变频器在同步控制设备上的应用
同步电机的变频调速系统

图2-3由交-交变压变频器供电的大型低速同步电动机调速系统
2.4
为了获得高动态性能,同步电动机变压变频调速系统也可以采用矢量控制,其基本原理和异步电动机矢量控制相似,也是通过坐标变换,把同步电动机等效成直流电动机,再模仿直流电动机的控制方法进行控制。但由于同步电动机的转子结构与异步电动机不同,其矢量坐标变换也有自己的特色。
(1)在电动机轴端装有一台转子位置检测器BQ(见图8-7),由它发出的信号控制变压变频装置的逆变器U I换流,从而改变同步电动机的供电频率,保证转子转速与供电频率同步。调速时则由外部信号或脉宽调制(PWM)控制UI的输入直流电压。
(2)从电动机本身看,它是一台同步电动机,但是如果把它和逆变器UI、转子位置检测器BQ合起来看,就象是一台直流电动机。直流电动机电枢里面的电流本来就是交变的,只是经过换向器和电刷才在外部电路表现为直流,这时,换向器相当于机械式的逆变器,电刷相当于磁极位置检测器。这里,则采用电力电子逆变器和转子位置检测器替代机械式换向器和电刷。
(3)同步电动机和异步电动机的定子都有同样的交流绕组,一般都是三相的,而转子绕组则不同,同步电动机转子除直流励磁绕组(或永久磁钢)外,还可能有自身短路的阻尼绕组。
(4)异步电动机的气隙是均匀的,而同步电动机则有隐极与凸极之分,隐极式电机气隙均匀,凸极式则不均匀,两轴的电感系数不等,造成数学模型上的复杂性。但凸极效应能产生平均转矩,单靠凸极效应运行的同步电动机称作磁阻式同步电动机。
在同步电动机中,除转子直流励磁外,定子磁动势还产生电枢反应,直流励磁与电枢反应合成起来产生气隙磁通,合成磁通在定子中感应的电动势与外加电压基本平衡。
利用PLC和变频器实现多电机速度同步控制

利用PLC和变频器实现多电机速度同步控制在传统的传动系统中,要保证多个执行元件间速度的一定关系,其中包括保证其间的速度同步或具有一定的速比,常采用机械传动刚性联接装置来实现。
但有时若多个执行元件间的机械传动装置较大,执行元件间的距离较远时,就只得考虑采用独立控制的非刚性联接传动方法。
下面以两个例子分别介绍利用PLC和变频器实现两个电机间速度同步和保持速度间一定速比的控制方法。
1、利用PLC和变频器实现速度同步控制薄膜吹塑及印刷机组的主要功能是,利用挤出吹塑的方法进行塑料薄膜的加工,然后经过凹版印刷机实现对薄膜的印刷,印刷工艺根据要求不同可以采用单面单色、单面多色、双面单色或双面多色等方法。
在整个机组中,有多个电机的速度需要进行控制,如挤出主驱动电机、薄膜拉伸牵引电机、印刷电机以及成品卷绕电机等。
电机间的速度有一定的关系,如:挤出主电机的速度由生产量要求确定,但该速度确定之后,根据薄膜厚度,相应的牵引速度也就确定,因此挤出速度和牵引速度之间有一确定的关系;同时,多组印刷胶辘必须保证同步,印刷电机和牵引电机速度也必须保持同步,否则,将影响薄膜的质量、印刷效果以及生产的连续性;卷绕电机的速度受印刷速度的限制,作相应变化,以保证经过印刷的薄膜能以恒定的张力进行卷绕。
在上述机组的传动系统中,多组印刷胶辘的同步驱动可利用刚性的机械轴联接,整个印刷胶辘的驱动由一台电机驱动,这样就保证了它们之间的同步。
印刷电机的速度必须保证与牵引电机的速度同步,否则,在此两道工艺之间薄膜会出现过紧或过松的现象,影响印刷质量和生产的连续性。
但是印刷生置与牵引装置相距甚远,无法采用机械刚性联接的方法。
为实现牵引与印刷间的同步控制,牵引电机和印刷电机各采用变频器进行调速,再用PLC对两台变频器直接控制。
牵引电机和印刷电机采用变频调速,其控制框图如图1所示。
