2017年四川省广元市中考数学二模试卷含答案解析

合集下载

2017年四川省广元市中考数学试题及解析

2017年四川省广元市中考数学试题及解析

2017年四川省广元市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)B3.(3分)(2017•广元)如图,已知⊙O的直径AB⊥CD于点E,则下列结论一定错误的是()=4.(3分)(2017•广元)一元一次不等式组的解集中,整数解的个数是()6.(3分)(2017•广元)一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为().8.(3分)(2017•广元)当0<x <1时,x ,,x 2的大小顺序是( ) <x <x 2B<<x 2<x9.(3分)(2017•广元)如图,把Rt △ABC 放在直角坐标系内,其中∠CAB=90°,BC=5,点A 、B 的坐标分别为(1,0)、(4,0).将△ABC 沿x 轴向右平移,当点C 落在直线y=2x ﹣6上时,线段BC 扫过的面积为( )10.(3分)(2017•广元)如图,矩形ABCD 中,AB=3,BC=4,点P 从A 点出发,按A →B →C 的方向在AB 和BC 上移动.记PA=x ,点D 到直线PA 的距离为y ,则y 关于x 的函数大致图象是( )B二、填空题(共5小题,每小题3分,满分15分)11.(3分)(2017•广元)一组数据10,13,9,16,13,10,13的众数与平均数的和是.12.(3分)(2017•广元)若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是.13.(3分)(2017•广元)一个等腰三角形两边的长分别为2cm,5cm,则它的周长为cm.14.(3分)(2017•广元)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB 于点P、Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是∠ACQ 的外心,其中正确结论是(只需填写序号).15.(3分)(2017•广元)从3,0,﹣1,﹣2,﹣3这五个数中抽取一个数,作为函数y=(5﹣m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是.三、解答题(共9小题,满分75分)16.(7分)(2017•广元)计算:(2017﹣π)0+(﹣)﹣1+|﹣1|﹣3tan30°+6.17.(7分)(2017•广元)先化简:(﹣)÷,然后解答下列问题:(1)当x=3时,求原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?18.(7分)(2017•广元)求证:平行四边形的对角线互相平分(要求:根据题意先画出图形并写出已知、求证,再写出证明过程).19.(8分)(2017•广元)图1是某中学九年级一班全体学生对三种水果喜欢人数的频数分布统计图,根据图中信息回答下列问题:(1)九年级一班总人数是多少人?(2)喜欢哪种水果人数的频数最低?并求出该频率;(3)请根据频数分布统计图(图1)的数据,补全扇形统计图(图2);(4)某水果摊位上正好只摆放有这三种水果出售,王阿姨去购买时,随机购买其中两种水果,恰好买到樱桃和枇杷的概率是多少?用树状图或列表说明.20.(8分)(2017•广元)某学校体育看台的侧面如图中阴影部分所示,看台有四级高度相等的小台阶,已知看台高为1.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长度均为0.8米的不锈钢架杆AD和BC(杆子的低端分别为D、C),且∠DAB=66.5°(cos66.5°≈0.4).(1)求点D与点C的高度差DH;(2)求所用不锈钢材料的总长度l(即AD+AB+BC的长).21.(8分)(2017•广元)经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米的时候就造成交通堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在某一交通时段,为使大桥上的车流书店大于60千米/小时且小于80千米/小时,应把大桥上的车流密度控制在什么范围内?22.(9分)(2017•广元)李明准备进行如下操作实验,把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48cm2,你认为他的说法正确吗?请说明理由.23.(9分)(2017•广元)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA 交弦于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF、BF,求∠ABF的度数;(3)如果CD=15,BE=10,sinA=,求⊙O的半径.24.(12分)(2017•广元)如图,已知抛物线y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点A、B,与y轴相交于点C,且点A在点B的左侧.(1)若抛物线过点G(2,2),求实数m的值;(2)在(1)的条件下,解答下列问题:①求出△ABC的面积;②在抛物线的对称轴上找一点H,使AH+CH最小,并求出点H的坐标;(3)在第四现象内,抛物线上是否存在点M,使得以点A、B、M为顶点的三角形与△ACB 相似?若存在,求m的值;若不存在,请说明理由.2017年四川省广元市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)B3.(3分)(2017•广元)如图,已知⊙O的直径AB⊥CD于点E,则下列结论一定错误的是()=4.(3分)(2017•广元)一元一次不等式组的解集中,整数解的个数是()6.(3分)(2017•广元)一副三角板按如图方式摆放,且∠1比∠2大50°.若设∠1=x°,∠2=y°,则可得到的方程组为()..8.(3分)(2017•广元)当0<x<1时,x,,x2的大小顺序是()<x<x2B<<x2<x ,求出的值,再比较即可.x==2,<9.(3分)(2017•广元)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x ﹣6上时,线段BC扫过的面积为()10.(3分)(2017•广元)如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C 的方向在AB和BC上移动.记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()By=((二、填空题(共5小题,每小题3分,满分15分)11.(3分)(2017•广元)一组数据10,13,9,16,13,10,13的众数与平均数的和是25.=12.(3分)(2017•广元)若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是(﹣3,5).13.(3分)(2017•广元)一个等腰三角形两边的长分别为2cm,5cm,则它的周长为12 cm.14.(3分)(2017•广元)如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB 于点P、Q,连接AC,关于下列结论:①∠BAD=∠ABC;②GP=GD;③点P是∠ACQ 的外心,其中正确结论是②③(只需填写序号).与不一定相等,根据圆周角定理可知为的中点,得到= =≠的中点,即=的中点,==15.(3分)(2017•广元)从3,0,﹣1,﹣2,﹣3这五个数中抽取一个数,作为函数y=(5﹣m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是﹣2.解得:﹣<或2三、解答题(共9小题,满分75分)16.(7分)(2017•广元)计算:(2017﹣π)0+(﹣)﹣1+|﹣1|﹣3tan30°+6.﹣﹣=217.(7分)(2017•广元)先化简:(﹣)÷,然后解答下列问题:(1)当x=3时,求原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?)如果=0()÷=[﹣•﹣)•.=)如果时,除式18.(7分)(2017•广元)求证:平行四边形的对角线互相平分(要求:根据题意先画出图形并写出已知、求证,再写出证明过程).19.(8分)(2017•广元)图1是某中学九年级一班全体学生对三种水果喜欢人数的频数分布统计图,根据图中信息回答下列问题:(1)九年级一班总人数是多少人?(2)喜欢哪种水果人数的频数最低?并求出该频率;(3)请根据频数分布统计图(图1)的数据,补全扇形统计图(图2);(4)某水果摊位上正好只摆放有这三种水果出售,王阿姨去购买时,随机购买其中两种水果,恰好买到樱桃和枇杷的概率是多少?用树状图或列表说明.=0.15××P=.20.(8分)(2017•广元)某学校体育看台的侧面如图中阴影部分所示,看台有四级高度相等的小台阶,已知看台高为1.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长度均为0.8米的不锈钢架杆AD和BC(杆子的低端分别为D、C),且∠DAB=66.5°(cos66.5°≈0.4).(1)求点D与点C的高度差DH;(2)求所用不锈钢材料的总长度l(即AD+AB+BC的长).×HDC=21.(8分)(2017•广元)经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米的时候就造成交通堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在某一交通时段,为使大桥上的车流书店大于60千米/小时且小于80千米/小时,应把大桥上的车流密度控制在什么范围内?.x+88﹣﹣时,即﹣时,即﹣22.(9分)(2017•广元)李明准备进行如下操作实验,把一根长40cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48cm2,你认为他的说法正确吗?请说明理由.))))23.(9分)(2017•广元)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA 交弦于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF、BF,求∠ABF的度数;(3)如果CD=15,BE=10,sinA=,求⊙O的半径.BE=5A=,在=12得到比例式ABF=BE=5A=,=12,,OA=2AD=24.(12分)(2017•广元)如图,已知抛物线y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点A、B,与y轴相交于点C,且点A在点B的左侧.(1)若抛物线过点G(2,2),求实数m的值;(2)在(1)的条件下,解答下列问题:①求出△ABC的面积;②在抛物线的对称轴上找一点H,使AH+CH最小,并求出点H的坐标;(3)在第四现象内,抛物线上是否存在点M,使得以点A、B、M为顶点的三角形与△ACB 相似?若存在,求m的值;若不存在,请说明理由.(,得到﹣(ABC=×(坐标代入得:,x+2,即时,则有,即(AM==2AC=2=222;时,则===MN=,﹣(((,﹣(MN=(2=整理得:。

