赫兹驱动变频器在同步控制上的应用
浅谈变频控制技术在双电机同步驱动同一负载中的应用

浅谈变频控制技术在双电机同步驱动同一负载中的应用以往薄膜幅宽在5.2 m 以下的双向拉伸薄膜成套设备中,通常横向拉伸机左右链铗的传动是由一台电机通过左右传动轴和齿轮箱及链轮驱动的;当薄膜幅宽超过5.2 In后,横向拉伸机(rIDO)设备宽度相应要增加,而薄膜产量的提高,除了有宽幅的拉膜设备外,还需要大幅提升拉膜设备的生产速度。
但生产速度的提高,使得齿轮传动机构和连接轴的体积和质量都相应增加,若继续沿用单电机的驱动方式,使得横向拉伸机(TD0)的动态机械负载平衡性及可靠性和机加工精度都很难满足生产工艺要求。
为此,采用两台电机分别直接驱动左右齿轮箱和链轮,左右齿轮箱之间用一根传动轴刚性连接,从而降低了传动机械的转动惯量和振动幅度,提高了动态机械负载平衡性及可靠性,降低了机加工难度。
但由此引出的新问题是:如何使控制系统满足驱动左右齿轮箱两台同功率电机的负载平衡和同步驱动的要求。
变频器的英文译名是VFD,这可能是现代科技由中文反向译为英文的为数不多实例之一。
变频器是应用变频技术与微电子技术,通过改变电机工作电源的频率和幅度的方式来控制交流电动机的电力传动元件变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置,能实现对交流异步电机的软起动、变频调速、提高运转精度、改变功率因数、过流/过压/过载保护等功能一般的V控制的变频器又难以满足此要求。
本文着重介绍了采用矢量控制变频技术,实现2台变频器分别拖动2台电机同步驱动同一负载,实现高精度、大转矩调速的问题。
1 横向拉伸机(TDO)对控制系统的要求影响薄膜质量的因素有很多,如生产工艺参数、设备加工和安装精度、生产温度及速度的控制精度、生产操作人员的技能等,都会对薄膜质量产生影响。
但从薄膜成套设备的角度来看,横向拉伸机(I1DO)对薄膜的质量特别是成膜率,有着直接的影响。
由于横向拉伸机的结构特点是用两台相同功率的交流电机分别驱动左右齿轮传动机构,交流电机是用于实现机械能和交流电能相互转换的机械。
变频器原理及应用

变频器原理及应用变频器是一种能够改变电源频率的电子设备,它通过将输入电源的固定频率转换为可变频率输出,实现对电机或其他电动设备的控制。
变频器可以广泛应用于工业生产中的电动机驱动、温控设备、空调系统等领域。
变频器的工作原理是基于电力电子技术,利用电力器件(如晶闸管、IGBT等)的开关特性,将输入的直流电源经过整流、滤波等处理后,通过逆变器将直流电源转换为可变频率的交流电源。
变频器内部的控制电路可以根据需要调整逆变器的输出频率,从而实现对电机转速的精确控制。
变频器的应用非常广泛。
在工业生产中,变频器可以用于控制电机的启停、调速、定位等操作,提高生产线的灵活性和生产效率。
在温控设备中,变频器可以根据环境温度的变化,调整压缩机的转速,实现恒温恒湿的控制。
在空调系统中,变频器可以根据室内外温度差异,调整压缩机的转速,节约能源并提供舒适的室内环境。
变频器的应用优势主要体现在以下几个方面。
首先,变频器可以实现对电机转速的连续调节,从而满足不同工况下的需求,提高设备的运行效率。
其次,变频器可以实现对电机的软启动和软停止,减少了电机的冲击和磨损,延长了设备的使用寿命。
此外,变频器还可以实现能量回馈,将电机制动时产生的能量反馈到电网中,提高了能源利用效率。
然而,变频器在应用过程中也存在一些问题。
首先,变频器的设计和调试需要专业的技术知识,操作不当可能会引起设备故障或安全事故。
其次,变频器会产生电磁干扰,对其他电子设备的正常工作造成影响。
此外,变频器的成本相对较高,对于一些小型设备的应用可能不划算。
为了克服这些问题,变频器的技术不断发展。
目前,一些新型的变频器采用了先进的控制算法和电力器件,具有更高的性能和可靠性。