在这个闭环控制中,以牵引辘的速度为目标,由印刷电机变频器调节印刷辘速度来跟踪牵引辘的速度。
变频器在永磁同步电机中的应用

变频器在永磁同步电机中的应用随着科技的不断发展,永磁同步电机作为一种新型的电机类型,已经开始逐渐取代传统电机的地位,而在永磁同步电机中使用变频器已经成为了一个常见的选择。
下面我们将探讨变频器在永磁同步电机中的应用以及它所带来的好处。
一、变频器的作用变频器是一种将电源的直流变为交流并改变频率的装置。
在永磁同步电机中,变频器可以对电机的转速进行控制。
变频器不仅可以控制电机的转速,还可以控制电机的转矩。
利用变频器控制的好处是可以使永磁同步电机完全发挥出其优势,包括高效率、高功率密度、高动态性能、低噪声、低振动等等。
二、变频器的优点1. 精确控制转速在永磁同步电机中,变频器可以精确控制电机的转速。
这种精确控制不仅可以通过调整输出频率来实现,还可以通过调整电压来实现。
这个过程可以通过变频器内的转速控制回路来完成,这使得永磁同步电机可以完美地适应各种负载条件。
2. 提高效率变频器可以提高永磁同步电机的效率。
传统的电机在启动时需要承受较大的电流冲击,这会导致电机的线圈出现过度加热,同时会造成能量的浪费。
而在使用变频器的情况下可以使永磁同步电机以较低的电流启动,并平稳地加速电机,从而可以减少电机线圈的过度加热和能量的浪费,提高电机的效率。
3. 节省能源使用变频器可以节省永磁同步电机的能源。
这意味着可以降低运行成本。
变频器可以通过分析永磁同步电机的负载情况以及需要的输出功率,对电源进行精确的控制,从而达到节省能源的目的。
4. 增加电机使用寿命传统的电机使用过程中,一些由于负载变化等因素造成的电机运行异常,例如电机被过载,会导致电机的寿命受到影响。
而使用变频器可以有效地解决这个问题。
使用变频器精确地控制电机的运行状态,避免电机过载运行,有助于延长电机的寿命。
5. 提高电机的精度和稳定性使用变频器可以改善永磁同步电机的精度和稳定性。
由于变频器可以精确地控制电机的运行状态,使电机转速更加稳定准确,能够提高电机的准确度和稳定性,降低电机出现失调和漂移的情况。
变频器永磁同步电机控制介绍

变频器永磁同步电机控制介绍变频器是一种能够控制电机运行速度和实现精确控制的设备。
永磁同步电机则是一种采用永磁体作为励磁源的同步电机。
本文将介绍变频器在永磁同步电机控制方面的应用。
一、变频器的原理和作用变频器的原理是通过改变电机供电频率来控制其转速。
传统的交流电机一般由交流电源供电,而交流电源的频率是固定的。
变频器通过改变电源的频率,可以实现对电机转速的调节。
在变频器中,主要有三个部分:整流器、逆变器和控制器。
整流器将交流电源转换为直流电,逆变器将直流电转换为可调频率的交流电,控制器负责对逆变器进行速度和转向的控制。
在永磁同步电机控制中,变频器的作用是将电机与逆变器连接,通过控制逆变器的输出频率,驱动电机旋转。
由于永磁同步电机具有较高的转矩密度和效率,因此在需要实现高效率和高精度控制的应用中广泛使用。
二、变频器在永磁同步电机控制中的应用1. 转速控制变频器通过改变输出频率,可以实现对永磁同步电机的转速控制。
通过调节变频器的输出频率和转矩,可以使电机以不同的转速运行,满足不同工况下的需求。
例如,在工业生产中,经常需要根据生产需要调整电机转速,变频器可以通过简单的设置实现这一功能。
2. 转矩控制除了转速控制外,变频器还可以实现对永磁同步电机的转矩控制。
通过调整变频器输出的电压和频率,可以控制电机的转矩大小。
在一些需要精确转矩控制的场合,如机械加工和物料输送系统等,变频器的转矩控制功能非常重要。
3. 节能控制使用变频器驱动永磁同步电机,可以实现能耗的有效控制。