中考二模测试《数学试题》含答案解析

中考二模测试《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上)1. 下列图标,是轴对称图形的是( )A. B.C. D.2. 如图,若A、B分别是实数a、b在数轴上对应的点,则下列式子的值一定是正数的是()A. b+aB. b-aC. a bD. b a3. 关于代数式x+2的结果,下列说法一定正确的是()A. 比2大B. 比2小C. 比x大 D. 比x小4. 如图,二次函数y=ax2+bx+c的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①a<0,b>0,c<0;②当x=2时,y的值等于1;③当x>3时,y的值小于0.正确的是()A. ①②B. ①③C. ②③D. ①②③5. 计算999-93的结果更接近()A. 999B. 998C. 996D. 9336. 如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K是△PMN的( )A. 三条高线的交点B. 三条中线的交点C. 三个角的角平分线的交点D. 三条边的垂直平分线的交点二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7. 13的相反数是______,13的倒数是______.8. 若△ABC∽△DEF,请写出2个不同类型的正确的结论:______,______.9. 如果﹣2x m y3与xy n是同类项,那么2m﹣n的值是_____.10. 分解因式2x2y-4xy+2y的结果是_____.11. 已知x1、x2是一元二次方程x2+x-3=0的两个根,则x1+x2-x1x2=______.12. 用半径为4的半圆形纸片恰好折叠成一个圆锥侧面,则这个圆锥的底面半径为______.13. 如图,点A在函数y=kx(x>0)的图像上,点B在x轴正半轴上,△OAB是边长为2的等边三角形,则k的值为______.14. 如图,在□ABCD中,E、F分别是AB、CD的中点.当□ABCD满足____时,四边形EHFG是菱形.15. 如图,一次函数y=-43x+8的图像与x轴、y轴分别交于A、B两点.P是x轴上一个动点,若沿BP将△OBP翻折,点O恰好落在直线AB上的点C处,则点P的坐标是______.16. 如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB 的位置保持不动,将三角板DCE 绕其直角顶点C 顺时针旋转一周.当△DCE 一边与AB 平行时,∠ECB 的度数为_________________________.三、解答题(本大题共11小题,共88分.请在答题..卡指定区域.....内作答,解答时应写出文字说明、证明过程或演算步骤)17. 求不等式3x ≤1+12x -的负整数解. 18. (1)化简:244x --12x -;(2)解方程244x --12x -=12. 19. 小莉妈妈支付宝用来生活缴费和网购.如图是小莉妈妈2017年9月至12月支付宝消费情况的统计图(单位:元).(1)11月支出较多,请你写出一个可能的原因.(2)求这4个月小莉妈妈支付宝平均每月消费多少元.(3)用(2)中求得的平均数来估计小莉妈妈支付宝2018年平均每月消费水平,你认为合理吗?为什么?20. 转转盘和摸球是等可能概率下的经典模型.(1)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2次,求指针2次都落在黑色区域的概率.(2)小刚在一个不透明的口袋中,放入除颜色外其余都相同的18个小球,其中4个白球,6个红球,8个黄球.搅匀后,随机摸1个球,若事件A的概率与(1)中概率相同,请写出事件A.21. 春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用时200天.(1)根据题意,小莉、小刚两名同学分别列出尚不完整的方程组如下:小莉:___128_____x yx y+=⎧⎨+=⎩小刚:________128x yx y+=⎧⎪⎨+=⎪⎩根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全小莉、小刚两名同学所列的方程组:小莉:x表示,y表示;小刚:x表示,y表示.(2)求甲、乙两工程队分别出新改造步行道多少米.22. 如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是100 m,如果爸爸的眼睛离地面的距离(AB)为1.6 m,小莉的眼睛离地面的距离(CD)为1.2 m,那么气球的高度(PQ)是多少?(用含α、β的式子表示)23. 南京、上海相距约300 km,快车与慢车速度分别为100 km/ h和50 km/ h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为x h,快车、慢车行驶过程中离南京的路程为y1、y2 km.(1)求y1、y2与x之间的函数关系式,并在下列平面直角坐标系中画出它们的图像;(2)若镇江、南京相距约80 km,求两车经过镇江的时间间隔;(3)直接写出出发多长时间,两车相距100 km.24. 如图,△ABC中,AD⊥BC,垂足是D.小莉说:当AB+BD=AC+CD时,则△ABC是等腰三角形.她说法正确吗,如正确,请证明;如不正确,请举反例说明.25. 某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.26. 如图1,点O为正方形ABCD 的中心,E为AB 边上一点,F为BC边上一点,△EBF的周长等于BC 的长.(1)求∠EOF 的度数.(2)连接OA、OC(如图2).求证:△AOE∽△CFO.(3)若OE=52OF,求AECF的值.27. 在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.【问题提出】求证:如果一个定圆内接四边形对角线互相垂直,那么这个四边形的对边的平方和是一个定值.从特殊入手】我们不妨设定圆O的半径是R,⊙O的内接四边形ABCD中,AC⊥BD.请你在图①中补全特殊殊位置时的图形,并借助于所画图形探究问题的结论.【问题解决】已知:如图②,定圆⊙O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.求证:.证明:答案与解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1. 下列图标,是轴对称图形的是( ) A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的定义逐项进行分析判断即可得.【详解】A 、不是轴对称图形,故不符合题意;B 、不是轴对称图形,故不符合题意;C 、不是轴对称图形,故不符合题意;D 、是轴对称图形,故符合题意,故选D.【点睛】本题考查了轴对称图形,熟知轴对称图形是一定要沿某直线折叠后直线两旁的部分互相重合的图形是解题的关键.2. 如图,若A 、B 分别是实数a 、b 在数轴上对应的点,则下列式子的值一定是正数的是( )A. b +aB. b -aC. a bD. b a【答案】B【解析】 分析:根据数轴上数的大小以及各种计算法则即可得出答案.详解:根据数轴可得:a+b <0;b -a >0;0b a;计算b a 时,如果b 为偶数,则结果为正数,b 为奇数时,结果为负数.故本题选B.点睛:本题主要考查的是数轴以及各种计算法则,属于基础题型.理解各种计算法则是解决这个问题的关键.3. 关于代数式x+2结果,下列说法一定正确的是()A. 比2大B. 比2小C. 比x大 D. 比x小【答案】C【解析】【分析】分情况讨论:当x<0时;当x>0时;x取任何值时,就可得出答案.【详解】当x<0时,则x+2比2小,则A不符合题意;当x>0时,则x+2比2大,则B不符合题意;x取任何值时,x+2比x大,则D不符合题意,故选C.【点睛】本题考查了实数大小的比较,正确地分类讨论是解题的关键.4. 如图,二次函数y=ax2+bx+c的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①a<0,b>0,c<0;②当x=2时,y的值等于1;③当x>3时,y的值小于0.正确的是()A. ①②B. ①③C. ②③D. ①②③【答案】B【解析】分析:根据二次函数的开口方向、对称轴与y轴的交点得出①、根据对称性得出②、根据函数图像得出③.详解:根据图像可得:a<0,b>0,c<0,故正确;∵对称轴大于1.5,∴x=2时的值大于x=1的函数值,故错误;根据图像可得:当x>3时,y的值小于0,故正确;故选B.点睛:本题主要考查的是二次函数的图象与系数之间的关系,属于中等难度的题型.理解函数图像与系数之间的关系是解题的关键.5. 计算999-93的结果更接近()A. 999B. 998C. 996D. 933【答案】A【解析】分析:根据幂的大小进行求值,从而得出答案.详解:根据幂的性质可得:999-93最接近于999,故选A.点睛:本题主要考查的是幂的计算法则,属于中等难度的题型.明白幂的定义是解决这个问题的关键.6. 如图,点P是⊙O外任意一点,PM、PN分别是⊙O的切线,M、N是切点.设OP与⊙O交于点K.则点K是△PMN的( )A. 三条高线的交点B. 三条中线的交点C. 三个角的角平分线的交点D. 三条边的垂直平分线的交点【答案】C【解析】【分析】连接OM、ON,NK,根据切线的性质及角平分线的判定定理,可得出答案.【详解】如图,连接OM、ON,NK,∵PM、PN分别是⊙O的切线,∴ON⊥PN,OM⊥PM,MN⊥OP,∠OPN=∠OPM,∴∠1+∠ONK=90°,∠2+∠OKN=90°,∵OM=ON,∴∠OPN=∠OPM,∠ONK=∠OKN,∴∠1=∠2,∴点K是△PMN的角平分线的交点,故选C.【点睛】本题考查了切线长定理、角平分线定义,熟练掌握切线长定理的内容是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7. 13的相反数是______,13的倒数是______.【答案】(1). -13(2). 3【解析】分析:当两数只有符号不同时,则两数互为相反数;当两数的积为1时,则两数互为倒数.根据定义即可得出答案.详解:13的相反数是13-,13的倒数是3.点睛:本题主要考查的是相反数和倒数的定义,属于基础题型.理解定义是解决这个问题的关键.8. 若△ABC∽△DEF,请写出2个不同类型的正确的结论:______,______.【答案】(1). ∠A=∠D (2). ∠B=∠E【解析】分析:相似三角形的对应角相等,对应边成比例.详解:∵△ABC∽△DEF,∴∠A=∠D,∠B=∠E,∠C=∠F,AB AC BC DE DF EF==.点睛:本题主要考查的是相似三角形的性质,属于基础题型.明白相似三角形的性质是解决这个问题的关键.9. 如果﹣2x m y3与xy n是同类项,那么2m﹣n的值是_____.【答案】-1【解析】【分析】同类项是指所含的字母相同,且相同字母的指数相同的单项式.根据定义求出m和n的值,从而得出答案.【详解】根据题意可得:m=1,n=3,∴2m-n=2×1-3=-1.故答案是:-1.【点睛】本题主要考查的是同类项的定义,属于基础题型.理解定义是解决这个问题的关键.10. 分解因式2x 2y -4xy +2y 的结果是_____.【答案】2y(x -1)2【解析】分析:首先提取公因式2y ,然后利用完全平方公式得出答案.详解:原式=2y(22x 1x -+)=()22y x 1-.点睛:本题主要考查的是因式分解,属于基础题型.因式分解的方法有:提取公因式、公式法和十字相乘法等,有公因式我们都需要进行提取公因式.11. 已知x 1、x 2是一元二次方程x 2+x -3=0的两个根,则x 1+x 2-x 1x 2=______.【答案】2【解析】分析:首先根据韦达定理求出两根之和和两根之积,从而得出答案.详解:∵121b x x a +=-=-,123c x x a==-, ∴原式=-1-(-3)=-1+3=2. 点睛:本题主要考查的是一元二次方程的韦达定理,属于基础题型.明白韦达定理的计算公式是解决这个问题的关键.12. 用半径为4的半圆形纸片恰好折叠成一个圆锥侧面,则这个圆锥的底面半径为______.【答案】2【解析】分析:根据圆锥的侧面展开图的圆心角的计算公式即可得出答案.详解:∵设圆锥的半径为r ,母线长为4,∴θ360r l =⨯︒,即1803604r ︒=⨯︒,解得:r=2. 点睛:本题主要考查的是圆锥的侧面展开图,属于中等难度题型.明白展开图的圆心角计算公式即可得出答案.13. 如图,点A 在函数y =k x(x >0)的图像上,点B 在x 轴正半轴上,△OAB 是边长为2的等边三角形,则k 的值为______.【答案】3【解析】【分析】首先过点A作AC⊥OB,根据等边三角形的性质得出点A的坐标,从而得出k的值.【详解】分析:解:过点A作AC⊥OB,∵△OAB为正三角形,边长为2,∴OC=1,AC=3,∴k=1×3=3.故答案为:3【点睛】本题主要考查的是待定系数法求反比例函数解析式以及等边三角形的性质,属于基础题型.得出点A的坐标是解题的关键.14. 如图,在□ABCD中,E、F分别是AB、CD的中点.当□ABCD满足____时,四边形EHFG是菱形.【答案】答案不唯一,如:∠ABC=90°等【解析】分析:首先根据题意得出四边形EHFG为平行四边形,然后根据直角三角形斜中线的性质得出EH=HF,从而得出菱形.详解:∵E、F为AB、CD的中点,∴EG∥HF,EH∥FG,∴四边形EHFG为平行四边形,当∠ABC=90°时,∴BH=EH=HF,∴四边形EHFG为菱形.点睛:本题主要考查的是平行四边形的性质以及菱形的判定定理,属于基础题型.理解菱形的判定定理是解决这个问题的关键.15. 如图,一次函数y =-43x +8图像与x 轴、y 轴分别交于A 、B 两点.P 是x 轴上一个动点,若沿BP 将△OBP 翻折,点O 恰好落在直线AB 上的点C 处,则点P 的坐标是______.【答案】(83,0),(-24,0) 【解析】【分析】根据题意得出OA ,OB 和AB 的长度,然后根据折叠图形的性质分两种情况来进行,即点P 在线段OA 上和点P 在x 轴的负半轴上,然后根据Rt △APC 的勾股定理求出点P 的坐标.