.Roch/Speech Communication xxx(2005)xxx–xxxModel-specific partitioning schemes include the original Gaussian selection scheme of Bocchieri (1993)(which is discussed in the next section)as well as proposals by Lin et al.(1996),and Auc-kenthaler and Mason(2001).LVQ has been used to partition the feature space for speaker identifi-cation by Lin et al.(1996)with each partition rep-resented by a Gaussian mixture model(GMM). Auckenthaler and Mason(2001)applied Gaussian selection to the speaker verification task.They also developed so-called‘‘hash models,’’where mix-tures of a low-order GMM contained mappings indicating which mixtures of a larger GMM should be evaluated.Examples of feature space partitioning can be found in(Reynolds et al.,2000;Padmanabhan et al.,1999;Xiang and Berger,2003).In a speaker verification task,Reynolds et al.(2000)construct a universal background model(UBM)for speaker verification which is a GMM consisting of speech from a large set of disjoint speakers.Individual GMM speaker models are adapted from the UBM using maximum a posteriori(MAP)adapta-tion of the mixture means.When scoring,the UBM is scoredfirst and the mixtures of the adapted GMM corresponding to the top-ranking UBM mixtures are subsequently scored.Padmanabhan et al.(1999)proposed the parti-tioning of the feature space through the use of decision trees in a speech recognition task.During classification,the decision tree is traversed for each feature vector,and only classes associated with the leaf node are evaluated.As the feature data is re-quired for creating the decision tree,this technique would require that training data be retained mak-ing it difficult to meet design goal2in Section1 when new speakers are enrolled or existing ones are adapted.Davenport et al.(1999)have pro-posed a simpler version of this scheme for the BBN Byblos system.Xiang and Berger(2003)created a tree struc-tured classification system for speaker verification. The tree structure was based on the work of Shi-noda and Lee(2001).Each split point forms an interior node of a tree which they call a structural background model(SBM).Efficient computation is achieved by scoring each child of the root and only scoring the children of the best mixture.This technique is applied recursively until the leaf nodes are reached.This results in efficient scoring with a slight increase in error rate,similar to that of Gaussian selection techniques.The error rate is re-duced by exploiting the multiple resolutions of the model,using a multi-layer perceptron trained by back-propagation.The authors propose that the system could be extended to speaker identification by adding one output node per class to the neural network.The training time and training data stor-age requirements would make the neural network portion of this model difficult to apply to speaker identification in situations where new enrollment or adaptation is a common occurrence.The proposed preclassifier falls in the category of feature space partitioning methods and differs from the aforementioned techniques although it is possible to combine it with some of the existing techniques as will be briefly discussed in the conclusion.3.Gaussian selectionThe evaluation of probability density functions (pdfs)in parametric statistical models is a compu-tationally expensive task.For any given observa-tion,the observation is likely to be an outlier with respect to many of the modelsÕdensity func-tions.The goal of Gaussian selection is to identify Gaussians where the observation is an outlier and replace their evaluation with a small constant or table lookup.Bocchieri(1993)was thefirst to propose a tech-nique to efficiently partition a set of distributions into outlier versus non-outlier distributions and to use this knowledge to reduce the set of pdfs that need be evaluated.In his algorithm,the feature space is partitioned by a vector quantization (VQ)codebook which is generated from the means of the Gaussian distributions of an HMM.Each of the codewords is examined to determine whether or not it would be considered an outlier with respect to all of the pdfs in the model.The pdfs for which the codeword is not an outlier are retained as a set which later researchers called a short list.The same pdf may appear on multiple short lists.M.Roch/Speech Communication xxx(2005)xxx–xxx3During recognition,observed feature vectors are quantized to the nearest codeword and the pdfs on the short list are evaluated.The contribution of the omitted pdfs is represented by the addition of a small constant.For a more detailed introduction to Gaussian selection,the interested reader is referred to Gales et al.