此外,随着节能环保意识的增强,变频器在工业自动化领域的应用也越来越广泛,为工业生产的节能减排做出了重要贡献。
变频器作为一种能够改变电源频率的电子设备,在工业生产和生活中有着广泛的应用。
通过对电机转速的精确控制,变频器可以提高设备的运行效率,降低能源消耗,实现节能减排的目标。
变频器在永磁同步电机中的应用

变频器在永磁同步电机中的应用随着科技的不断发展,永磁同步电机作为一种新型的电机类型,已经开始逐渐取代传统电机的地位,而在永磁同步电机中使用变频器已经成为了一个常见的选择。
下面我们将探讨变频器在永磁同步电机中的应用以及它所带来的好处。
一、变频器的作用变频器是一种将电源的直流变为交流并改变频率的装置。
在永磁同步电机中,变频器可以对电机的转速进行控制。
变频器不仅可以控制电机的转速,还可以控制电机的转矩。
利用变频器控制的好处是可以使永磁同步电机完全发挥出其优势,包括高效率、高功率密度、高动态性能、低噪声、低振动等等。
二、变频器的优点1. 精确控制转速在永磁同步电机中,变频器可以精确控制电机的转速。
这种精确控制不仅可以通过调整输出频率来实现,还可以通过调整电压来实现。
这个过程可以通过变频器内的转速控制回路来完成,这使得永磁同步电机可以完美地适应各种负载条件。
2. 提高效率变频器可以提高永磁同步电机的效率。
传统的电机在启动时需要承受较大的电流冲击,这会导致电机的线圈出现过度加热,同时会造成能量的浪费。
而在使用变频器的情况下可以使永磁同步电机以较低的电流启动,并平稳地加速电机,从而可以减少电机线圈的过度加热和能量的浪费,提高电机的效率。
3. 节省能源使用变频器可以节省永磁同步电机的能源。
这意味着可以降低运行成本。
变频器可以通过分析永磁同步电机的负载情况以及需要的输出功率,对电源进行精确的控制,从而达到节省能源的目的。
4. 增加电机使用寿命传统的电机使用过程中,一些由于负载变化等因素造成的电机运行异常,例如电机被过载,会导致电机的寿命受到影响。
而使用变频器可以有效地解决这个问题。
使用变频器精确地控制电机的运行状态,避免电机过载运行,有助于延长电机的寿命。
5. 提高电机的精度和稳定性使用变频器可以改善永磁同步电机的精度和稳定性。
由于变频器可以精确地控制电机的运行状态,使电机转速更加稳定准确,能够提高电机的准确度和稳定性,降低电机出现失调和漂移的情况。
高压变频器在同步电动机上的应用分析

高压变频器在同步电动机上的应用分析引言高压变频器是一种将直流电源转化为交流电源的装置。
在现代工业生产中,高压变频器越来越受到人们的重视。
它可以让电动机工作在最佳转速,在保障生产安全的同时,也大大提高了电能利用率。
在本文中,我们将探讨高压变频器在同步电动机上的应用,以及它的优缺点。
同步电动机同步电动机是一种特殊的交流电机,与异步电动机相比,它具有较高的效率和较低的损耗,因此在某些应用场合中更具优势。
它的转速是由供电电源的频率和极对数决定的,即转速固定。
但在实际应用中,由于负载的变化、机械阻力等因素的影响,同步电动机一般无法精准地保持额定转速。
因此,为了满足生产需要,需要对同步电动机进行调速。
高压变频器高压变频器是专门为高压电机提供的一种变频器。
其主要功能是将直流电源转换为高频交流电源,从而实现对高压电机的调速。
高压变频器的基本工作原理是通过对电源的直流电进行逆变,通过高频变压器输出高频交流电。
高压变频器可以实现无级调速,从而使同步电动机在不同负载下达到最佳转速,提高效率和稳定性。
高压变频器在同步电动机上的应用分析优点1.无级调速:高压变频器可以实现无级调速,与传统的机械式调速方式相比,具有更高的精度和更大的范围,可以满足不同生产需求。
2.提高效率:同步电动机的效率与转速有关,高压变频器可以根据负载的变化来控制电机的转速,从而最大程度地提高效率,减少能源浪费。
3.减少机械损耗:高压变频器可以使电动机始终工作在最佳转速下,减少机械损耗,延长电机的使用寿命。