【详解】根据题意可得:OA=6,OB=8,则AB=10,①、当点P 在线段OA 上时,设点P 的坐标为(x ,0),则AP=6-x ,BC=OB=8,CP=OP=x ,AC=10-8=2,∴根据勾股定理可得:()22226x x +=-,解得:x=83, ∴点P 的坐标为(83,0);②、当点P 在x 轴的负半轴上时,设OP 的长为x ,则AP=6+x ,BC=8,CP=OP=x ,AC=10+8=18,∴根据勾股定理可得:()222186x x +=+,解得:x=24,∴点P 的坐标为(-24,0);∴综上所述,点P 的坐标为(83,0),(-24,0). 【点睛】本题主要考查的是折叠图形的性质以及直角三角形的勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是根据题意画出图形得出直角三角形.16. 如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB 的位置保持不动,将三角板DCE 绕其直角顶点C 顺时针旋转一周.当△DCE 一边与AB 平行时,∠ECB 的度数为_________________________.【答案】15°、30°、60°、120°、150°、165° 【解析】分析:根据CD ∥AB ,CE ∥AB 和DE ∥AB 三种情况分别画出图形,然后根据每种情况分别进行计算得出答案,每种情况都会出现锐角和钝角两种情况.详解:①、∵CD ∥AB , ∴∠ACD=∠A=30°, ∵∠ACD+∠ACE=∠DCE=90°, ∠ECB+∠ACE=∠ACB=90°,∴∠ECB=∠ACD=30°;CD ∥AB 时,∠BCD=∠B=60°,∠ECB=∠BCD+∠EDC=60°+90°=150°②如图1,CE ∥AB ,∠ACE=∠A=30°,∠ECB=∠ACB+∠ACE=90°+30°=120°;CE ∥AB 时,∠ECB=∠B=60°.③如图2,DE ∥AB 时,延长CD 交AB 于F , 则∠BFC=∠D=45°,在△BCF 中,∠BCF=180°-∠B-∠BFC ,=180°-60°-45°=75°, ∴ECB=∠BCF+∠ECF=75°+90°=165°或∠ECB=90°-75°=15°.点睛:本题主要考查的是平行线的性质与判定,属于中等难度的题型.解决这个问题的关键就是根据题意得出图形,然后分两种情况得出角的度数.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17. 求不等式3x ≤1+12x -的负整数解. 【答案】-3、-2、-1.【解析】【分析】 首先根据解不等式的方法求出不等式的解,从而得出不等式的负整数解.【详解】解: 2x≤6+3(x - 1),2x≤6+3x -3,解得:x≥-3.所以这个不等式的负整数解为-3、-2、-1.【点睛】本题主要考查的是解不等式,属于基础题型.在解不等式的时候,如果两边同时乘以或除以一个负数时,不等符号需要改变.18. (1)化简:244x --12x -;(2)解方程244x --12x -=12. 【答案】(1)12x -+;(2)-4. 【解析】分析:(1)、首先将分式进行通分,然后进行减法计算得出答案;(2)、首先进行去分母将其转化为整式方程,从而求出方程的解,最后需要对方程的解进行检验.详解:(1)、解:-= - = = = =- .(2)、去分母可得:8-2(x+2)=(x+2)(x -2), 化简可得:22x 80x +-=,解得:1242x x =-=,,经检验:x=2是方程的增根,x=-4是方程的解.点睛:本题主要考查的是分式的化简以及解分式方程,属于基础题型.解决这个问题的关键就是学会将分式的分子和分母进行因式分解.19. 小莉妈妈的支付宝用来生活缴费和网购.如图是小莉妈妈2017年9月至12月支付宝消费情况的统计图(单位:元).(1)11月支出较多,请你写出一个可能的原因.(2)求这4个月小莉妈妈支付宝平均每月消费多少元.(3)用(2)中求得的平均数来估计小莉妈妈支付宝2018年平均每月消费水平,你认为合理吗?为什么?【答案】(1)见解析;(2)848元;(3)不合理,理由见解析.【解析】分析:(1)、这个只要回答的合情合理即可得出答案;(2)、根据平均数的计算法则得出答案;(3)、11月份出现了极端值,会较大的影响平均每月消费水平.详解:解:(1)、答案不唯一,学生说法只要合理均给分.如双11淘宝购物花费较多等.(2)、这4个月小莉妈妈支付宝每月平均消费为:=×(488.40+360.20+1942.60+600.80)= 848(元).(3)、用这个平均数来估计小莉妈妈支付宝平均每月消费水平不合理.因为这个平均数受极端值(11月数据)影响较大,不能代表平均每月消费水平.点睛:本题主要考查的是平均数的计算法则,属于基础题型.明白计算法则是解决这个问题的关键.20. 转转盘和摸球是等可能概率下的经典模型.(1)如图,转盘的白色扇形和黑色扇形的圆心角分别为120°和240°.小莉让转盘自由转动2次,求指针2次都落在黑色区域的概率.(2)小刚在一个不透明的口袋中,放入除颜色外其余都相同的18个小球,其中4个白球,6个红球,8个黄球.搅匀后,随机摸1个球,若事件A的概率与(1)中概率相同,请写出事件A.【答案】(1)P(指针2次都落在黑色区域)=49;(2)事件A为摸得黄球.【解析】分析:(1)、根据题意列出所有可能出现的情况,然后得出概率;(2)、根据概率的计算法则得出所有情况的概率,然后得出答案.详解:解:(1)如图,把黑色扇形等分为黑1、黑2两个扇形,转盘自由转动2次,指针所指区域的结果如下:(白,白),(白,黑1),(白,黑2),(黑1,白),(黑1,黑1),(黑1,黑2),(黑2,白),(黑2,黑1),(黑2,黑2).所有可能的结果共9种,它们是等可能的,其中指针2次都落在黑色区域的结果有4种.所以P(指针2次都落在黑色区域)=.(2)事件A为摸得黄球.点睛:本题主要考查的是概率的计算法则,属于基础题型.理解概率的计算公式是解题的关键.21. 春天来了,石头城边,秦淮河畔,鸟语花香,柳条飘逸.为给市民提供更好的休闲锻炼环境,决定对一段总长为1800米的外秦淮河沿河步行道出新改造,该任务由甲、乙两工程队先后接力完成.甲工程队每天改造12米,乙工程队每天改造8米,共用时200天.(1)根据题意,小莉、小刚两名同学分别列出尚不完整的方程组如下:小莉:___128_____x yx y+=⎧⎨+=⎩小刚:________128x yx y+=⎧⎪⎨+=⎪⎩根据两名同学所列的方程组,请你分别指出未知数x、y表示的意义,然后在方框中补全小莉、小刚两名同学所列的方程组:小莉:x表示,y表示;小刚:x表示,y表示.(2)求甲、乙两工程队分别出新改造步行道多少米.【答案】(1)见解析;(2)甲、乙两工程队分别出新改造600米、1200米.【解析】分析:(1)、小莉:x表示甲工程队改造的天数,y表示乙工程队改造的天数;小刚:x表示甲工程队改造的长度,y表示乙工程队改造的长度;(2)、根据题意解方程组,从而得出答案.详解:解:(1)、小莉:小刚:小莉:x表示甲工程队改造的天数,y表示乙工程队改造的天数;小刚:x表示甲工程队改造的长度,y表示乙工程队改造的长度.(2)、解小莉方程组得所以12x=600,8y=1200.答:甲、乙两工程队分别出新改造600米、1200米.点睛:本题主要考查的是二元一次方程组的实际应用问题,属于基础题型.解决应用题的关键在于找出等量关系,列出方程组.22. 如图,爸爸和小莉在两处观测气球的仰角分别为α、β,两人的距离(BD)是100 m,如果爸爸的眼睛离地面的距离(AB)为1.6 m,小莉的眼睛离地面的距离(CD)为1.2 m,那么气球的高度(PQ)是多少?(用含α、β的式子表示)【答案】气球高度是100tan tan 1.2tan 1.6tantan tanαβαββα-+-m.【解析】分析:过点A作AE⊥PQ于点E,过点C作CF⊥PQ于点F,设PQ=x m,根据Rt△PEA的三角形函数得出AE的长度,根据Rt△PCF的三角函数得出CF的长度,最后根据BD=AE-CF求出x的值,得出答案.详解:解:过点A作AE⊥PQ于点E,过点C作CF⊥PQ于点F.设PQ=x m,则PE=(x-1.6)m,PF=(x-1.2)m.在△PEA中,∠PEA=90°.则tan∠PAE=.∴ AE=.在△PCF中,∠PFC=90°.则tan∠PCF=.∴ CF=.∵ AE-CF=BD.∴-=100.解得x=.答:气球的高度是m.点睛:本题主要考查的是解直角三角形的实际应用,属于基础题型.解决这个问题的关键在于构造出直角三角形.23. 南京、上海相距约300 km,快车与慢车的速度分别为100 km/ h和50 km/ h,两车同时从南京出发,匀速行驶,快车到达上海后,原路返回南京,慢车到达上海后停止.设两车出发后的时间为x h,快车、慢车行驶过程中离南京的路程为y1、y2 km.(1)求y1、y2与x之间的函数关系式,并在下列平面直角坐标系中画出它们的图像;(2)若镇江、南京相距约80 km,求两车经过镇江的时间间隔;(3)直接写出出发多长时间,两车相距100 km.【答案】(1)画图见解析;(2)两车经过镇江的时间间隔为0.8 h或3.6 h;(3)出发2 h或103h或143h后,两车相距100 km.【解析】分析:(1)、根据待定系数法求出函数解析式,然后再图中画出函数图像;(2)、将y=80代入函数解析式,分别求出x的值,从而得出时间差;(3)、根据函数值相差100列出一元一次方程(分三段来进行解答),从而得出答案.详解:解:(1)当0≤x≤3时,y1=100x,当3≤x≤6时,y1=600-100x;当0≤x≤6时,y2=50x.y1、y2与x的函数图像如下:(2)、当y1=80时,100x=80或600-100x=80.解得x=0.8或5.2;当y2=80时,50x=80.解得x=1.6.所以1.6-0.8=0.8,5.2-1.6=3.6.两车经过镇江的时间间隔为0.8 h或3.6 h.(3)、出发2 h或h或h后,两车相距100 km.点睛:本题主要考查的是一次函数的实际应用,属于中等难度的题型.得出函数解析式是解决这个问题的关键.24. 如图,△ABC中,AD⊥BC,垂足是D.小莉说:当AB+BD=AC+CD时,则△ABC是等腰三角形.她的说法正确吗,如正确,请证明;如不正确,请举反例说明.【答案】小莉说法正确,证明见解析.【解析】分析:延长CB至E,使AB=EB,延长BC至F,使AC=FC,连接AE、AF,然后证明△ADE和△ADF 全等,从而得出∠E=∠F,结合∠E=∠EAB=∠F=∠FAC得出∠ABC=∠ACB,从而得出答案.详解:小莉说法正确.证明:延长CB至E,使AB=EB,延长BC至F,使AC=FC,连接AE、AF.则∠E=∠EAB,∠F=∠FAC.∵ AB+BD=AC+CD,∴ DE=DF.∵ AD⊥BC,∴∠ADE=∠ADF=90°.∵ DE=DF,∠ADE=∠ADF=90°,AD=AD,∴△ADE≌△ADF(SAS).∴∠E=∠F.∴∠E=∠EAB=∠F=∠FAC.∴∠ABC=∠ACB.∴ AB=AC.即△ABC是等腰三角形.点睛:本题主要考查的是等腰三角形的判定与三角形全等,属于基础题型.解决这个问题的关键就是作出辅助线得出三角形全等.25. 某景区内有一块矩形油菜花田地(数据如图示,单位:m.)现在其中修建一条观花道(图中阴影部分)供游人赏花.设改造后剩余油菜花地所占面积为ym2.(1)求y与x的函数表达式;(2)若改造后观花道的面积为13m2,求x的值;(3)若要求0.5≤ x ≤1,求改造后剩余油菜花地所占面积的最大值.【答案】(1)y= x2-14x+48(0<x<6);(2)1;(3)改造后剩余油菜花地所占面积的最大值为41.25m2.【解析】【分析】(1)、利用三角形的面积计算公式得出y与x的函数关系式;(2)、将y=35代入函数解析式求出x的值;(3)、利用配方法将函数配成顶点式,然后根据函数的增减性得出最值.【详解】解:(1)y=(8-x)(6-x)=x2-14x+48.(2)由题意,得x2-14x+48=6×8-13,解得:x1=1,x2=13(舍去).所以x=1.(3)y=x2-14x+48=(x-7)2-1.因为a=1>0,所以函数图像开口向上,当x<7时,y随x增大而减小.所以当x=0.5时,y最大.最大值为41.25.答:改造后油菜花地所占面积的最大值为41.25 m2.【点睛】本题主要考查的是二次函数的实际应用问题,属于中等难度题型.根据题意列出函数解析式是解决这个问题的关键.26. 如图1,点O为正方形ABCD 的中心,E为AB 边上一点,F为BC边上一点,△EBF的周长等于BC 的长.(1)求∠EOF 的度数.(2)连接OA、OC(如图2).求证:△AOE∽△CFO.(3)若OE=52OF,求AECF的值.【答案】(1)45°;(2)证明见解析;(3)5 4【解析】【分析】(1).在BC上取一点G,使得CG=BE,连接OB、OC、OG,然后证明△OBE和△OCG全等,从而得出∠BOE=∠COG,∠BEO=∠CGO,OE=OG,根据三角形的周长得出EF=GF,从而得出△FOE和△GOF 全等,得出∠EOF的度数;(2)、连接OA,根据点O为正方形ABCD的中心得出∠OAE=∠FCO=45°,结合∠BOE=∠COG得出∠AEO=∠COF,从而得出三角形相似;(3)、根据相似得出线段比,根据相似比求出AE和CO的关系,CF和AO的关系,从而得出答案.【详解】解:(1).如图,在BC上取一点G,使得CG=BE,连接OB、OC、OG.∵点O为正方形ABCD的中心,∴ OB=OC,∠BOC=90°,∠OBE=∠OCG=45°.∴△OBE≌△OCG(SAS).∴∠BOE=∠COG,∠BEO=∠CGO,OE=OG.∴∠EOG=90°,∵△BEF的周长等于BC的长,∴ EF=GF.∴△EOF≌△GOF(SSS).∴∠EOF=∠GOF=45°.(2).连接OA.∵点O为正方形ABCD的中心,∴∠OAE=∠FCO=45°.∵∠BOE=∠COG,∠AEO=∠BOE+∠OBE=∠BOE+45°,∠COF=∠COG+∠GOF=∠COG+45°.∴∠AEO=∠COF,且∠OAE=∠FCO.∴△AOE∽△CFO.(3).∵△AOE∽△CFO,∴AOCF=OEFO=AECO.即AE=OEFO×CO,CF=AO÷OEFO.∵OE OF,∴ OEFO.∴AECO,CF.∴AECF=54.点睛:本题主要考查的是正方形的性质、三角形全等的判定与性质、三角形相似的判定与性质,综合性非常强,难度较大.熟练掌握正方形的性质是解决这个问题的关键.27. 在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.【问题提出】求证:如果一个定圆的内接四边形对角线互相垂直,那么这个四边形的对边的平方和是一个定值.【从特殊入手】我们不妨设定圆O的半径是R,⊙O的内接四边形ABCD中,AC⊥BD.请你在图①中补全特殊殊位置时的图形,并借助于所画图形探究问题的结论.【问题解决】已知:如图②,定圆⊙O的半径是R,四边形ABCD是⊙O的内接四边形,AC⊥BD.求证:.证明:。