(1999)whose presentation we follow where possible.For brevity,we only analyze GMMs,but the discussion is applicable to HMMs with minor changes.Before giving a formal introduction to Gauss-ian selection,we will introduce some useful nota-tion for GMMs and VQ Codebooks.It is assumed that the reader is familiar with these con-cepts;details can be found in standard texts such as Huang et al.(2001).Let us assume that a GMM is denoted as a 4-tu-ple M =(a ,l ,R ,h )of N m mixtures where each mix-ture 16j 6N m is a normal distribution N ðl j ;R j Þwith prior weight a j such that P N mj ¼1a j ¼1.It is as-sumed that the variance–covariance matrices R are diagonal.After an appropriate initial guess,the weights can be estimated by the expectation maxi-mization algorithm.The term h denotes the N h -dimensional feature space R N h .A VQ codebook is denoted as a 4-tuple V =(/,d ,q ,h )where:/is a set of N /codewords f /1;/2;...;/N /g &h ;d :h Âh !R is a distance metric which measures the distortion between two vectors.A common definition of d is the Euclidean distortion,or squared distance metric.q :h !/is a function which maps a vector x 2h to the minimum distortion codeword:q ðx Þ¼arg min /i 2/d ð/i ;x Þ.h is the N h -dimensional fea-ture space domain.In cases where the vectors of h being quantized are means of Gaussians them-selves,other distortion metrics such as the sym-metric Kullback–Leibler divergence have been used (e.g.Shinoda and Lee,2001).A codebook V is trained from the means of a specific GMM M .Next,each codeword /j is com-pared with the set of GMM mixtures to determine whether or not the codeword is an outlier with re-spect to individual mixtures.The test originally proposed for Gaussian selection by Bocchieri (1993)to determine if the m th Gaussian is an out-lier is shown in (1):outlier ðm ;/j Þ¼11N h P N h i ¼1ð/j ði ÞÀl m ði ÞÞ2R m ði ;i Þ>H ;1N hP N h i ¼1ð/j ði ÞÀl m ði ÞÞ2R m ði ;i Þ6H ;8>>><>>>:ð1Þwhere H is empirically determined and signifi-cantly greater than 1.In Bocchieri Õs study,he examined values between 1.5and 4.0.By analyzing (1),we can write a different repre-sentation of the tail test which provides better in-sight into the outlier identification process.Letus define z i ¼/j ði ÞÀl m ði ÞffiffiffiffiffiffiffiffiffiffiR m ði ;i Þp.As the codewords /j are representative of observations drawn from a nor-mal distribution and the components are assumedto be independent,each z i is representative of inde-pendent and identically distributed vectors with a distribution N ð0;1Þ.Consequently,(1)can be thought of as a scaled sum of squared z scores.The sum of N h independent and identically distrib-uted squared samples from a standard normal dis-tribution has a chi-squared distribution with N h degrees of freedom (Hogg and Allen,1978)which we will denote as v 2(N h ).Thus,(1)may be rewrit-ten asoutlier ðB s ;m ;/j Þ¼1P N h i ¼1z 2i >H 0;0P N h i ¼1z 2i 6H 0;8>>><>>>:ð2Þwhere H 0=N h H .The Pr P N h i ¼1z 2i ÀÁ6H 0can be found by using the cumulative distribution func-tion (cdf)for v 2(N h )which we will denote with operator F .In Bocchieri Õs study,he used 38dimen-sional feature vectors.When H =1.5,it corre-sponds to rejecting points as outliers if they lie within the tail 2.45%of the distribution (1ÀF (38·1.5)).By using the inverse cumulative distribution function F À1,it is possible to specify a probability which indicates what portion q of the distribution should be considered the tail:outlier ðB s ;m ;/j Þ¼1P N h i ¼1z 2i >F À1ð1Àq Þ;0P N h i ¼1z 2i 6FÀ1ð1Àq Þ.8>>><>>>:ð3Þ4M.Roch /Speech Communication xxx (2005)xxx–xxxAs an example,to specify that points lying on the last5%of the tails should be considered outliers, one could compute FÀ1(.95)=53.384,or a value of H=1.405in Eq.(1).It is worth mentioning that v2(N h)is well approximated by NðN h;2N hÞfor large enough N h and that the inverse cdf of the normal distribution could also be used.Unlike Eq.(1),Eq.(3)permits implementers to specify outlier detection in a manner invariant to the dimensionality of the space.The robust estimation of variances is frequently a problem for GMMs,and when this is the case both Bocchieri and Gales et al.propose alterna-tives for the mixture specific variance term.Boc-chieri(1993)suggested using the mean of all variances and Gales et al.