缺点1.造价昂贵:相比于传统的机械式调速设备,高压变频器的造价高,对于一些中小型企业可能不太现实。
2.系统稳定性较差:高压变频器需要与同步电动机配合使用,如果不合理设计安装,可能会导致系统不稳定、易损坏等问题。
3.偶尔会产生噪音和电磁干扰:高压变频器工作时产生的高频信号可能会对其他电子设备产生干扰,同时也有可能产生噪音。
结论综上所述,高压变频器在同步电机上的应用具有一定的优点和缺点。
两台电机如何通过变频器实现同步控制呢

两台电机如何通过变频器实现同步控制呢在工业控制系统中,变频器是一种常见的设备,用于控制电动机的转速和运行状态。
通过变频器,可以实现对电机的精确控制,包括速度、转矩、加速度等。
而在一些应用中,需要实现多台电机的同步控制,即多台电机的转速和运动状态保持一致。
本文将介绍如何通过变频器实现两台电机的同步控制。
首先,要实现电机的同步控制,需要确保两台电机的转速保持一致。
为此,可以将一台电机作为主电机,另一台电机作为从电机。
主电机通过变频器控制其转速,而从电机通过接收主电机的转速信号来实现同步运动。
具体实施时,可以按照以下步骤进行:1.首先,需要确保主电机的位置和转速精确可控。
可以通过编码器或位置传感器来获取主电机的位置和转速信息,并将其传递给变频器。
变频器根据这些信息来调整主电机的转速。
2.从电机需要与主电机保持同步,因此需要获取主电机的位置和转速信息。
可以通过编码器或位置传感器获取从电机的位置和转速信息,并将其传递给从变频器。
4.从变频器接收到主电机的转速信号后,根据这一信号调整从电机的转速。
从变频器将通过调整从电机的电压和频率来控制其转速,以保持与主电机的同步。
需要注意的是,在实际操作中,还需要考虑到一些因素,以确保同步控制能够稳定有效。
例如,变频器之间通信的稳定性和可靠性,编码器或位置传感器的精度和信号的及时性等。
此外,还要根据具体的应用需求和环境条件,调整控制系统的参数和算法,以实现更精确的同步控制。
通过变频器实现两台电机的同步控制,可以应用在许多工业场景中。
例如,自动化生产线中的输送带、同步驱动机械臂等。
通过有效地实现同步控制,不仅可以提高生产线的工作效率和精度,还可以减少因电机运动不同步而引起的故障和损耗。
总结起来,通过变频器实现两台电机的同步控制需要确保主电机的位置和转速精确可控,从电机通过接收主电机的转速信号来实现同步运动。
同时,还需要考虑通信稳定性、传感器精度和环境因素等因素,以优化同步控制系统的性能。
高压变频器在大功率同步电机中的应用

高压变频器在大功率同步电机中的应用摘要:近些年来,我国生产力的发展已经取得了较为明显的成效和进步,而这一态势也让高压变频器的市场规模变得越来越大,在这其中,大功率电机的使用也为机械生产提供了重要的动力源泉。
而推动高压变频器和大功率同步电机的结合,也能够为企业的生产注入更多的生机与活力。
对此,本文将从节能的角度出发,分析节能措施在国内外的发展现状,论述高压变频器的工作原理和工作优势,并探讨高压变频器的实际应用。
关键词:高压变频器;大功率电机;节能应用引言:高压变频器在大功率电机中的同步应用,能够帮助大功率电机节省大量的能源和资源,而且可以让设备生产与消耗之间的差异趋向平衡,这就避免了输入和输出不匹配的问题,最终帮助企业实现节能降耗的目标。
当下,变极调速,调压调速和变频调速是大功率同步电机中主要的调速方式,但在这其中,变频调速的优势是最为突出的,不仅具有高精度和高实用性的特点,而且在操作上也能够省略许多不必要的步骤。
这里所说的变频,主要是以负载要求和速度的变化为基础的,通过调整供给电流的频率,来确保工作点的合理性。
一、分析节能措施的国内外发展现状就国外的机械制造来讲,大多数企业都会选择能量回馈这一技术,通过高压变频器来控制大功率电气设备的速度,利用能量转移回原始设备的功率消耗的反馈分两部分,以此来降低能源的损耗。