广元市中考数学考试含答案解析(Word版)

广元市中考数学考试含答案解析(Word版)
A. B. ﻩC. D.
10.(3分)如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为F,连结DF,下列四个结论:①△AEF∽△CAB;②tan∠CAD= ;③DF=DC;④CF=2AF,正确的是()
A.①②③B.②③④C.①③④D.①②④
二、填空题(每小题3分,共15分)把正确答案直接填写在答题卡对应题目的横线上方.
A. B. ﻩC. D.
7.(3分)方程2x2﹣5x+3=0的根的情况是()
A.有两个相等的实数根ﻩB.有两个不相等的实数根
C.无实数根ﻩD.两根异号
8.(3分)一元一次不等式组 的解集在数轴上表示出来,正确的是()
A. B. C. D.
9.(3分)为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0。60元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0。8元/度计算(未超过部分仍按每度电0。60元/度计算),现假设某户居民某月用电量是x(单位:度),电费为y(单位:元),则y与x的函数关系用图象表示正确的是()
17.(7分)先化简,再求值: ÷( ﹣a+1),其中,a= ﹣1.
18.(7分)如图,在▱ABCD中,点E是AB边的中点,DE的延长线与CB的延长线交于点F.
求证:BC=BF.
19.(8分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类"、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.
15.(3分)已知二次函数y=ax2+bx+c的图象如图所示,有下列结论:①abc<0;②a+c>b;③3a+c<0;④a+b>m(am+b)(其中m≠1),其中正确的结论有.