(1999)suggested using the geometric mean of the mixture variance and the mean of the variances.Throughout this work, we will use GalesÕs variance estimate unless other-wise noted.Once an appropriate tail region has been speci-fied,each codeword/j is examined to determine whether or not it is an outlier with respect to each of the mixtures.The mixtures for which/j is not an outlier are retained in a short list which we denote SL j.During classification,each observation o t is quantized to/j and the Gaussians in SL j are eval-uated with respect to o t.A small constant value is added to represent the missing probability from the distributions for which the observation is an outlier.The constant can be set globally,or on a per codeword basis.Error rates for speech recogni-tion tasks using Gaussian selection with HMMs show little degradation when compared to the evaluation of all Gaussians,and there are still sig-nificant savings in the number of operations in the presence of the VQ overhead(Bocchieri,1993; Gales et al.,1999).4.An N-best preclassifierGiven a token which consists of a set of obser-vations from a speaker:O={o1,o2,...,o T},the goal of a speaker identification classifier is to choose the class label C O which corresponds to the person who generated O.If a preclassifier can efficiently and successfully determine a hypothesis H N¼f C h1;C h2;...;C hNg where C O2H N and j H N j is smaller than the total number of classes N C,the work of the classifier can be reduced.Fig.1provides an overview of the system. Acoustic feature vectors are quantized to a code-word in a global codebook that is created by clus-tering the means of the GMMs themselves.Each codeword has a Gaussian short list associated with it which may contain Gaussians from multiple models.The lengths of the short lists are influ-enced by the percentage of the Gaussians labeled as tails by q.As q increases,the short list size de-creases,possibly at the expense of accuracy.This provides a time versus accuracy performance trade offfamiliar to implementers of Gaussian selection. As the short list size decreases,small differences in the probability may be enough to change the deci-sion from the correct class to an incorrect one.In a standard Gaussian selection implementation,one would need to increase the threshold once this behavior began to occur.By using an N-best preclassifier,as long as the correct class is ranked in the highest NlikelihoodFig.1.Two stage classification.Vectors are quantized to a codebook trained from the means of GMMs.Shortlists associated with each codeword identify relevant pdfs to evaluate.The highest ranking speakers are classified in a second stage.The preclassifier is shown separately Fig.2.M.Roch/Speech Communication xxx(2005)xxx–xxx5scores,the second stage can provide a more thor-ough analysis and the final decision may indeed be the correct class.The second stage permits the first stage to aggressively set q to values that would otherwise lead to unacceptable performance.Like any preclassifier,the work done in the first stage must be significantly less than evaluating the com-plete set if the goal is to reduce computation time.First stage classification begins by quantizing each input vector to the nearest codeword (Fig.2).Then for each model,the likelihood of the input vector o t is computed given the Gaussi-ans on the short lists.The small probability due to the mixtures for which o t lies on their tails is approximated by the likelihood of the codeword given the culled mixtures.This value is precom-puted and is retrieved by table lookup during rec-ognition.The likelihoods for each observation are merged on a per class basis in the standard way,(e.g.log sum)and then ranked to determine the N -best set.The worst case complexity of the preclassifier is determined by the cost of quantization,q (o t )!/j ,evaluation of the Gaussians from the correspond-ing short list SL j ,and the sorting of a statistic of the T likelihoods.Codeword lookup of a single vector can be performed in O ðN /N h Þassuming a Euclidean dis-tortion function.With the assumption of indepen-dent components,each pdf on the short list can be evaluated in O ðN h Þtime.Thus,in a worst case sce-nario,the time cost is O ðT ðN /N h þN h j SL max jÞÞper token where j SL max j denotes the maximum num-ber of Gaussians irrespective of class to appear in the short lists.In addition,a small time cost is incurred for sorting the statistic of the scores.As this is negligible in comparison to the rest of the operation we will omit it in our analysis.Based upon our assumption in Section 1that the classification requests grow proportionally to the population size,the preclassification cost for a set of tokens is:O ðN c T ½N /N h þj SL max j N h Þ.