从德国西门子公司的研究成果来看,其自身较为明显的研发成果,主要就是四象限运行电压型交流变频技术,并且这一技术也主要运用在高压电机上。
而日本富士公司,也已经推出了rhr的再生能量装置,这也是大功率电机改造的鲜明成果。
但不可否认的是,国外所研发的高压变频装置造价昂贵,而且对电网的设计也有十分严格的要求和限制,并不适用于我国的基本国情,我国工农业始终是共同发展的,所以一些地方的电机也不能适配较为高昂的高压变频装置。
就我国自身的发展情况来看,国内的技术开发已经能够满足高压变频装置设计的需求,而且高压变频器的应用也得到了广泛的支持和关注。
两台电机如何通过变频器实现同步控制呢

两台电机如何通过变频器实现同步控制呢在众多的现代工业中,电机是最为普遍、关键的机电设备之一,同时,电机同步控制也是电机的一项重要应用。
那么,如何通过变频器实现同步控制呢?本文将由此展开讨论。
变频器的基本介绍变频器,也称为交流调速器、交流变频器等,是一种电力电子设备,其主要作用是将交流电源(一般是380V/220V交流电源)变换为可调变频的交流电源,并将这个交流电源输入电机中从而达到调速的目的。
变频器应用于电机同步控制电机同步控制的基本原理在介绍变频器如何应用于电机同步控制之前,我们先来简单了解一下电机同步控制的基本原理。
电机的同步控制,是指两台电机通过某种控制方式,保持动态相等,即两台电机速度、位移之间始终以一定的相对关系进行运动。
在传统控制方式中,若要实现两台电机同步运动,往往需要使用机械传动或伺服控制等方式,其缺点在于基础设备、系统成本高、维护成本高等,因此,随着现代电力电子技术的不断发展,人们开始在电机同步控制等领域应用变频器。
变频器在电机同步控制中的应用电机同步控制,通过使用变频器进行频率调节,从而控制电机的运动,起到控制电机同步度的作用,能够达到快速调节、稳定控制等优势,在现代化电机控制中扮演着举足轻重的作用。
利用变频器控制电机同步控制,其实现方式是:在两台电机控制某一参数(如转速、电流、位置等)的过程中,其中一台电机是主动运动的电机,另一台电机是主观运动的电机,主动电机的控制箱中安装有位置传感器,将传感器输出的位置信号发给控制箱,然后通过控制箱将这个位置信号发给另一台电机,以此达到两台电机同时运动的目的。
这种控制方式不仅能够简化控制回路,缩小安装空间,而且能够大大降低功耗,提高效率。
电机同步控制的标准对于同步控制的要求,一般通过同步误差来描述。
同步误差就是在两台电机运动过程中,主观电机的位置与主动电机的位置处于的相位差异,这个误差通常用角度或时间来描述。
在电机同步控制中,同步误差越小,同步效率越高。
变频器在胶带机双机同步驱动中的应用与维护

变频器在胶带机双机同步驱动中的应用与维护摘要:在铁矿石长距离下行皮带输送系统中,电机驱动控制是关系到整个皮带输送系统的安全、稳定运行的关键。
对电机功率、转矩、转速、同步等控制技术要求高,控制逻辑及控制方式均复杂多变。
因此,需要根据工艺生产过程的动态特性,经过试验,科学设置相关技术参数,并对控制逻辑进行优化,充分发挥变频技术的优势,合理进行控制组态,形成了完整、可靠、成熟的控制方案,已经成功地应用在了酒钢镜铁山矿黑沟矿石输出生产系统中,达到了理想的效果,取得良好的经济效益和安全效益。
关键字:变频器;同步;双机驱动酒钢镜铁山矿根据黑沟2#皮带长距离和下行运输特性,充分利用ABB公司ACS800-17-0493型号变频器的优势,合理的控制组态,形成了完整、可靠、成熟的控制方案,成功实现了黑沟2#皮带的双机驱动软同步控制,达到了理想的效果,由于该型号变频器具有能量回馈功能,同时取得良好的经济效益和安全效益。
在胶带机上采用变频驱动后的节能效果主要体现在系统功率因数和系统效率两个方面。