四川省广元市中考数学模拟试卷

四川省广元市中考数学模拟试卷

四川省广元市中考数学模拟试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017九下·盐城期中) 下面哪个数的倒数是()A .B . -5C .D . 52. (2分)(2017·德惠模拟) 国家体育场“鸟巢”建筑面积258000平方米,将258000用科学记数法表示应为()A . 258×103B . 2.58×104C . 2.58×105D . 0.258×1063. (2分)(2019·涡阳模拟) 下列运算正确是()A . a2+a2=a4B . a3÷a=a3C . a2•a3=a5D . (a2)4=a64. (2分) (2015八下·绍兴期中) 下列图形中既是中心对称图形又是轴对称图形的是()A .B .C .D .5. (2分)(2014·南通) 已知一个几何体的三视图如图所示,则该几何体是()A . 圆柱B . 圆锥C . 球D . 棱柱6. (2分)数据5、7、8、8、9、9的众数是()A . 7B . 8C . 9D . 8和97. (2分) (2019七上·惠山期末) 一件毛衣先按成本提高50%标价,再以8折出售,获利28元,求这件毛衣的成本是多少元,若设成本是x元,可列方程为()A . 0.8x+28=(1+50%)xB . 0.8x﹣28=(1+50%)xC . x+28=0.8×(1+50%)xD . x﹣28=0.8×(1+50%)x8. (2分)若a>0,b<0,c<0,则下列各式中错误的是()A . -3a<-3B . bc>aC . a-3>b-3D . -2a>2bc9. (2分)(2018·温岭模拟) 在平面直角坐标系中,如果 x 与 y 都是整数,就称点(x,y)为整点.下列命题中错误的是()A . 存在这样的直线,既不与坐标轴平行,又不经过任何整点B . 若 k 与 b 都是无理数,则直线 y=kx+b 不经过任何整点C . 若直线 y=kx+b 经过无数多个整点,则 k 与 b 都是有理数D . 存在恰好经过一个整点的直线10. (2分)(2017·鞍山模拟) 如图,已知AB是⊙O的切线,点A为切点,连接OB交⊙O于点C,∠B=38°,点D是⊙O上一点,连接CD,AD.则∠D等于()A . 76°B . 38°C . 30°D . 26°11. (2分) (2018九上·信阳月考) 二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac ﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠﹣1),其中结论正确的个数是()A . 1B . 2C . 3D . 412. (2分) (2018八上·天台月考) 如图,点P为定角∠A OB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A . 4B . 3C . 2D . 1二、填空题 (共4题;共4分)13. (1分)分解因式: a3+ab2-2a2b ________14. (1分)(2018·铜仁模拟) 点P的坐标是(a,b),从﹣2,﹣1,1,2这四个数中任取一个数作为a的值,再从余下的三个数中任取一个数作b的值,则点P(a,b)在平面直角坐标系中第一象限内的概率是________.15. (1分)如图,在第1个△A1BC中,∠B=50°,A1B=CB;在边A1B上任取一点D,延长CA1到A2 ,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3 ,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以An为顶点的内角度数是________.16. (1分)如图,AD∥BC,BD平分∠ABC,且∠A=110°,则∠D=________度.三、解答题 (共7题;共74分)17. (10分)(2017·贵港) 计算题(1)计算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;(2)先化简,在求值:(﹣)+ ,其中a=﹣2+ .18. (5分)(2020·辽宁模拟) 先化简,再求值:,其中 .19. (12分)(2013·镇江) 某市对一大型超市销售的甲、乙、丙3种大米进行质量检测.共抽查大米200袋,质量评定分为A、B两个等级(A级优于B级),相应数据的统计图如下:根据所给信息,解决下列问题:(1) a=________,b=________;(2)已知该超市现有乙种大米750袋,根据检测结果,请你估计该超市乙种大米中有多少袋B级大米?(3)对于该超市的甲种和丙种大米,你会选择购买哪一种?运用统计知识简述理由.20. (10分) (2017八下·宜兴期中) 如图,□ABCD中,E、F为对角线BD上的两点,且DF=BE,连接AE,CF.(1)求证:∠DAE=∠BCF.(2)连接AC交于BD点O,求证:AC,EF互相平分.21. (12分) (2015八下·滦县期中) 甲乙两人同时登西山,甲、乙两人距地面的高度y(米)与登山时间x (分)之间的函数图像如图所示,根据图像所提供的信息解答下列问题:(1)甲登山的速度是每分钟________米,乙在A地提速时距地面的高度b为________米.(2)若乙提速后,乙的速度是甲登山速度的3倍,请分别求出甲、乙二人登山全过程中,登山时距地面的高度y(米)与登山时间x(分)之间的函数关系式.(3)登山多长时间时,乙追上了甲此时乙距A地的高度为多少米?22. (15分) (2020八下·阿城期末) 如图,在平面直角坐标系中,点O为坐标原点,直线1分别交x轴、y 轴于A . B两点,OA<OB ,且OA、OB的长分别是一元二次方程x2﹣14x+48=0的两根.(1)求直线AB的解析式;(2)点C从点A出发沿射线AB方向运动,运动的速度为每秒2个单位,设△OBC的面积S ,点C运动的时间为t ,写出S与t的函数关系式,并直接写出自变量的取值范围;(3)点P是y轴上的点,点Q是第一象限内的点,若以A、B、P、Q为顶点的四边形是菱形请求出点Q的坐标.23. (10分)(2019·融安模拟) 如图,AB为⊙O的直径,C为⊙O上一点,D为BA延长线上一点,∠ACD=∠B.(1)求证;DC为⊙O的切线;(2)线段DF分别交AC,BC于点E,F且∠CEF=45°,⊙O的半径为5,sinB= ,求CF的长.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共74分)17-1、17-2、18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、。

四川省广元市数学中考二模试卷

四川省广元市数学中考二模试卷

四川省广元市数学中考二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)在, 0,﹣1,这四个实数中,最大的是()A .B . 0C . -1D .2. (2分)某校公布了该校反映各年级学生体育达标情况的两张统计图,该校七、八、九三个年级共有学生800人。

甲、乙、丙三个同学看了这两张统计图后,甲说:“七年级的体育达标率最高.”乙说:“八年级共有学生264人.”丙说:“九年级的体育达标率最高.”甲、乙、丙三个同学中,说法正确的是()A . 甲和乙B . 乙和丙C . 甲和丙D . 甲和乙及丙3. (2分) (2020七下·硚口月考) 式子在实数范围内有意义,则的取值范围是()A .B .C .D .4. (2分) (2016九上·太原期末) 一个圆柱体钢块,从正中间挖去一个长方体得到的零件毛坯的俯视图如图,其主视图是()A .B .C .D .5. (2分)(2019·玉林模拟) 如图,已知点A在反比例函数y=的图象上,点B在反比例函数y=(k≠0)的图象上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为C、D,若OC= OD,则k的值为()A . 10B . 12C . 14D . 166. (2分)方程x(x﹣3)=5(x﹣3)的解的情况是()A . x=3B . x=5C . x1=3,x2=5D . 无解7. (2分) (2015九上·龙华期末) 如图,已知l1∥l2∥l3 ,直线AC分别交l1、l2、l3于点A,B,C,直线DF分别交l1、l2、l3于D,E,F,DE=4,EF=6,AB=5,则BC的长为()A .B .C .D .8. (2分)要从y=x的图象得到直线y=,就要将直线y=x()A . 向上平移2个单位B . 向右平移2个单位C . 向上平移个单位D . 向下平移个单位9. (2分)(2017·德州模拟) 如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A .B .C .D .10. (2分)实数a,b在数轴上的位置如图所示,则关于x的一元二次方程ax2+bx+1=0()A . 有两个不相等的实数根B . 有两个相等的实数根C . 无实数根D . 不一定有实数根二、填空题 (共6题;共6分)11. (1分)(2017·苏州模拟) 因式分解:a2﹣1=________.12. (1分)如图,在2×2的正方形网格中有9个格点,已知取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是________13. (1分)已知实数x,y满足|x﹣8|+=0,则以x,y的值为两边长的等腰三角形的周长是________14. (1分) (2019七上·光泽月考) 定义:若a+b=2,则称a与b是关于1的平衡数;那么与________是关于1的平衡数. (请用含x的代数式表示)15. (1分)如图,AB是⊙O的直径,C,D是⊙O上的两点(不与A,B重合),若BC=2,tan∠BDC=,则AB=________ .16. (1分)(2016·襄阳) 如图,正方形ABCD的边长为2 ,对角线AC、BD相交于点O,E是OC的中点,连接BE,过点A作AM⊥BE于点M,交BD于点F,则FM的长为________三、解答题 (共8题;共66分)17. (10分)(2017·满洲里模拟) 计算:﹣4cos45°+()﹣1﹣| ﹣2|.18. (11分)某校为了解学生课桌肚书籍讲义摆放整理情况,随机抽取了一部分九年级学生进行检查,检查结果分为“优秀”、“良好”、“合格”、“不合格”四个等级,分别记为A、B、C、D.根据检查结果绘制了如下尚不完整的统计图.(1)本次测试共随机抽取了________名学生.请根据数据信息补全条形统计图________;(2)求扇形统计图中,C所在扇形的圆心角.(3)若该校九年级有1200名学生,请估计检查结果等级在合格以上(包括合格)的学生约有多少人?19. (5分) (2018八上·宜兴月考) 已知△ABC,按下列要求作图:(尺规作图,保留痕迹不写作法。

2017年四川省广元中学中考数学模拟试卷(2)(解析版)

2017年四川省广元中学中考数学模拟试卷(2)(解析版)