传统的电机通过改变输入电压或闭环调速来实现控制,效率较低。
而变频器可以根据实际需求调节输出频率,以最佳的效率工作,从而节约能源。
4. 反馈控制变频器通过实时监测电机的转速和电流等信息,可以反馈给控制器进行精确的控制。
这种反馈控制可以实现对电机运行状态的监测和调整。
通过变频器的反馈控制,可以提高电机的运行精度和稳定性。
三、变频器在永磁同步电机控制中的优势1. 高效率:由于永磁同步电机的特性,结合变频器的控制,可以实现高效率的转速和转矩控制,提高能源利用效率。
两台电机如何通过变频器实现同步控制呢

两台电机如何通过变频器实现同步控制呢在工业控制系统中,变频器是一种常见的设备,用于控制电动机的转速和运行状态。
通过变频器,可以实现对电机的精确控制,包括速度、转矩、加速度等。
而在一些应用中,需要实现多台电机的同步控制,即多台电机的转速和运动状态保持一致。
本文将介绍如何通过变频器实现两台电机的同步控制。
首先,要实现电机的同步控制,需要确保两台电机的转速保持一致。
为此,可以将一台电机作为主电机,另一台电机作为从电机。
主电机通过变频器控制其转速,而从电机通过接收主电机的转速信号来实现同步运动。
具体实施时,可以按照以下步骤进行:1.首先,需要确保主电机的位置和转速精确可控。
可以通过编码器或位置传感器来获取主电机的位置和转速信息,并将其传递给变频器。
变频器根据这些信息来调整主电机的转速。
2.从电机需要与主电机保持同步,因此需要获取主电机的位置和转速信息。
可以通过编码器或位置传感器获取从电机的位置和转速信息,并将其传递给从变频器。
4.从变频器接收到主电机的转速信号后,根据这一信号调整从电机的转速。
从变频器将通过调整从电机的电压和频率来控制其转速,以保持与主电机的同步。
需要注意的是,在实际操作中,还需要考虑到一些因素,以确保同步控制能够稳定有效。
例如,变频器之间通信的稳定性和可靠性,编码器或位置传感器的精度和信号的及时性等。
此外,还要根据具体的应用需求和环境条件,调整控制系统的参数和算法,以实现更精确的同步控制。
通过变频器实现两台电机的同步控制,可以应用在许多工业场景中。
例如,自动化生产线中的输送带、同步驱动机械臂等。
通过有效地实现同步控制,不仅可以提高生产线的工作效率和精度,还可以减少因电机运动不同步而引起的故障和损耗。
总结起来,通过变频器实现两台电机的同步控制需要确保主电机的位置和转速精确可控,从电机通过接收主电机的转速信号来实现同步运动。
同时,还需要考虑通信稳定性、传感器精度和环境因素等因素,以优化同步控制系统的性能。
【橡胶】ME800高压变频器在高压永磁同步电机上的应用(20150511)

轧胶工序工艺流程示意图
1)密炼机特点是启动电流大,要求低速大转矩;密炼机电机具有恒转矩的负载特性,每4分钟内一个混炼周期。
其混炼周期内电机负载情况如下:
在混炼周期
永磁同步专用控制系统第二CPU板
2.2用户密炼系统配置情况
3.2 ME800
现场密炼机现场生产中
5.总结
新时达ME800系列高压变频器拖动永磁同步电机在橡胶轮胎行业的成功应用再次巩固了新时达高压变频器在橡胶行业应用的技术领先地位,密炼机负载的低速高转矩要求本身就是对变频器是一种性能挑战,永磁同步电机的应用更是对新时达研发水平的检验,新时达勇于探索新技术,为橡胶轮胎行业创造出更大的节能空间,为橡胶轮胎企业密炼机调速系统提供更加高效的解决方案。
汇川变频器在设备同步控制上的应用

汇川变频器在皮带机同步控制上的应用一。
系统配置皮带同步采用汇川变频器控制,有四种方法实现:1. 采用MD320+MD320(功率根据机器配置)系列变频器分别控制主从电动机,通过电气比例控制+下垂控制实现同步2。