在下行胶带机中,应用四象限能量回馈变频器,能实现胶带下运时产生的能量回馈至电网,年总节约电费:37.6万元元;胶带机带速达到了 2.5m/s,矿石的日运输量有了大的提高,原输矿量500吨/小时,现提高到750吨/小时。
1双机驱动皮带系统酒钢镜铁山矿黑沟皮带运输系统中,2#皮带最为重要,皮带生产能力为1200t/h,全长约3300米,为向下运输皮带。
在2#皮带机头部附近设置2台280kW/380V变频调速电动机,并在电机驱动端通过联轴器设置减速器,保证皮带最大运行速度3.15m/s,并连续可调。
在电机驱动输出皮带处设置拉紧装置,保证皮带松紧合适、运行平稳。
双电机布置于同侧位置,减速器输出轴驱动两台大型滚筒带动皮带运转,在两台滚筒侧安装了液压制动装置,制动器设有完善的安全闭锁保护功能,避免制动器电控装置突然断电而主机正常运行时制动器瞬时施闸,保证皮带在两台电机同时驱动下安全、平稳运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
赫兹驱动变频器在同步控制设备上的应用一,前言在生产实际应用中,经常会有一些设备需要组合成生产线连续运行,并且这些设备的运行速度需要保持同步。
例如:直进式金属拉丝机、造纸生产线、印染设备、皮带运输机等等,由于这些设备都能一次完成所需的加工工艺,所以生产效率高,产品质量稳定,在相关的行业得到了广泛的应用。
这些设备都有一个共同的特点,产品连续地经过各台设备,如果各台设备不能保持速度同步,就会造成产品被拉断,使设备被迫停止运行,严重的会造成很大的损失。
另外,有些单机设备,有多个动力拖动,这多个动力之间也需要保持同步。
因此,这些设备上都装有交流调速系统,通过调整各台设备的运行速度,使各台设备保持同步运行。
二,同步控制的分类根据生产工艺的需要和生产产品的不同,一般对同步的要求也不一样。
所以,一般我们把设备对同步的要求从简单到复杂分成以下几类:1,简单同步这种同步方式一般用于设备之间没有直接的连接,各个设备都是处于独立的工作模式,但由于工艺的需要,这些设备的工作速度需要保持基本一致或保持一定的比例运行,并且,各个设备需要同时升速或降速。
在这种系统中,都不采集反映同步状况的信号。
这种设备的特点是速度误差的积累,已及速度的稳定性及速度精度,不会对生产工艺产生任何影响。
例如,双搅拌机,搅拌罐中的二个搅拌浆的速度只需保持速度的基本一致就行。
2,平均速度同步这种同步方式一般用于设备之间有联系,有的是物料连续经过各台设备,有的是靠机械装置连接在一起。
这些系统的特点是设备对速度稳定性与速度精度的要求比较高,但是对速度误差的积累不敏感,并且,各台设备的运行速度是成一定的比例,如产生积累误差,可以通过调整速度的比例系数来纠正。
典型的如无纺布生产设备、滑轮式拉丝机等等,这些系统的各个设备之间也没有反映同步状态的信号,所生产的产品都有一定的拉伸,所以各个设备的线速度都是成一定的比例关系,如果其中的某台设备有一定的稳态速度误差,可以通过修改比例系数,来达到工艺的要求。
3,瞬时速度同步这是一种相对来讲要求比较高的同步控制,同样是生产的产品连续经过各台加工设备,或者靠机械强连接在一起,但都不允许有速度的积累误差,如果达到一定的误差积累,就会使产品损坏或系统报警而无法工作。
因此在这样的系统中一般都用反映同步状态的信号反馈给控制系统,控制系统根据这个信号,及时地对系统中各台设备的速度做出修正。
典型的系统如直进式拉丝机、造纸生产线、印染生产线、双动力驱动的皮带运输机、抓斗提升机的抓斗提升系统等等,这些系统的特点是,如果瞬间速度误差太大,就会造成断丝、断纸、或使系统无法工作。
4,位置同步位置同步是要求最高的同步控制系统,一般光靠变频器本身是无法完成位置同步的,所以这种系统中都有PLC等控制器,来完成位置信号的采集及控制变频器的运行。
位置控制系统对变频器的动态响应要求非常高,速度精度也非常高,因此一般都需要采用闭环电流矢量控制的变频器。