2017年四川省广元中学中考数学模拟试卷(2)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣3的倒数是()A.3 B.C.﹣3 D.﹣2.下列运算正确的是()A.(a2)3=a5B.(π﹣3.14)0=1 C. += D.3﹣2=﹣63.不等式组的解在数轴上表示为()A.B.C.D.4.小亮观察下边的两个物体,得到的俯视图是()A.B.C.D.5.合作交流是学习数学的重要方式之一,某校九年级每个班合作学习小组的个数分别是:8,7,7,8,9,7,这组数据的众数是()A.7 B.7.5 C.8 D.96.在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的图象大致是()A.B. C.D.7.一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是()A.B.C.D.8.如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为()A.100m B.50m C.50m D.m二、填空题(本大题共6小题,每小题5分,共30分.把答案填在答题卡中对应题号后的横线上)9.函数y=的自变量x的取值范围是.10.若点P(m,1)在第二象限,则点B(﹣m+1,﹣1)必在第象限.11.等腰三角形两边长分别是3和6,则该三角形的周长为.12.已知在Rt△ABC中,∠C为直角,AC=4cm,BC=3cm,sin∠A=.13.如图,点A,B,C,D在⊙O上,点O在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=°.14.如图,现有一圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为.三、解答题(本大题共3题,每小题8分,共24分)15.计算:2﹣1﹣0+cos30°.16.已知实数a满足a2+2a﹣15=0,求﹣÷的值.17.如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE与DF有怎样的位置关系和数量关系?并对你的猜想加以证明:猜想:;证明:.四、解答题(本大题共3小题,每小题10分,共30分.)18.有四张背面相同的纸牌A,B,C,D,其正面分别划有四个不同的几何图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1)用树状图(或列表法)表示两次模牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.19.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,已知甲、乙两种票的单价比为4:3,单价和为42元.(1)甲、乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,问甲种票最多买多少张?20.如图,在△ABC中,∠C=90°,BC=5米,AC=12米.M点在线段CA上,从C 向A运动,速度为1米/秒;同时N点在线段AB上,从A向B运动,速度为2米/秒.运动时间为t秒.(1)当t为何值时,∠AMN=∠ANM?(2)当t为何值时,△AMN的面积最大?并求出这个最大值.五、解答题(本题满分12分)21.如图所示,已知抛物线y=x2﹣1与x轴交于A、B两点,与y轴交于点C.(1)求A、B、C三点的坐标;(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积;(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由.六、解答题(本题满分14分)22.如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.(1)求证:AE⊥BF;(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP到BA的延长线于点Q,求sin∠BQP的值;(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN 的面积.2017年四川省广元中学中考数学模拟试卷(2)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.﹣3的倒数是()A.3 B.C.﹣3 D.﹣【考点】17:倒数.【分析】根据倒数的定义即若两个数的乘积是1,我们就称这两个数互为倒数,即可得出答案.【解答】解:﹣3的倒数是﹣.故选D.2.下列运算正确的是()A.(a2)3=a5B.(π﹣3.14)0=1 C. += D.3﹣2=﹣6【考点】6F:负整数指数幂;47:幂的乘方与积的乘方;6E:零指数幂;73:二次根式的性质与化简.【分析】本题涉及零指数幂、负指数幂、幂的乘方和二次根式计算四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果,最后作出正确判断.【解答】解:A、(a2)3=a6,故错误;B、符合0指数的意义,正确;C、+,不是同类二次根式,不能合并,故错误;D、3﹣2=,故错误.故选B.3.不等式组的解在数轴上表示为()A.B.C.D.【考点】C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】先解每一个不等式,再根据结果判断数轴表示的正确方法.【解答】解:由不等式①,得3x>5﹣2,解得x>1,由不等式②,得﹣2x≥1﹣5,解得x≤2,∴数轴表示的正确方法为C.故选:C.4.小亮观察下边的两个物体,得到的俯视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】找到从上面看所得到的图形即可.【解答】解:从上面看是左边一个圆和里面圆心一点,右边是一个矩形,故选A.5.合作交流是学习数学的重要方式之一,某校九年级每个班合作学习小组的个数分别是:8,7,7,8,9,7,这组数据的众数是()A.7 B.7.5 C.8 D.9【考点】W5:众数.【分析】一组数据中出现次数最多的数据叫做众数,由此可得出答案.【解答】解:这组数据中7出现的次数最多,故众数为7.故选A.6.在同一直角坐标系中,函数y=kx ﹣k 与y=(k ≠0)的图象大致是( )A .B .C .D .【考点】G2:反比例函数的图象;F3:一次函数的图象.【分析】根据k 的取值范围,分别讨论k >0和k <0时的情况,然后根据一次函数和反比例函数图象的特点进行选择正确答案.【解答】解:①当k >0时,一次函数y=kx ﹣k 经过一、三、四象限,反比例函数的y=(k ≠0)的图象经过一、三象限,故B 选项的图象符合要求,②当k <0时,一次函数y=kx ﹣k 经过一、二、四象限,反比例函数的y=(k ≠0)的图象经过二、四象限,没有符合条件的选项.故选:B .7.一个暗箱里装有10个黑球,8个红球,12个白球,每个球除颜色外都相同,从中任意摸出一球,不是白球的概率是( )A .B .C .D .【考点】X4:概率公式.【分析】所有机会均等的可能共有30种.而不是白球的机会有18种,因此从中任意摸出一球,不是白球的概率是.【解答】解:P(不是白球)=.故选D.8.如图,某地修建高速公路,要从B地向C地修一座隧道(B、C在同一水平面上).为了测量B、C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100m到达A处,在A处观察B地的俯角为30°,则B、C两地之间的距离为()A.100m B.50m C.50m D.m【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】首先根据题意得:∠ABC=30°,AC⊥BC,AC=100m,然后利用正切函数的定义求解即可求得答案.【解答】解:根据题意得:∠ABC=30°,AC⊥BC,AC=100m,在Rt△ABC中,BC===100(m).故选A.二、填空题(本大题共6小题,每小题5分,共30分.把答案填在答题卡中对应题号后的横线上)9.函数y=的自变量x的取值范围是x≤3且x≠﹣2.【考点】E4:函数自变量的取值范围.【分析】根据分母不能为零且被开方数是非负数,可得答案.【解答】解:由题意,得3﹣x≥0且x+2≠0,解得x≤3且x≠﹣2,故答案为:x≤3且x≠﹣2.10.若点P(m,1)在第二象限,则点B(﹣m+1,﹣1)必在第四象限.【考点】D1:点的坐标.【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数.应先判断出点的横纵坐标的符号,进而判断所在的象限.【解答】解:∵点P(m,1)在第二象限,∴m<0.∴﹣m+1>0,故点B(﹣m+1,﹣1)必在第四象限.故填:四.11.等腰三角形两边长分别是3和6,则该三角形的周长为15.【考点】K6:三角形三边关系;KH:等腰三角形的性质.【分析】由三角形的三边关系可知,其两边之和大于第三边,两边之差小于第三边.【解答】解:由三角形的三边关系可知,由于等腰三角形两边长分别是3和6,所以其另一边只能是6,故其周长为6+6+3=15.故答案为15.12.已知在Rt△ABC中,∠C为直角,AC=4cm,BC=3cm,sin∠A=.【考点】T1:锐角三角函数的定义.【分析】在直角△ABC中,根据勾股定理求出AB的长;根据三角函数的定义求解.【解答】解:由题意知,AB==5,∴sin∠A==.13.如图,点A,B,C,D在⊙O上,点O在∠D的内部,四边形OABC为平行四边形,则∠OAD+∠OCD=60°.【考点】M5:圆周角定理;L5:平行四边形的性质.【分析】利用四边形OABC为平行四边形,可得∠AOC=∠B,∠OAB=∠OCB,∠OAB+∠B=180°.利用四边形ABCD是圆的内接四边形,可得∠D+∠B=180°.利用同弧所对的圆周角和圆心角可得∠D=∠AOC,求出∠D=60°,进而即可得出.【解答】解:∵四边形OABC为平行四边形,∴∠AOC=∠B,∠OAB=∠OCB,∠OAB+∠B=180°.∵四边形ABCD是圆的内接四边形,∴∠D+∠B=180°.又∠D=∠AOC,∴3∠D=180°,解得∠D=60°.∴∠OAB=∠OCB=180°﹣∠B=60°.∴∠OAD+∠OCD=360°﹣(∠D+∠B+∠OAB+∠OCB)=360°﹣(60°+120°+60°+60°)=60°.故答案为:60.14.如图,现有一圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为2cm.【考点】MP:圆锥的计算.【分析】设该圆锥底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后解关于r的方程即可.【解答】解:设该圆锥底面圆的半径为r,根据题意得2πr=,解得r=2,即该圆锥底面圆的半径为2cm.故答案为2cm.三、解答题(本大题共3题,每小题8分,共24分)15.计算:2﹣1﹣0+cos30°.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】按照实数的运算法则依次计算,注意2﹣1=,0=1.【解答】解:原式=﹣1+×=1.16.已知实数a满足a2+2a﹣15=0,求﹣÷的值.【考点】6D:分式的化简求值.【分析】先把要求的式子进行计算,先进行因式分解,再把除法转化成乘法,然后进行约分,得到一个最简分式,最后把a2+2a﹣15=0进行配方,得到一个a+1的值,再把它整体代入即可求出答案.【解答】解:﹣÷=﹣•=﹣=,∵a2+2a﹣15=0,∴(a+1)2=16,∴原式==.17.如图,E,F是平行四边形ABCD的对角线AC上的点,CE=AF.请你猜想:BE与DF有怎样的位置关系和数量关系?并对你的猜想加以证明:猜想:BE∥DF,BE=DF;证明:连接BD,交AC于点O,连接DE,BF.∵四边形ABCD是平行四边形,∴BO=OD,AO=CO,又∵AF=CE,∴AE=CF,∴EO=FO,∴四边形BEDF是平行四边形,∴BE∥DF,BE=DF.【考点】L7:平行四边形的判定与性质;KD:全等三角形的判定与性质.【分析】首先连接BD,交AC于点O,连接DE,BF.由四边形ABCD是平行四边形,可得BO=OD,AO=CO,又由CE=AF,可得OE=OF,即可证得四边形BEDF是平行四边形,则可得BE∥DF,BE=DF【解答】答:猜想:BE∥DF,BE=DF.证明:证法一:如图1,∵四边形ABCD是平行四边形.∴BC=AD,∠1=∠2,∵在△BCE和△DAF中,,∴△BCE≌△DAF(SAS),∴BE=DF,∠3=∠4,∴BE∥DF.证法二:如图2,连接BD,交AC于点O,连接DE,BF.∵四边形ABCD是平行四边形,∴BO=OD,AO=CO,又∵AF=CE,∴AE=CF,∴EO=FO,∴四边形BEDF是平行四边形,∴BE∥DF,BE=DF.故答案为:BE∥DF,BE=DF;连接BD,交AC于点O,连接DE,BF.∵四边形ABCD是平行四边形,∴BO=OD,AO=CO,又∵AF=CE,∴AE=CF,∴EO=FO,∴四边形BEDF是平行四边形,∴BE∥DF,BE=DF.四、解答题(本大题共3小题,每小题10分,共30分.)18.有四张背面相同的纸牌A,B,C,D,其正面分别划有四个不同的几何图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1)用树状图(或列表法)表示两次模牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.【考点】X6:列表法与树状图法;R5:中心对称图形.【分析】(1)画出树状图分析数据、列出可能的情况.(2)根据中心对称图形的概念可知,当摸出圆和平行四边形时为中心对称图形,除以总情况数即可.【解答】解:(1)共产生16种结果,每种结果出现的可能性相同,即:(A,A)(A,B)(A,C)(A,D)(B,A)(B,B)(B,C)(B,D)(C,A)(C,B)(C,C)(C,D)(D,A)(D,B)(D,C)(D,D);(2)其中两张牌都是中心对称图形的有4种,即(B,B)(B,C)(C,B)(C,C)∴P(两张都是中心对称图形)==.19.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,已知甲、乙两种票的单价比为4:3,单价和为42元.(1)甲、乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,问甲种票最多买多少张?【考点】C9:一元一次不等式的应用;8A:一元一次方程的应用.【分析】(1)设甲票价为4x元,乙为3x元,根据单价和为42元得到关于x的一元一次方程,解方程得x的值,然后分别计算4x与3x即可;(2)设甲种票有y张,则乙种票(36﹣y)张,根据购买的钱不超过750元得到不等式,求出解集中的最大整数即可.【解答】解:(1)设甲票价为4x元,乙为3x元∴3x+4x=42,解得x=6,∴4x=24,3x=18,答:甲乙两种票的单价分别是24元、18元;(2)设甲种票有y张,则乙种票(36﹣y)张,根据题意得,24y+18(36﹣y)≤750,解得y≤17,答:甲种票最多买17张.20.如图,在△ABC中,∠C=90°,BC=5米,AC=12米.M点在线段CA上,从C 向A运动,速度为1米/秒;同时N点在线段AB上,从A向B运动,速度为2米/秒.运动时间为t秒.(1)当t为何值时,∠AMN=∠ANM?(2)当t为何值时,△AMN的面积最大?并求出这个最大值.【考点】S9:相似三角形的判定与性质;H7:二次函数的最值.【分析】(1)用t表示出AM和AN的值,根据AM=AN,得到关于t的方程求得t值即可;(2)作NH⊥AC于H,证得△ANH∽△ABC,从而得到比例式,然后用t表示出NH,从而计算其面积得到有关t的二次函数求最值即可.【解答】解:(1)∵从C向A运动,速度为1米/秒;同时N点在线段AB上,从A向B运动,速度为2米/秒.运动时间为t秒.∴AM=12﹣t,AN=2t∵∠AMN=∠ANM∴AM=AN,从而12﹣t=2t解得:t=4 秒,∴当t为4时,∠AMN=∠ANM.(2)在Rt△ABC中∵AB2=BC2+AC2∴AB=13米如图,作NH⊥AC于H,∴∠NHA=∠C=90°,∵∠A是公共角,∴△NHA∽△BCA∴=,即:=,∴NH==(12﹣t)•=﹣t2+,从而有S△AMN∴当t=6时,S最大值=平方米.五、解答题(本题满分12分)21.如图所示,已知抛物线y=x2﹣1与x轴交于A、B两点,与y轴交于点C.(1)求A、B、C三点的坐标;(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积;(3)在x轴上方的抛物线上是否存在一点M,过M作MG⊥x轴于点G,使以A、M、G三点为顶点的三角形与△PCA相似?若存在,请求出M点的坐标;否则,请说明理由.【考点】HF:二次函数综合题.【分析】(1)抛物线与x轴的交点,即当y=0,C点坐标即当x=0,分别令y以及x为0求出A,B,C坐标的值;(2)四边形ACBP的面积=△ABC+△ABP,由A,B,C三点的坐标,可知△ABC 是直角三角形,且AC=BC,则可求出△ABC的面积,根据已知可求出P点坐标,可知点P到直线AB的距离,从而求出△ABP的面积,则就求出四边形ACBP的面积;(3)假设存在这样的点M,两个三角形相似,根据题意以及上两题可知,∠PAC和∠MGA是直角,只需证明或即可.设M点坐标,根据题中所给条件可求出线段AG,CA,MG,CA的长度,然后列等式,分情况讨论,求解.【解答】解:(1)令y=0,得x2﹣1=0解得x=±1,令x=0,得y=﹣1∴A(﹣1,0),B(1,0),C(0,﹣1);(2)∵OA=OB=OC=1,∴∠BAC=∠ACO=∠BCO=∠CBO=45°.∵AP∥CB,∴∠PAB=∠CBO=45°.过点P作PE⊥x轴于E,则△APE为等腰直角三角形,令OE=a,则PE=a+1,∴P(a,a+1).∵点P在抛物线y=x2﹣1上,∴a+1=a2﹣1.解得a1=2,a2=﹣1(不合题意,舍去).∴PE=3.∴四边形ACBP的面积S=AB•OC+AB•PE=×2×1+×2×3=4;(3)假设存在∵∠PAB=∠BAC=45°,∴PA⊥AC∵MG⊥x轴于点G,∴∠MGA=∠PAC=90°在Rt△AOC中,OA=OC=1,∴AC=在Rt△PAE中,AE=PE=3,∴AP=3设M点的横坐标为m,则M(m,m2﹣1)①点M在y轴左侧时,则m<﹣1.(ⅰ)当△AMG∽△PCA时,有.∵AG=﹣m﹣1,MG=m2﹣1.即解得m1=﹣1(舍去)m2=(舍去).(ⅱ)当△MAG∽△PCA时有,即.解得:m=﹣1(舍去)m2=﹣2.∴M(﹣2,3).②点M在y轴右侧时,则m>1(ⅰ)当△AMG∽△PCA时有∵AG=m+1,MG=m2﹣1∴解得m1=﹣1(舍去)m2=.∴M(,).(ⅱ)当△MAG∽△PCA时有,即.解得:m1=﹣1(舍去)m2=4,∴M(4,15).∴存在点M,使以A、M、G三点为顶点的三角形与△PCA相似M点的坐标为(﹣2,3),(,),(4,15).六、解答题(本题满分14分)22.如图1,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE、BF,交点为G.(1)求证:AE⊥BF;(2)将△BCF沿BF对折,得到△BPF(如图2),延长FP到BA的延长线于点Q,求sin∠BQP的值;(3)将△ABE绕点A逆时针方向旋转,使边AB正好落在AE上,得到△AHM(如图3),若AM和BF相交于点N,当正方形ABCD的面积为4时,求四边形GHMN 的面积.【考点】LO:四边形综合题.【分析】(1)运用Rt△ABE≌Rt△BCF,再利用角的关系求得∠BGE=90°求证;(2)△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB,解出BP,QB 求解;=,(3)先求出正方形的边长,再根据面积比等于相似边长比的平方,求得S△AGN=S△AHM﹣S△AGN求解.再利用S四边形GHMN【解答】(1)证明:如图1,∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在Rt△ABE和Rt△BCF中,∴Rt△ABE≌Rt△BCF(SAS),∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF.(2)解:如图2,根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴sin∠BQP===.(3)解:∵正方形ABCD的面积为4,∴边长为2,∵∠BAE=∠EAM,AE⊥BF,∴AN=AB=2,∵∠AHM=90°,∴GN∥HM,∴=,∴=,=,∴S△AGN=S△AHM﹣S△AGN=1﹣=,∴S四边形GHMN∴四边形GHMN的面积是.。