采用两台MD320(功率根据机器配置)的控制方案,利用MD320内置PID控制同步;3。
采用MD320+MD320+PG卡(功率根据机器配置)的控制方案控制同步, MD320控制主电机工作在速度模式,MD320+PG卡控制从电机工作在力矩控制模式。
4.采用MD380M+MD380M(功率根据机器配置) 系列变频器分别控制主从电动机,主机采用开环矢量速度模式,从机变频采用开环转矩跟随模式。
二。
系统概述在生产线的多传动系统中,往往采用多电机驱动同一负载,根据涂装工艺的要求,各部份之间要求达到线速度比例协调。
高精度,可靠地保证这个比例系数运行是保证产品质量,确保生产正常运行的重要条件.传统的开环同步控制已不能满足要求,要在任何时候保证这种速度比例关系,就要求这种比例协调应有微调功能,不应在运行过程中出现明显的滞后现象。
下面将三种方案分别加以说明:1. 主电机采用MD320从电机采用MD320且都为速度模式:开环控制时根据机械传动比算出满足同步是主从电机的速度关系,然后将主变频的模拟输出进行比例运算后给从变频器,再结合下垂控制功能,实现同步控制.这种控制方式优点:对变频器功能要求不高,控制简单,成本低;缺点:比例同步精度低,但机械传动精度要求高,而随着机械的磨损,同步精度就无法保证.参数配置:1.变频器工作在V/F控制模式(F1组参数需正确设置)。
2。
主机配置参数如下:F0-01=0:端子控制方式F0-02=3:频率源选择AI1F0—05=40:主机加速时间F0-06=40:主机减速时间F0—09=1:主机启动F0—11=9:故障复位F0—12=11:外部故障输入3.从机配置参数如下:F0—02=1端子控制方式F0-03=2 频率源选择F0—17=5 加速时间F0—18=5 减速时间F4—00=01启动F4—02=09:故障复位F4—01=11:外部故障输入F4-03=08:自由停车F4—16=速度比例AI1最大输入对应设定F4—17=0。
交流异步电机的工变频同步切换

目录1.SYN-TRANSFER技术详细资料 (2)1.1 SYN-TRANSFER技术介绍 (2)1.2工作原理 (3)1.3 主回路配置 (4)1.4 系统外部原理图 (5)1.5 组成及操作界面说明 (5)2.高压变频器切换工频时非同期冲击 (6)2.1非同期冲击原理 (6)2.2非同期冲击实验 (7)3.电厂风机由变频切换工频切换和类似的方案 (8)3.1风机变频到工频切换方法 (8)3.2同步切换方案 (9)3.2.1方案一(带电抗器) (9)3.2.2方案二(不带电抗器) (10)3.1同步切换应用方案 (11)4.高压变频器水冷方式方案 (14)1.SYN-TRANSFER技术详细资料1.1 SYN-TRANSFER技术介绍同步切换是变频器与工频电网之间进行无扰切换的技术,它利用锁相技术,使变频器输出电压的频率、相位、幅值和电网电压的频率、相位、幅值保持一致,进行变频器与电网之间的无扰切换,防止因变频器输出电压和电网电压之间存在相位差而产生冲击电流,损坏设备或拉跨电网。
为重负载软启动(磨机)、多台水泵顺序自动变频软启动、需要在工频和变频电源之间频繁切换的系统。
同步切换的控制方法为: 同时检测变频电源和工频电源的频率、相位和幅值, 当两种电源的频率差、相位差、幅值差小于规定误差时, 锁定当前电网频率进行切换。
电机由变频转工频的切换一般是在变频器输出电压和电网电压的频率、大小都相等的情况下进行的,表面上看,此时两个电源输出电压的大小、频率都相等,似乎可以进行平滑切换,不会对电机产生什么冲击。
其实不然,一个没有考虑到的关键性的问题是——相位,即两个电源电压变化的步调是否一致。