例如,印染行业的定型机,需要布匹两边的驱动要完全一致,包括位置一致,如产生差异的话,就会使布匹产生斜向拉伸,影响产品的质量。
还有的如飞剪系统、定长切割系统等,都需要对位置做高精确的控制。
事实上,这些系统已属于伺服控制系统,在功率比较小的场合,基本都用伺服系统来控制,但由于大功率的伺服控制器价格太高,所以在一些中大功率的应用场合,用变频器来控制还是非常有意义的。
5,收放卷控制收放卷设备一般处于生产线的前端和后端,完成生产产品的收与放,与主设备之间也要保持同步,有的还需保持一定的收放卷张力。
所以也把收放卷归到同步系统中。
早期的放卷系统用的磁粉离合器,靠磁粉离合器的阻力使放卷有一定的张力;而收卷系统一般用力矩电机控制,利用力矩电机的挖土机特性,使收卷设备运行速度与主系统保持同步。
但以上的二种方式控制精度都比较低,所以,目前在大多数应用场合都用变频器来实现收放卷,一般都用PID 控制方式和力矩控制方式来实现。
三,同步控制的方案同步控制的方案很多,一般需根据同步要求的不同,选择合适的控制方案,达到最合适的投资,又能保证系统能符合工艺的需要。
所以,选择合适的同步控制方案就显得非常重要。
以下是变频器在同步控制系统中的各种应用方案及一般适合的应用场合。
1,群拖控制的同步系统所谓群拖,就是一台变频器同时带几台甚至几十台电机,所有电机的速度都有同一台变频器的输出频率控制,所以理论上所有电机的速度是一致的,并且能保证同时升速与降速。
但是由于电机制造上的差异,或者电机所带负载大小的不同,因此,每台电机的实际运行速度是有差异的,并且,系统内没有纠正这种差异的机制,也无法安装纠正差异的机构,所以,在一些设备之间没有连接的场合,这种控制方法肯定会产生积累误差,并且无法纠正。
一般这种方式用于简单同步控制的场合。
另外一种情况下,可以把群拖方式时的变频器看成供电电源,在一些刚性连接的系统中,例如行车的大车系统,一般有二个、四个甚至八个电机驱动,如果用群拖系统来控制时,其中运转得稍快的电机,负载会重,而运转得稍慢的电机负载会轻,但因是同一个变频器驱动,负载重的转差率变大,负载轻的转差率变小,这样,就会有一定的自动纠正能力,最终会使各台电机保持同步运行,但是负载分配是不均匀的,一般在选择电机时要把电机功率放大一级。
如下图所示。
群拖同步控制方式非常简单,但也需要注意以下一些问题。
a ,所带电机的功率不能差异太大,一般不相差二个功率等级以上。
b ,电机最好是同一个公司生产,如果是同功率的电机,最好是同一批次的,以保证电机特性的一致,最大程度使电机的转差率一致,以保证良好的同步性能。
c ,充分考虑电机电缆的长度,电缆越长,电缆之间或电缆对地之间的电容也越大,变频器的输出电压含有丰富的高次谐波,所以会形成高频电容接地电流,对变频器的运行产生影响。
电缆的长度以接在变频器后的所有电缆的总长度计算。
使用时请参考赫兹VC变频器的使用说明书,保证电缆的总长度变频器允许的范围。
必要的时候,应在变频器的输出端安装输出电抗器或输出滤波器。
d ,变频器只能工作于V/F 控制方式,并且选择合适的V/F 曲线。
变频器的额定工作电流应大于所有电机额定电流的总和的1.2倍以上。
e ,为了保护电机,每台电机前应安装热继电器,不推荐安装空气开关。
这样在电机过载时可以不断开主回路,避免在变频器运行中断开主回路时对变频器本身的影响。
f ,对于需要快速制动的应用场合,为了防止停止时产生过电压,应加制动单元和制动电阻,赫兹VC 75KW 及以下的变频器已内置制动单元,因此只需接制动电阻即可。
群拖控制方式的典型应用场合:起重设备的大车驱动系统;某些纺织机械的锭子的调速系统,如络筒机、细纱机、粗纱机等等。
赫兹VC 变频器在用于群拖方式时,一些所需要调整的参数。
因群拖控制方式比较简单,所以相对来讲调整的参数不多,一般可根据需要调整以下参数。