2017年中考数学二模试卷含答案解析

2017年中考数学二模试卷含答案解析

2017年中考数学二模试卷一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项填在答题卡相应位置)1.9的算术平方根是()A.±3 B.3 C.D.2.2016年,巴彦淖尔市计划投资42亿元,完成300个嘎查村的建设任务.农村牧区“十个全覆盖”推进正酣.将42亿用科学记数法应表示为()A.0.042×107B.0.42×108C.4.2×109D.42×10103.下列计算正确的是()A.a3+a2=2a5B.(﹣2a3)2=4a6C.(a+b)2=a2+b2D.a6÷a2=a34.不等式组的整数解的和是()A.﹣1 B.1 C.0 D.15.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35° B.40° C.50° D.65°6.一个几何体的三视图如图所示,该几何体的侧面积为()A.2πcm2B.4πcm2C.8πcm2D.16πcm27.已知一组数据:1,2,6,3,3,下列说法错误的是()A.众数是3 B.中位数是6 C.平均数是3 D.方差是2.88.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的个数为()A.1 B.2 C.3 D.49.如图,在平行四边形ABCD中,E是CD上的一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F,则S△DEF:S△EBF:S△ABF=()A.2:5:25 B.4:9:25 C.2:3:5 D.4:10:2510.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.二、填空题(本题共6小题,每小题4分,共24分)11.分解因式:﹣3x3y+12x2y﹣12xy= .12.要使式子有意义,则a的取值范围为.13.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球个.14.如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为m(结果不作近似计算).15.抛物线y=x2﹣2x+3的顶点坐标是,当x= 时,y随x的增大而减小.16.如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC,BC相切于点E,F,与AB分别交于点G,H,且EH的延长线和CB的延长线交于点D,则CD 的长为.三、解答题(共86分,解答应写成文字说明、证明过程、演算步骤)17.(1)计算:2sin60°﹣()﹣1+(﹣1)0(2)先化简,再求值:(1﹣)÷,其中a=2+.18.某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:(1)求出足球和篮球的单价;(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?19.某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?20.如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.(1)请用列表或画树状图的方法写出所有的可能;(2)求一次函数y=kx+b的图象经过一、二、四象限的概率.21.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.22.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.23.如图,⊙O是Rt△ABC的外接圆,AC是⊙O的直径,弦BD=BA,AB=12,BC=5,BE⊥DC,交DC的延长线于点E.(1)求证:△ABC∽△DEB;(2)求证:BE是⊙O的切线;(3)求DE的长.24.已知,如图二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点C(0,4)与x轴交于点A、B,点B(4,0),抛物线的对称轴为x=1.直线AD交抛物线于点D(2,m).(1)求二次函数的解析式并写出D点坐标;(2)点E是BD的中点,点Q是线段AB上一动点,当△QBE和△ABD相似时,求点Q的坐标;(3)抛物线与y轴交于点C,直线AD与y轴交于点F,点M为抛物线对称轴上的动点,点N在x轴上,当四边形CMNF周长取最小值时,求出满足条件的点M和点N的坐标.2017年中考数学二模试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项填在答题卡相应位置)1.9的算术平方根是()A.±3 B.3 C.D.【考点】22:算术平方根.【分析】根据开方运算,可得算术平方根.【解答】解:9的算术平方根是3,故选:B.2.2016年,巴彦淖尔市计划投资42亿元,完成300个嘎查村的建设任务.农村牧区“十个全覆盖”推进正酣.将42亿用科学记数法应表示为()A.0.042×107B.0.42×108C.4.2×109D.42×1010【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:42亿=42 0000 0000=4.2×109,故选:C.3.下列计算正确的是()A.a3+a2=2a5B.(﹣2a3)2=4a6C.(a+b)2=a2+b2D.a6÷a2=a3【考点】48:同底数幂的除法;47:幂的乘方与积的乘方;4C:完全平方公式.【分析】根据合并同类项法则;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;完全平方公式,同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、a3和a2不是同类项不能合并,故本选项错误;B、(﹣2a3)2=4a6,正确;C、应为(a+b)2=a2+b2+2ab,故本选项错误;D、应为a6÷a2=a4,故本选项错误.故选B.4.不等式组的整数解的和是()A.﹣1 B.1 C.0 D.1【考点】CC:一元一次不等式组的整数解.【分析】先解出不等式组的解集,从而可以得到不等式组的整数解,从而可以得到不等式组的整数解的和.【解答】解:解得,﹣2<x≤,∴的整数解是x=﹣1,x=0,x=1,∵(﹣1)+0+1=0,故的整数解得和是0,故选C.5.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.35° B.40° C.50° D.65°【考点】R2:旋转的性质.【分析】根据两直线平行,内错角相等可得∠ACC′=∠CAB,根据旋转的性质可得AC=AC′,然后利用等腰三角形两底角相等求∠CAC′,再根据∠CAC′、∠BAB′都是旋转角解答.【解答】解:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C.6.一个几何体的三视图如图所示,该几何体的侧面积为()A.2πcm2B.4πcm2C.8πcm2D.16πcm2【考点】U3:由三视图判断几何体;MP:圆锥的计算.【分析】由几何体的主视图和左视图都是等腰三角形,俯视图是圆,可以判断这个几何体是圆锥,进而得出圆锥的高以及母线长和底面圆的半径,再利用圆锥侧面积公式求出即可.【解答】解:依题意知母线l=4cm,底面半径r=2÷2=1,则由圆锥的侧面积公式得S=πrl=π×1×4=4πcm2.故选B.7.已知一组数据:1,2,6,3,3,下列说法错误的是()A.众数是3 B.中位数是6 C.平均数是3 D.方差是2.8【考点】W7:方差;W1:算术平均数;W4:中位数;W5:众数.【分析】分别求出这组数据的平均数、中位数、众数和方差,再分别对每一项进行判断即可.【解答】解:A、3出现了2次,出现的次数最多,则众数是3,故本选项正确;B、把这组数据从小到大排列为:1,2,3,3,6,最中间的数是3,则中位数是3,故本选项错误;C、这组数据的平均数是(1+2+6+3+3)÷5=3,故本选项正确;D、这组数据的方差是: [(1﹣3)2+(2﹣3)2+(6﹣3)2+(3﹣3)2+(3﹣3)2]=,故本选项正确;故选B.8.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的个数为()A.1 B.2 C.3 D.4【考点】LE:正方形的性质;KD:全等三角形的判定与性质;KK:等边三角形的性质.【分析】根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,a2+(a﹣)2=4,解得a=,则a2=2+,∴S正方形ABCD=2+,④说法正确,∴正确的有①②④.故选C.9.如图,在平行四边形ABCD中,E是CD上的一点,DE:EC=2:3,连接AE、BE、BD,且AE、BD交于点F,则S△DEF:S△EBF:S△ABF=()A.2:5:25 B.4:9:25 C.2:3:5 D.4:10:25【考点】S9:相似三角形的判定与性质;K3:三角形的面积;L5:平行四边形的性质.【分析】根据平行四边形的性质求出DC=AB,DC∥AB,求出DE:AB=2:5,根据相似三角形的判定推出△DEF∽△BAF,求出△DEF和△ABF的面积比,根据三角形的面积公式求出△DEF 和△EBF的面积比,即可求出答案.【解答】解:根据图形知:△DEF的边DF和△BFE的边BF上的高相等,并设这个高为h,∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∵DE:EC=2:3,∴DE:AB=2:5,∵DC∥AB,∴△DEF∽△BAF,∴==, ==,∴====∴S△DEF:S△EBF:S△ABF=4:10:25,故选D.10.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B→C→D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】要找出准确反映s与x之间对应关系的图象,需分析在不同阶段中s随x变化的情况.【解答】解:由题意知,点P从点B出发,沿B→C→D向终点D匀速运动,则当0<x≤2,s=,当2<x≤3,s=1,由以上分析可知,这个分段函数的图象开始直线一部分,最后为水平直线的一部分.故选C.二、填空题(本题共6小题,每小题4分,共24分)11.分解因式:﹣3x3y+12x2y﹣12xy= ﹣3xy(x﹣2)2.【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣3xy(x2﹣4x+4)=﹣3xy(x﹣2)2,故答案为:﹣3xy(x﹣2)212.要使式子有意义,则a的取值范围为a≥﹣2且a≠0 .【考点】72:二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:a+2≥0且a≠0,解得:a≥﹣2且a≠0.故答案为:a≥﹣2且a≠0.13.在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球12 个.【考点】X4:概率公式.【分析】设袋中共有球x个,根据概率公式列出等式解答.【解答】解:设袋中共有球x个,∵有3个白球,且摸出白球的概率是,∴=,解得x=12(个).故答案为:12.14.如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为12m(结果不作近似计算).【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】首先过点D作DE⊥AB于点E,可得四边形BCDE是矩形,然后分别在Rt△ABC与Rt △ADE中,利用正切函数的知识,求得AB与AE的长,继而可求得答案.【解答】解:过点D作DE⊥AB于点E,则四边形BCDE是矩形,根据题意得:∠ACB=β=60°,∠ADE=α=30°,BC=18m,∴DE=BC=18m,CD=BE,在Rt△ABC中,AB=BC•tan∠ACB=18×tan60°=18(m),在Rt△ADE中,AE=DE•tan∠ADE=18×tan30°=6(m),∴DC=BE=AB﹣AE=18﹣6=12(m).故答案为:12.15.抛物线y=x2﹣2x+3的顶点坐标是(1,2),当x= <1 时,y随x的增大而减小.【考点】H3:二次函数的性质.【分析】由于二次函数的二次项系数a=1>0,由此可以确定抛物线开口方向,利用y=ax2+bx+c的顶点坐标公式为(﹣,),对称轴是x=﹣可以确定对称轴,然后即可确定在对称轴的左侧y随x的增大而减小,由此得到x的取值范围.【解答】解:∵y=x2﹣2x+3,∴二次函数的二次项系数a=1>0,∴抛物线开口向上,∵y=ax2+bx+c的顶点坐标公式为(﹣,),对称轴是x=﹣,∴此函数对称轴是x=1,顶点坐标是(1,2),∴当x<1时,y随x的增大而减小.故答案为:(1,2),<1.16.如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC,BC相切于点E,F,与AB分别交于点G,H,且EH的延长线和CB的延长线交于点D,则CD的长为 a .【考点】MC:切线的性质;MH:切割线定理;S7:相似三角形的性质.【分析】连接OE、OF,由切线的性质结合结合直角三角形可得到正方形OECF,并且可求出⊙O的半径为0.5a,则BF=a﹣0.5a=0.5a,再由切割线定理可得BF2=BH•BG,利用方程即可求出BH,然后又因OE∥DB,OE=OH,利用相似三角形的性质即可求出BH=BD,最终由CD=BC+BD,即可求出答案.【解答】解:如图,连接OE、OF,∵由切线的性质可得OE=OF=⊙O的半径,∠OEC=∠OFC=∠C=90°,∴OECF是正方形,∵由△ABC的面积可知×AC×BC=×AC×OE+×BC×OF,∴OE=OF=a=EC=CF,BF=BC﹣CF=0.5a,GH=2OE=a,∵由切割线定理可得BF2=BH•BG,∴a2=BH(BH+a),∴BH=a或BH=a(舍去),∵OE∥DB,OE=OH,∴△OEH∽△BDH,∴=,∴BH=BD,CD=BC+BD=a+a=a.故答案为: a.三、解答题(共86分,解答应写成文字说明、证明过程、演算步骤)17.(1)计算:2sin60°﹣()﹣1+(﹣1)0(2)先化简,再求值:(1﹣)÷,其中a=2+.【考点】6D:分式的化简求值;2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】(1)原式利用特殊角的三角函数值,零指数幂、负整数指数幂法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:(1)原式=2×﹣2+1=﹣1;(2)原式=•=,当a=2+时,原式==+1.18.某校为了更好地开展球类运动,体育组决定用1600元购进足球8个和篮球14个,并且篮球的单价比足球的单价多20元,请解答下列问题:(1)求出足球和篮球的单价;(2)若学校欲用不超过3240元,且不少于3200元再次购进两种球50个,求出有哪几种购买方案?(3)在(2)的条件下,若已知足球的进价为50元,篮球的进价为65元,则在第二次购买方案中,哪种方案商家获利最多?【考点】CE:一元一次不等式组的应用;8A:一元一次方程的应用.【分析】(1)设足球的单价为x元,则篮球的单价为(x+20)元,则根据所花的钱数为1600元,可得出方程,解出即可;(2)根据题意所述的不等关系:不超过3240元,且不少于3200元,等量关系:两种球共50个,可得出不等式组,解出即可;(3)分别求出三种方案的利润,继而比较可得出答案.【解答】解:(1)设足球的单价为x元,则篮球的单价为(x+20)元,根据题意,得8x+14(x+20)=1600,解得:x=60,x+20=80.即足球的单价为60元,则篮球的单价为80元;(2)设购进足球y个,则购进篮球(50﹣y)个.根据题意,得,解得:,∵y为整数,∴y=38,39,40.当y=38,50﹣y=12;当y=39,50﹣y=11;当y=40,50﹣y=10.故有三种方案:方案一:购进足球38个,则购进篮球12个;方案二:购进足球39个,则购进篮球11个;方案三:购进足球40个,则购进篮球10个;(3)商家售方案一的利润:38(60﹣50)+12(80﹣65)=560(元);商家售方案二的利润:39(60﹣50)+11(80﹣65)=555(元);商家售方案三的利润:40(60﹣50)+10(80﹣65)=550(元).故第二次购买方案中,方案一商家获利最多.19.某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有200 名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?【考点】VC:条形统计图;VB:扇形统计图.【分析】(1)喜好“核桃味”牛奶的学生人数除以它所占的百分比即可得本次被调查的学生人数;(2)用本次被调查的学生的总人数减去喜好原味、草莓味、菠萝味、核桃味的人数得出喜好香橙味的人数,补全条形统计图即可,用喜好“菠萝味”牛奶的学生人数除以总人数再乘以360°,即可得喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(3)用喜好草莓味的人数占的百分比减去喜好原味的人数占的百分比,再乘以该校的总人数即可.【解答】解:(1)10÷5%=200(名)答:本次被调查的学生有200名,故答案为:200;(2)200﹣38﹣62﹣50﹣10=40(名),条形统计图如下:=90°,答:喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数为90°;(3)1200×()=144(盒),答:草莓味要比原味多送144盒.20.如图有A 、B 两个大小均匀的转盘,其中A 转盘被分成3等份,B 转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A 转盘指针指向的数字记作一次函数表达式中的k ,将B 转盘指针指向的数字记作一次函数表达式中的b . (1)请用列表或画树状图的方法写出所有的可能;(2)求一次函数y=kx+b 的图象经过一、二、四象限的概率.【考点】X6:列表法与树状图法;F7:一次函数图象与系数的关系. 【分析】(1)列表得出所有等可能的情况数即可;(2)找出满足一次函数y=kx+b 的图象经过一、二、四象限的情况,即可求出所求的概率. 【解答】解:(1)列表如下:所有等可能的情况有12种;(2)一次函数y=kx+b 的图象经过一、二、四象限时,k <0,b >0,情况有4种, 则P==.21.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点D 作对角线BD 的垂线交BA 的延长线于点E .(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.【考点】L8:菱形的性质;L7:平行四边形的判定与性质.【分析】(1)根据平行四边形的判定证明即可;(2)利用平行四边形的性质得出平行四边形的周长即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB,∴DE∥AC,∴四边形ACDE是平行四边形;(2)解:∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,AD=CD=5,∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8,∴△ADE的周长为AD+AE+DE=5+5+8=18.22.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B点坐标代入y=可计算出m的值;(3)设P点坐标为(t, t+),利用三角形面积公式可得到••(t+4)=•1•(2﹣t﹣),解方程得到t=﹣,从而可确定P点坐标.【解答】解:(1)当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)把A(﹣4,),B(﹣1,2)代入y=kx+b得,解得,所以一次函数解析式为y=x+,把B(﹣1,2)代入y=得m=﹣1×2=﹣2;(3)设P点坐标为(t, t+),∵△PCA和△PDB面积相等,∴••(t+4)=•1•(2﹣t﹣),即得t=﹣,∴P点坐标为(﹣,).23.如图,⊙O是Rt△ABC的外接圆,AC是⊙O的直径,弦BD=BA,AB=12,BC=5,BE⊥DC,交DC的延长线于点E.(1)求证:△ABC∽△DEB;(2)求证:BE是⊙O的切线;(3)求DE的长.【考点】MD:切线的判定;S9:相似三角形的判定与性质.【分析】(1)根据BDE=∠CAB(圆周角定理)且∠BED=∠CBA=90°即可得出结论;(2)连接OB,OD,证明△ABO≌△DBO,推出OB∥DE,继而判断OB⊥DE,可得出结论.(3)根据△BED∽△CBA,利用对应边成比例的性质可求出DE的长度.【解答】(1)BDE=∠CAB(圆周角定理)且∠BED=∠CBA=90°,∴△ABC∽△DEB;(2)证明:连结OB,OD,在△ABO和△DBO中,,∴△ABO≌△DBO(SSS),∴∠DBO=∠ABO,∵∠ABO=∠OAB=∠BDC,∴∠DBO=∠BDC,∴OB∥ED,∵BE⊥ED,∴EB⊥BO,∴OB⊥BE,∴BE是⊙O的切线.(3)∵△BED∽△CBA,∴,即=,解得:DE=.24.已知,如图二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点C(0,4)与x轴交于点A、B,点B(4,0),抛物线的对称轴为x=1.直线AD交抛物线于点D(2,m).(1)求二次函数的解析式并写出D点坐标;(2)点E是BD的中点,点Q是线段AB上一动点,当△QBE和△ABD相似时,求点Q的坐标;(3)抛物线与y轴交于点C,直线AD与y轴交于点F,点M为抛物线对称轴上的动点,点N在x轴上,当四边形CMNF周长取最小值时,求出满足条件的点M和点N的坐标.【考点】HF:二次函数综合题.【分析】(1)首先运用待定系数法求出二次函数的解析式,然后把点D(2,m)代入二次函数的解析式,就可求出点D的坐标;(2)过点D作DH⊥AB于点H,如图1,根据勾股定理可求出BD,易求出点A的坐标,从而得到AB长,然后分两种情况:①△QBE∽△ABD,②△QBE∽△DBA讨论,运用相似三角形的性质求出BQ,从而得到OQ,即可得到点Q的坐标;(3)根据待定系数法得到直线AD的解析式为:y=x+2,过点F作关于x轴的对称点F′,即F′(0,﹣2),连接DF′交对称轴于M′,x轴于N′,由条件可知,点C,D是关于对称轴x=1对称,则CF+F′N+M′N′+M′C=CF+DF′=2+2,得到四边形CFNM的最短周长为:2+2时直线DF′的解析式为:y=3x﹣2,从而得到满足条件的点M和点N的坐标.【解答】解:(1)由题可得:,解得:,则二次函数的解析式为y=﹣x2+x+4.∵点D(2,m)在抛物线上,∴m=﹣×22+2+4=4,∴点D的坐标为(2,4);(2)过点D作DH⊥AB于点H,如图1,∵点D(2,4),点B(4,0),∴DH=4,OH=2,OB=4,∴BH=2,∴DB==2.∵点E为DB的中点,∴BE=BD=.令y=0,得﹣x2+x+4=0,解得:x1=4,x2=﹣2,∴点A为(﹣2,0),∴AB=4﹣(﹣2)=6.①若△QBE∽△ABD,则=,∴=,解得:BQ=3,∴OQ=OB﹣BQ=4﹣3=1,∴点Q的坐标为(1,0);②若△QBE∽△DBA,则=,∴=,∴BQ=,∴OQ=OB﹣BQ=4﹣=,∴点Q的坐标为(,0).综上所述:点Q的坐标为(1,0)或(,0);(3)如图2,由A(﹣2,0),D(2,4),可求得直线AD的解析式为:y=x+2,即点F的坐标为:F(0,2),过点F作关于x轴的对称点F′,即F′(0,﹣2),连接DF′交对称轴于M′,x轴于N′,由条件可知,点C,D是关于对称轴x=1对称,则CF+F′N+M′N′+M′C=CF+DF′=2+2,则四边形CFNM的周长=CF+FN+NM+MC≥CF+FN′+M′N′+M′C,即四边形CFNM的最短周长为:2+2.此时直线DF′的解析式为:y=3x﹣2,所以存在点N的坐标为N(,0),点M的坐标为M(1,1).。

2017届四川省广元中学中考模拟数学试卷(一)(带解析)

2017届四川省广元中学中考模拟数学试卷(一)(带解析)