在变频转工频切换瞬间,由于变频器输出电压起始相位具有随机性,它所输出的三相电源相位和电网工频电源相位完全有可能不一致。
SYN-TRANSFER技术非常必要。
下图是SYN-TRANSFER技术的原理图。
锁相前、后的变频和工频电压波形如图1、图2所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
优利康变频器在同步控制设备上的应用一,前言在生产实际应用中,经常会有一些设备需要组合成生产线连续运行,并且这些设备的运行速度需要保持同步。
例如:直进式金属拉丝机、造纸生产线、印染设备、皮带运输机等等,由于这些设备都能一次完成所需的加工工艺,所以生产效率高,产品质量稳定,在相关的行业得到了广泛的应用。
这些设备都有一个共同的特点,产品连续地经过各台设备,如果各台设备不能保持速度同步,就会造成产品被拉断,使设备被迫停止运行,严重的会造成很大的损失。
另外,有些单机设备,有多个动力拖动,这多个动力之间也需要保持同步。
因此,这些设备上都装有交流调速系统,通过调整各台设备的运行速度,使各台设备保持同步运行。
二,同步控制的分类根据生产工艺的需要和生产产品的不同,一般对同步的要求也不一样。
所以,一般我们把设备对同步的要求从简单到复杂分成以下几类:1,简单同步这种同步方式一般用于设备之间没有直接的连接,各个设备都是处于独立的工作模式,但由于工艺的需要,这些设备的工作速度需要保持基本一致或保持一定的比例运行,并且,各个设备需要同时升速或降速。
在这种系统中,都不采集反映同步状况的信号。
这种设备的特点是速度误差的积累,已及速度的稳定性及速度精度,不会对生产工艺产生任何影响。
例如,双搅拌机,搅拌罐中的二个搅拌浆的速度只需保持速度的基本一致就行。
2,平均速度同步这种同步方式一般用于设备之间有联系,有的是物料连续经过各台设备,有的是靠机械装置连接在一起。
这些系统的特点是设备对速度稳定性与速度精度的要求比较高,但是对速度误差的积累不敏感,并且,各台设备的运行速度是成一定的比例,如产生积累误差,可以通过调整速度的比例系数来纠正。
典型的如无纺布生产设备、滑轮式拉丝机等等,这些系统的各个设备之间也没有反映同步状态的信号,所生产的产品都有一定的拉伸,所以各个设备的线速度都是成一定的比例关系,如果其中的某台设备有一定的稳态速度误差,可以通过修改比例系数,来达到工艺的要求。
3,瞬时速度同步这是一种相对来讲要求比较高的同步控制,同样是生产的产品连续经过各台加工设备,或者靠机械强连接在一起,但都不允许有速度的积累误差,如果达到一定的误差积累,就会使产品损坏或系统报警而无法工作。
因此在这样的系统中一般都用反映同步状态的信号反馈给控制系统,控制系统根据这个信号,及时地对系统中各台设备的速度做出修正。
典型的系统如直进式拉丝机、造纸生产线、印染生产线、双动力驱动的皮带运输机、抓斗提升机的抓斗提升系统等等,这些系统的特点是,如果瞬间速度误差太大,就会造成断丝、断纸、或使系统无法工作。
4,位置同步位置同步是要求最高的同步控制系统,一般光靠变频器本身是无法完成位置同步的,所以这种系统中都有PLC等控制器,来完成位置信号的采集及控制变频器的运行。
位置控制系统对变频器的动态响应要求非常高,速度精度也非常高,因此一般都需要采用闭环电流矢量控制的变频器。
例如,印染行业的定型机,需要布匹两边的驱动要完全一致,包括位置一致,如产生差异的话,就会使布匹产生斜向拉伸,影响产品的质量。
还有的如飞剪系统、定长切割系统等,都需要对位置做高精确的控制。
事实上,这些系统已属于伺服控制系统,在功率比较小的场合,基本都用伺服系统来控制,但由于大功率的伺服控制器价格太高,所以在一些中大功率的应用场合,用变频器来控制还是非常有意义的。