B1-01:频率指令的给定方式 B1-02:运行指令的方式C1-01:加速时间 C1-02:减速时间E1-06:基频改为50Hz 根据实际需要还需更改的其它参数2,下垂控制(DOOP )的同步方案在一般的电力拖动系统中,都要求系统运行是刚性的,理想状态是负载的变化不影响速度的变化。
但由异步电机的特性可知,在电机的最大输出转矩以内,负载的变化会影响电机的转速,一般是负载越大,转速降也越大,所以在对速度稳定性要求比较高的场合,会使用速度闭环,负载增加时,提高输出频率,以弥补电机本身的速度降。
这就是我们所说的正向调节。
而下垂控制方法正好相反,负载越大,反而降低输出频率,也就是负向调节。
下垂同步系统中一般只有二台电机,并且这二台电机是刚性连接的,没有任何速度差,属于主从系统。
主变频器工作在普通速度控制方式,而从变频器工作于下垂控制模式,一旦从变频器运转得快于主电机,变频器的输出电流也会赠大,这时变频器是降低输出频率,把负载转移一部分给主电机,这样就降低自身的负载,使输出电流重新达到一个平衡点。
下垂控制系统主要是调整主从变频器的最高输出频率的比例,以及从变频器的下垂量,总可以找到一个合适的点,使主从电机的负载基本一致。
下垂控制功能只有在有PG 矢量控制时有效,所以,必须在从电机上安装编码器。
从变频器上安装PG 卡。
下垂控制的特点是负载分配比较均匀,可以使主从电机各分担约50%的负荷,但必须要有编码器,所以限制了一些实际的应用。
下垂控制方式的一些典型的应用场合:双驱动皮带运输机,两端出轴双电机驱动起重机提升系统等等。
优利康变频器在使用下垂功能时所需要调整的一下参数如下。
主电机工作于普通的速度控制方式,因此主电机的参数按常规方式调整,包括B1-01、B1-02、C1-01、C1-02、E1-06等;从电机工作在闭环矢量控制方式,除以上的参数外,还需调整E1-04、B7-01、B7-02等。
3,按比例同步控制系统按比例同步控制方案相对比较简单,非常适合平均速度同步的应用场合。
在这种系统中,每个电机都有一台变频器控制,频率指令有同一个信号给定,但运行频率由每台变频器的最高输出频率决定,整个系统按一定的比例使各台设备的速度保持同步。
在实际的应用中,也有很多用PLC来控制整个系统的运行,这种方式下,各台变频器的最高输出频率是一样的,而各台变频器的频率指令是由PLC根据工艺要求计算出的,有PLC 统一给定。
按比例同步控制系统的运行精度取决与电机的特性。
理论上,如果是同步电机,各台设备的运行速度完全决定于变频器的输出频率。
异步电机总是有一定的转差率,赫兹VC变频器在无PG矢量控制时,可以根据各台电机负载情况,自动加上转差补偿,使系统的运行精度大大提高,因此基本能满足绝大多数类似的应用场合。
按比例同步方式的典型应用场合:无纺布控制系统,滑轮式拉丝机控制系统,港口起重机械上多电机大车驱动系统等等。
因这种控制方式变频器都属于速度控制,因此,参数调整比较简单,按常规的速度控制调整B1-01、B1-02、C1-01、C1-02、E1-04等等,如需要快速停止的场合,需加装制动电阻或制动单元。
4,PID控制的同步方案PID控制原理PID 控制的同步系统,在同步控制中应用最为广泛,因此在这里也是讨论最多的一种方案。
为了通过PID 的控制使设备同步,各台设备之间需要有一个反映同步状态的信号,这个信号一般由运行时的机械位置决定,所以通常是通过扇形挡块、浮动辊等机械装置的位置变化,再用相关的传感器或电位器转换成电信号,或直接用压力传感器等供给控制设备,控制设备根据这些信号的大小,通过PID 运算,调整相对应设备的速度,使设备之间保持同步运行。
如下图所示。
控制原理在这些控制系统中,一般都有一台我们称之为领航速度的设备,这台设备没有PID 反馈控制,是纯粹的速度控制,这台设备的速度决定了整个系统的工作速度,系统中其它设备的速度都需跟随这台设备,因此,也称之为主设备。