ð4ÞThe cost of classification is the cost of the hypoth-esis set plus full evaluation of the j H N j models in the N best speaker set:O ðN c T ½N h ðN /þj SL max jÞ þN c TN h N m j H N jÞð5Þ¼O ðN c TN h ½N /þj SL max j þN m j H N j Þ.ð6ÞThis is in contrast to the cost of complete evalua-tion which is similar to the cost of the second stage (right most term of (5))except that j H N j is replaced with N C as all models must be evaluated:O ðN 2c TN m N h Þ.ð7ÞReduction in workload can be achieved when j H N j (N c and j SL max j (N c N m .When new speakers enroll,the K means cluster-ing algorithm must be rerun and new short lists created.Ignoring the cost of computing the distor-tion between the codewords and the means of the Gaussians,K means has a complexity of O ðIN /N c N m Þwhere I is the number of iterations.Thus the growth of clustering cost is linear with respect to population size.Determining the short lists also has a complexity that grows linearly.Each time a new speaker is enrolled,there will be an additional N /·N c outlier tests to perform.In practice the preclassifier can be trained in a matter of minutes even with large problemsets.Fig.2.First stage.Appropriate short list set is identified by VQ codeword /j and short lists are evaluated for the original observation.For many models,the short lists will be empty.Culled Gaussians are approximated by a table lookup.6M.Roch /Speech Communication xxx (2005)xxx–xxx5.Experimental methodologyTwo corpora were selected to illustrate a variety of different test conditions and population sizes. To illustrate the effectiveness of the preclassifier, it was considered desirable to test under situations where the baseline GMM system could achieve low error rates as well as situations where the error rate was higher.For this reason,the TIMIT and the1999NIST Speaker Recognition corpora were selected for this study.TIMIT(Garofolo et al.,1993)contains record-ings of192female and438male subjects speaking phonetically diverse material under ideal condi-tions.Each speaker has10short sentences col-lected from a speaker in a single session.The sentences can be categorized into three groups. The‘‘sx’’sentences provide coverage of the pho-netic space,the‘‘sa’’sentences are intended to show dialectical variation,and the‘‘si’’sentences contain varied phones.Thefirst8utterances (approximately24s)are used for training and the last two‘‘sx’’phrases form separate3s tests. The conditions of this corpus permit high accuracy.The NIST1999Speaker Recognition Evalua-tion(Martin and Przybocki,2000)is a subset of the Switchboard2Phase3corpus which contains telephone conversations between speakers primar-ily from the the southern United States.The callers were encouraged to use multiple handsets,and the directory number is usually used to infer matched/ unmatched conditions.The corpus is designed pri-marily for speaker detection and tracking tasks, and the study by Kinnunen et al.(in press)is the only study of speaker identification using this cor-pus of which the author is aware.Kinnunen et al. limited themselves to a matched channel condition study using the male speakers.There are207 speakers whofit this criterion.Each speaker has anywhere from1to8test tokens from matching directory numbers for a total of692test tokens. We use the same test plan as Kinnunen et al.in or-der to be able to compare results,but also add the 287matched channel female speakers(997test to-kens)as a separate evaluation task.Throughout the remainder of this work,we will refer to this corpus as the NIST corpus.Features are extracted from the speech by fram-ing the data into25ms windows advanced every 10ms.A Hamming window is applied to each frame before Mel cepstral analysis using24filters. For both corpora,24Melfilters cover a telephone speech bandwidth of200–3500Hz(Rey,1983). Thefirst20Melfiltered cepstral coefficients (MFCC)plus MFCC0are extracted from the log Melfilterbanks by a discrete cosine transform. The NIST data is further processed:the mean of each token is subtracted and the the token is end-pointed.Speech activity is detected by training a2 mixture GMM on MFCC0(three iterations of the EM algorithm)and solving for the Bayes decision boundary.Frames with MFCC0above the deci-sion threshold are retained.MFCC0is discarded before training and testing.With the exception of endpointing,feature extraction was done as a pre-processing step using HTK(Young et al.,2002). The recognizer was implemented in a combination of C and Matlab,and experiments were performed on reasonably unloaded dual Opteron242ma-chines running the Linux2.6kernel.During enrollment,32mixture GMMs are trained for the TIMIT speakers.The NIST speak-ers are modeled in two ways.Speakers were either represented as64mixture GMMs or as models adapted from a universal background model (UBM).Training data for the UBMs came from the Speaker Identification Research(SPIDRE) corpus(Martin et al.,1994),a subset of Switch-board I with similar characteristics to the NIST data.One token from each of the18female and 27male‘‘target speakers’’was used to train gender specific UBMs with1024mixtures.Maximum a posteriori adaptation as described by Reynolds et al.