5,收放卷控制收放卷设备一般处于生产线的前端和后端,完成生产产品的收与放,与主设备之间也要保持同步,有的还需保持一定的收放卷张力。
所以也把收放卷归到同步系统中。
早期的放卷系统用的磁粉离合器,靠磁粉离合器的阻力使放卷有一定的张力;而收卷系统一般用力矩电机控制,利用力矩电机的挖土机特性,使收卷设备运行速度与主系统保持同步。
但以上的二种方式控制精度都比较低,所以,目前在大多数应用场合都用变频器来实现收放卷,一般都用PID 控制方式和力矩控制方式来实现。
三,同步控制的方案同步控制的方案很多,一般需根据同步要求的不同,选择合适的控制方案,达到最合适的投资,又能保证系统能符合工艺的需要。
所以,选择合适的同步控制方案就显得非常重要。
以下是优利康变频器在同步控制系统中的各种应用方案及一般适合的应用场合。
1,群拖控制的同步系统所谓群拖,就是一台变频器同时带几台甚至几十台电机,所有电机的速度都有同一台变频器的输出频率控制,所以理论上所有电机的速度是一致的,并且能保证同时升速与降速。
但是由于电机制造上的差异,或者电机所带负载大小的不同,因此,每台电机的实际运行速度是有差异的,并且,系统内没有纠正这种差异的机制,也无法安装纠正差异的机构,所以,在一些设备之间没有连接的场合,这种控制方法肯定会产生积累误差,并且无法纠正。
一般这种方式用于简单同步控制的场合。
另外一种情况下,可以把群拖方式时的变频器看成供电电源,在一些刚性连接的系统中,例如行车的大车系统,一般有二个、四个甚至八个电机驱动,如果用群拖系统来控制时,其中运转得稍快的电机,负载会重,而运转得稍慢的电机负载会轻,但因是同一个变频器驱动,负载重的转差率变大,负载轻的转差率变小,这样,就会有一定的自动纠正能力,最终会使各台电机保持同步运行,但是负载分配是不均匀的,一般在选择电机时要把电机功率放大一级。
如下图所示。
群拖同步控制方式非常简单,但也需要注意以下一些问题。
a ,所带电机的功率不能差异太大,一般不相差二个功率等级以上。
b ,电机最好是同一个公司生产,如果是同功率的电机,最好是同一批次的,以保证电机特性的一致,最大程度使电机的转差率一致,以保证良好的同步性能。
c ,充分考虑电机电缆的长度,电缆越长,电缆之间或电缆对地之间的电容也越大,变频器的输出电压含有丰富的高次谐波,所以会形成高频电容接地电流,对变频器的运行产生影响。
电缆的长度以接在变频器后的所有电缆的总长度计算。
使用时请参考优利康变频器的使用说明书,保证电缆的总长度变频器允许的范围。
必要的时候,应在变频器的输出端安装输出电抗器或输出滤波器。
d ,变频器只能工作于V/F 控制方式,并且选择合适的V/F 曲线。
变频器的额定工作电流应大于所有电机额定电流的总和的1.2倍以上。
e ,为了保护电机,每台电机前应安装热继电器,不推荐安装空气开关。
这样在电机过载时可以不断开主回路,避免在变频器运行中断开主回路时对变频器本身的影响。
f ,对于需要快速制动的应用场合,为了防止停止时产生过电压,应加制动单元和制动电阻,优利康15KW 及以下的变频器已内置制动单元,因此只需接制动电阻即可。
群拖控制方式的典型应用场合:起重设备的大车驱动系统;某些纺织机械的锭子的调速系统,如络筒机、细纱机、粗纱机等等。
优利康变频器在用于群拖方式时,一些所需要调整的参数。
因群拖控制方式比较简单,所以相对来讲调整的参数不多,一般可根据需要调整以下参数。
B1‐01:频率指令的给定方式 B1‐02:运行指令的方式C1‐01:加速时间 C1‐02:减速时间E1‐06:基频改为50Hz 根据实际需要还需更改的其它参数2,下垂控制(DOOP )的同步方案在一般的电力拖动系统中,都要求系统运行是刚性的,理想状态是负载的变化不影响速度的变化。
但由异步电机的特性可知,在电机的最大输出转矩以内,负载的变化会影响电机的转速,一般是负载越大,转速降也越大,所以在对速度稳定性要求比较高的场合,会使用速度闭环,负载增加时,提高输出频率,以弥补电机本身的速度降。
这就是我们所说的正向调节。
而下垂控制方法正好相反,负载越大,反而降低输出频率,也就是负向调节。
下垂同步系统中一般只有二台电机,并且这二台电机是刚性连接的,没有任何速度差,属于主从系统。
主变频器工作在普通速度控制方式,而从变频器工作于下垂控制模式,一旦从变频器运转得快于主电机,变频器的输出电流也会赠大,这时变频器是降低输出频率,把负载转移一部分给主电机,这样就降低自身的负载,使输出电流重新达到一个平衡点。
下垂控制系统主要是调整主从变频器的最高输出频率的比例,以及从变频器的下垂量,总可以找到一个合适的点,使主从电机的负载基本一致。
下垂控制功能只有在有PG 矢量控制时有效,所以,必须在从电机上安装编码器。
从变频器上安装PG 卡。
下垂控制的特点是负载分配比较均匀,可以使主从电机各分担约50%的负荷,但必须要有编码器,所以限制了一些实际的应用。
下垂控制方式的一些典型的应用场合:双驱动皮带运输机,两端出轴双电机驱动起重机提升系统等等。
优利康变频器在使用下垂功能时所需要调整的一下参数如下。
主电机工作于普通的速度控制方式,因此主电机的参数按常规方式调整,包括B1‐01、B1‐02、C1‐01、C1‐02、E1‐06等;从电机工作在闭环矢量控制方式,除以上的参数外,还需调整E1‐04、B7‐01、B7‐02等。
3,按比例同步控制系统按比例同步控制方案相对比较简单,非常适合平均速度同步的应用场合。
在这种系统中,每个电机都有一台变频器控制,频率指令有同一个信号给定,但运行频率由每台变频器的最高输出频率决定,整个系统按一定的比例使各台设备的速度保持同步。
在实际的应用中,也有很多用PLC 来控制整个系统的运行,这种方式下,各台变频器的最高输出频率是一样的,而各台变频器的频率指令是由PLC 根据工艺要求计算出的,有PLC统一给定。
按比例同步控制系统的运行精度取决与电机的特性。
理论上,如果是同步电机,各台设备的运行速度完全决定于变频器的输出频率。
异步电机总是有一定的转差率,优利康变频器在无PG 矢量控制时,可以根据各台电机负载情况,自动加上转差补偿,使系统的运行精度大大提高,因此基本能满足绝大多数类似的应用场合。
按比例同步方式的典型应用场合:无纺布控制系统,滑轮式拉丝机控制系统,港口起重机械上多电机大车驱动系统等等。
因这种控制方式变频器都属于速度控制,因此,参数调整比较简单,按常规的速度控制调整B1‐01、B1‐02、C1‐01、C1‐02、E1‐04等等,如需要快速停止的场合,需加装制动电阻或制动单元。
4,PID 控制的同步方案PID 控制原理PID 控制的同步系统,在同步控制中应用最为广泛,因此在这里也是讨论最多的一种方案。
为了通过PID 的控制使设备同步,各台设备之间需要有一个反映同步状态的信号,这个信号一般由运行时的机械位置决定,所以通常是通过扇形挡块、浮动辊等机械装置的位置变化,再用相关的传感器或电位器转换成电信号,或直接用压力传感器等供给控制设备,控制设备根据这些信号的大小,通过PID 运算,调整相对应设备的速度,使设备之间保持同步运行。
如下图所示。
控制原理在这些控制系统中,一般都有一台我们称之为领航速度的设备,这台设备没有PID 反馈控制,是纯粹的速度控制,这台设备的速度决定了整个系统的工作速度,系统中其它设备的速度都需跟随这台设备,因此,也称之为主设备。