(2000)was used to create speaker specific mean adapted models from the UBMs using the NIST training data.The64mixture speaker spe-cific models and UBMs were initialized with the LBG binary splitting algorithm(Linde et al., 1980)and refined with10iterations of the expecta-tion maximization algorithm.MAP adaptation was not used for the TIMIT corpus due to the excellent classification rate with the32mixture GMMs.When scoring the UBM derived models,we used ReynoldsÕheuristic which scores all mixtures of the UBMfirst,then onlyM.Roch/Speech Communication xxx(2005)xxx–xxx7scores the corresponding highest5mixtures in the adapted models.The baseline results are summarized in Table1 and are comparable to that of other studies using the same corpora(Reynolds,1995;Kinnunen et al.,in press).Confidence intervals for the error rates are estimated using the normal test approxi-mation for binomials(Huang et al.,2001).The TI-MIT classification error rate is 1.6%for the females and0%for the males.In contrast,the male telephone NIST error rates are in the14%range with an approximate6%absolute reduction in er-ror rate when the speaker models are adapted from UBMs.The female NIST speakers,a population that was nearly40%larger,had significantly high-er error rates.As with the male data,the UBMs outperformed the models trained without the ben-efit of prior information even though the amount of prior training information was limited.Analysis of the female UBM results showed that about40% of the error could be attributed to misclassifying tokens as one of15speakers(the‘‘wolves’’).The author is not aware of any published speaker iden-tification studies on this data set.Codebook training for the preclassifier was accomplished using the same procedure used to initialize the GMMs.Experiments not reported here used the Kullback–Leibler symmetric dis-tance as the distortion metric for the VQ.This did not result in significant performance differ-ences,so the simpler Euclidean distortion metric is used throughout.When determining whether or not points in a VQ partition are outliers,the geometric mean variance weighting scheme(Gales et al.,1999)was used to compute the z scores in Eq.(3)for all GMMs except for the adapted means models as the variance estimates from the UBMS tend to be more robust.6.ResultsInsight into the behavior of the preclassifier can be seen by examining the N-best hypothesis sets. The tunable parameters which affect the perfor-mance of the algorithm are the size of the codebook,the percentage of each Gaussian distri-bution for which points are defined as outliers(q), and the size of the hypothesis set H N.Experiments not reported here on TIMIT and NTIMIT(tele-phone version of TIMIT)indicated mild sensitivity to codebook size,and we selected a1024word codebook.Fig.3shows a typical N-best error rate for varying values of q.To be effective,the preclassi-fier must produce an N-best error rate which is as good or better than the second stage classifier. In practice,having the same error rate as the sec-ond stage is insufficient.The preclassifier learns a different set of decision boundaries than the sec-ond stage.Once a correct class is pruned fromTable1Speaker identification error rates and their95%confidence intervals on corpora without preclassificationCorpus Mixtures Pop.size ErrorRate95%CI TIMIT female321920.016±0.0125 TIMIT male324380.000NA NIST1999male642070.198±0.030 NIST1999male(UBM)10242070.142±0.026 NIST1999female642870.486±0.031NIST1999 female(UBM)10242870.382±0.153Fig. 3.N-best error rate for males on a matched handsetspeaker identification task using64mixture GMMs and thematched handset male speakers in the NIST1999SpeakerRecognition Corpus.Error rate is a function of the probabilitythreshold q which determines which codewords are outliers foreach mixture and the size of the N-best hypothesis.The baselineerror rate is shown as a solid horizontal line with the dotted95%confidence interval lines above and below.8M.Roch/Speech Communication xxx(2005)xxx–xxx。