绝密★启用前2017届四川省广元中学中考模拟数学试卷(一)(带解析)试卷副标题考试范围:xxx ;考试时间:73分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(题型注释)1、已知反比例函数y=的图象如图所示,则二次函数y=﹣kx 2﹣2x+的图象大致为( )A .B .C .D .【答案】B【解析】试题解析:∵点(1,2)在反比例函数图象上,∴有2=,解得:k =2.试卷第2页,共17页∴二次函数解析式为y =-2x 2-2x +1. ∵a =-2<0, ∴抛物线开口向下;∵-,∴抛物线的对称轴为x =-.故选B .【点睛】本题考查了待定系数法求反比例函数解析式以及二次函数的图象,解题的关键是利用待定系数法求出k 值.本题属于基础题,难度不大,解决该题型题目时,由点的坐标利用待定系数法求出k 的值是关键.2、已知△ABC 的外接圆O 的半径为3,AC=4,则sinB=( )A .B .C .D .【答案】D【解析】试题解析:连接AO 并延长交圆于E ,连CE .∴∠ACE =90°(直径所对的圆周角是直角); 在直角三角形ACE 中,AC =4,AE =6,∴sin ∠E =;又∵∠B =∠E (同弧所对的圆周角相等),∴sin B =.故选D .【点评】本题主要考查了圆周角定理、锐角三角函数的定义.在求锐角三角函数值时,一般是通过作辅助线构造直角三角形,在直角三角形中解三角函数的三角函数值即可. 3、已知不等式(a+1)x >2的解集是x <﹣1,则( ) A .a >2B .a≤﹣3C .a=3D .a=﹣3【答案】D【解析】试题解析:当a +1>0时,由原不等式,得x >∵不等式(a +1)x >2的解集是x <-1, ∴a +1<0,∴由原不等式,得x <,又∵它的解集是x <-1,∴=-1,解得:a =-3. 故选D .【点睛】当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.本题需注意,在不等式两边都除以一个负数时,应只改变不等号的方向.4、已知,在等腰梯形ABCD 中,AD ∥BC ,AD=AB=2,∠B=60°,则梯形ABCD 的周长( )A .8B .8C .10D .8+2【答案】C试卷第4页,共17页【解析】试题解析:分别过点A 、D 作AE ⊥BC ,DF ⊥BC ,∵梯形ABCD 是等腰梯形, AE=CF ,AD=EF , 在Rt △ABE 中,∵BE =AB •cos60°=2×=1,∴BC =2BE +EF =2+2=4, ∵AD ∥BC ,AD =AB =2, ∴AD =AB =CD =2,∴梯形ABCD 的周长=3AD +BC =3×2+4=10. 故选C .【点睛】本题考查的是等腰梯形的性质及锐角三角函数的定义,根据题意作出辅助线,构造出直角三角形求出BE 的长是解答此题的关键.5、如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是( )A .两条直角边成正比例B .两条直角边成反比例C .一条直角边与斜边成正比例D .一条直角边与斜边成反比例【答案】B【解析】试题解析:设该直角三角形的两直角边是a 、b ,面积为S .则S =ab .∵S 为定值, ∴ab =2S 是定值,则a 与b 成反比例关系,即两条直角边成反比例. 故选B .6、已知二次函数y=kx 2﹣6x+3,若k 在数组(﹣3,﹣2,﹣1,1,2,3,4)中随机取一个,则所得抛物线的对称轴在直线x=1的右方时的概率为( )A .B .C .D .【答案】B【解析】试题解析:这个函数的对称轴是x =,当k 为2或者1这两个数的时候,所得抛物线的对称轴在直线x =1的右方,所以概率为.故选B .7、下图是由5个相同大小的正方体搭成的几何体,则它的俯视图在A ,B ,C ,D 中的选项是( )A .B .C .D .【答案】C【解析】试题解析:从上面看可得到第二层有3个左右相邻的正方形,第一层右下角有一个正方形,故选C .8、如果a 与3互为相反数,则是( )A .3B .﹣3C .D .【答案】D【解析】试题解析:∵a 与3互为相反数, ∴a =-3,则故选D .试卷第6页,共17页【点睛】本题考查了相反数和倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;若两数只有符号不同,则称两数互为相反数.二、选择题(题型注释)9、如图,平行四边形ABCD 中,DB=DC ,∠C=70°,AE ⊥BD 于E ,则∠DAE 等于( ).A .20°B .25°C .30°D .35°【答案】A . 【解析】试题分析:∵DB=DC ,∠C=70°,∴∠DBC=∠C=70°,又∵AD ∥BC ,∴∠ADE=∠DBC=70°,∵AE ⊥BD ,∴∠AEB=90°,那么∠DAE=90°﹣∠ADE=20°. 故选:A .考点:平行四边形的性质;三角形内角和定理;等腰三角形的性质.10、下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A .B .C .D .【答案】B【解析】试题分析:根据中心对称图形的定义和图形的特点即可求解.解:由中心对称图形的定义知,绕一个点旋转180°后能与原图重合,只有选项B 是中心对称图形. 故选:B .考点:中心对称图形.11、如图是坐标系的一部分,若M 位于点(2,﹣2)上,N 位于点(4,﹣2)上,则G 位于点( )上.A .(1,3)B .(1,1)C .(0,1)D .(﹣1,1)【答案】C【解析】试题分析:根据已知两点位置,建立符合条件的坐标系,从而确定其G 点的位置.解:由“M 位于点(2,﹣2)上,N 位于点(4,﹣2)上”知, y 轴为从左向数的第二条竖直直线,且向上为正方向,x 轴是从下往上数第五条水平直线,向右为正方向,这两条直线交点为坐标原点. 如图,那么G 点的位置为(0,1). 故选C .点评:本题考查了点的坐标的确定,解题的关键是确定坐标原点和x ,y 轴的位置及方向.12、下列关于x 的方程有实数根的是() A .x 2﹣x+1=0B .x 2+x+1=0C .(x ﹣1)(x+2)=0D .(x ﹣1)2+1=0【答案】C【解析】试题分析:分别计算A 、B 中的判别式的值;根据判别式的意义进行判断;利用因式分解法对C 进行判断;根据非负数的性质对D 进行判断.解:A 、△=(﹣1)2﹣4×1×1=﹣3<0,方程没有实数根,所以A 选项错误; B 、△=12﹣4×1×1=﹣3<0,方程没有实数根,所以B 选项错误;试卷第8页,共17页C 、x ﹣1=0或x+2=0,则x 1=1,x 2=﹣2,所以C 选项正确;D 、(x ﹣1)2=﹣1,方程左边为非负数,方程右边为0,所以方程没有实数根,所以D选项错误.故选:C .考点:根的判别式.第II卷(非选择题)三、填空题(题型注释)13、234 610 000用科学记数法表示为__.(保留三个有效数字)【答案】2.35×108【解析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.有效数字的计算方法是:从左边第一个不是0的开始,后面所有的数都是有效数字234 610 000=2.3461×108≈2.35×10814、将二次函数y=(x﹣2)2+3的图象向右平移2个单位,再向下平移2个单位,所得二次函数的解析式为__.【答案】y=(x﹣4)2+1【解析】∵y=(x﹣2)2+3的顶点坐标为(2,3),∴把点(2,3)向右平移2个单位,再向下平移2个单位得到(4,1);而平移的过程中,抛物线的形状没改变,∴所得的新抛物线的解析式为:y=(x﹣4)2+1.故答案为:y=(x﹣4)2+1.15、一个商贩准备了10张质地均匀的纸条,其中能得到一块糖的纸条有5张,能得到三块糖的纸条有3张,能得到五块糖的纸条有2张.从中随机抽取一张纸条,恰好是能得到三块糖的纸条的概率是_____【答案】0.3【解析】试题解析:∵共有10张质地均匀的纸条,能得到三块塘的纸条有3张,∴从中随机抽取一张纸条,恰好是能得到三块塘的纸条的概率是.16、已知:x2﹣2x+1+=0,则|x﹣y|=__.【答案】5试卷第10页,共17页【解析】试题解析:∵x 2﹣2x +1+=0∴∴解得:x="1,y=-4" ∴|x -y |=|1-(-4)|=517、若关于x 方程kx 2–6x+1=0有两个实数根,则k 的取值范围是 .【答案】k≤9且k≠0【解析】试题分析:若一元二次方程有两实数根,则根的判别式△=b 2﹣4ac≥0,建立关于k 的不等式,求出k 的取值范围.还要注意二次项系数不为0. 解:∵方程有两个实数根, ∴△=b 2﹣4ac=36﹣4k≥0, 即k≤9,且k≠0 考点:根的判别式.四、计算题(题型注释)18、八年级(1)班学生在完成课题学习“体质健康测试中的数据分析”后,利用课外活动时间积极参加体育锻炼,每位同学从篮球、跳绳、立定跳远、长跑、铅球中选一项进行训练,训练后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图.请你根据上面提供的信息回答下列问题:(1)扇形图中跳绳部分的扇形圆心角为 度,该班共有学生 人,训练后篮球定时定点投篮平均每个人的进球数是 .(2)老师决定从选择铅球训练的3名男生和1名女生中任选两名学生先进行测试,请用列表或画树形图的方法求恰好选中两名男生的概率.【答案】(1)36,40,5.(2).【解析】试题分析:(1)跳绳部分的圆心角的度数用周角乘以跳绳部分所占的百分比即可;总人数用用篮球的总人数除以其所占的百分比即可求得总人数;(2)列树状图将所有等可能的结果列举出来后利用概率公式求解即可.试题解析:(1)扇形图中跳绳部分的扇形圆心角为360°×(1-50%-20%-10%-10%)=36度;该班共有学生(2+5+7+4+1+1)÷50%=40人;训练后篮球定时定点投篮平均每个人的进球数是=5,故答案为:(2)三名男生分别用A 1,A 2,A 3表示,一名女生用B 表示.根据题意,可画树形图如下:由上图可知,共有12种等可能的结果,选中两名学生恰好是两名男生(记为事件M )的结果有6种,∴P (M )=.考点:1.列表法与树状图法;2.扇形统计图;3.条形统计图.五、解答题(题型注释)19、如图,在平行四边形ABCD中,点E、F分别在BC、AD上,且∠BAE=∠DCF.Array(1)求证:△ABE≌△CDF;(2)若AC⊥EF,试判断四边形AECF是什么特殊四边形,并证明你的结论.【答案】(1)证明见解析;(2)四边形AECF是菱形,证明见解析.【解析】试题分析:(1)由平行四边形ABCD可得∠B=∠D,AB=CD,根据已知给出的∠BAE=∠DCF,可证明两个三角形全等.(2)可先确定四边形AECF中对角线的关系,再根据AC⊥EF,从而判断出到底是什么特殊的四边形.试题解析:(1)∵在平行四边形ABCD中,∴∠B=∠D,AB=CD,又∵∠BAE=∠DCF.∴△ABE≌△CDF;(2)四边形AECF是菱形.证明如下:∵△ABE≌△CDF,∴BE=DF,∴BC﹣BE=AD﹣FD,∴EC=AF,∵AD∥BC,∴∠FAC=∠ECA,∠CEF=∠AFE,∴△AOF≌△COE,∴AO=CO,EO=FO,又∵AC⊥EF,∴四边形AECF是菱形.考点:1.平行四边形的判定与性质;2.全等三角形的判定与性质;3.菱形的判定.20、如图,△OAB是边长为2+的等边三角形,其中O是坐标原点,顶点B在y轴正方向上,将△OAB折叠,使点A落在边OB上,记为A′,折痕为EF.(1)当A′E∥x轴时,求点A′和E的坐标;(2)当A′E∥x轴,且抛物线y=﹣x2+bx+c经过点A′和E时,求抛物线与x轴的交点的坐标;若能,请求出此时点A′的坐标;若不能,请你说明理由.【答案】(1)点A′和E的坐标别是(0,1)与(,1);(2)抛物线与x轴的交点的坐标是(,0)与(,0).(3)不可能使△A′EF成为直角三角形,理由见解析.【解析】试题分析:(1)当A′E∥x轴时,△A′EO是直角三角形,可根据∠A′OE的度数用O′A表示出OE和A′E,由于A′E=AE,且A′E+OE=OA=2+,由此可求出OA′的长,也就能求出A′E的长.据此可求出A′和E的坐标;(2)将A′,E点的坐标代入抛物线中,即可求出其解析式.进而可求出抛物线与x轴的交点坐标;(3)根据折叠的性质可知:∠FA′E=∠A,因此∠FA′E不可能为直角,因此要使△A′EF 成为直角三角形只有两种可能:①∠A′EF=90°,根据折叠的性质,∠A′EF=∠AEF=90°,此时A′与O重合,与题意不符,因此此种情况不成立.②∠A′FE=90°,同①,可得出此种情况也不成立.因此A′不与O、B重合的情况下,△A′EF不可能成为直角三角形.试题解析:(1)由已知可得∠A′OE=60°,A′E=AE,由A′E∥x轴,得△OA′E是直角三角形,设A′的坐标为(0,b),AE=A′E=b,OE=2b,b+2b=2+,所以b=1,所以A′、E的坐标分别是(0,1)与(,1).(2)因为A′、E在抛物线上,所以,函数关系式为y=-x2+x+1,令y=0得到:-x2+x+1=0,解得:x1=-,x2=2,与x轴的两个交点坐标分别是(−,0)与(2,0).(3)不可能使△A′EF成为直角三角形.理由如下:∵∠FA′E=∠FAE=60°,若△A′EF成为直角三角形,只能是∠A′EF=90°或∠A′FE=90°若∠A′EF=90°,利用对称性,则∠AEF=90°,A、E、A三点共线,O与A重合,与已知矛盾;同理若∠A′FE=90°也不可能,所以不能使△A′EF成为直角三角形.【点睛】本题考查了一次函数综合题.解题时利用了待定系数法求一次函数的解析式、等边三角形的判定与性质、菱形的性质等知识点,综合性比较强.21、如图,已知AB是⊙O的直径,直线CD与⊙O相切于C点,AC平分∠DAB.(1)求证:AD⊥CD;(2)若AD=2,,求⊙O的半径R的长.【答案】(1)证明见解析;(2)⊙O的半径R的长为.【解析】试题分析:(1)连接OC ,由题意得OC ⊥CD .又因为AC 平分∠DAB ,则∠1=∠2=∠DAB .即可得出AD ∥OC ,则AD ⊥CD ;(2)连接BC ,则∠ACB =90°,可证明△ADC ∽△ACB .则,从而求得R .试题解析:(1)证明:连接OC ,∵直线CD 与⊙O 相切于C 点,AB 是⊙O 的直径, ∴OC ⊥CD . 又∵AC 平分∠DAB ,∴∠1=∠2=∠DAB .又∠COB =2∠1=∠DAB , ∴AD ∥OC , ∴AD ⊥CD .(2)连接BC ,则∠ACB =90°, 在△ADC 和△ACB 中∵∠1=∠2,∠3=∠ACB =90°, ∴△ADC ∽△ACB .∴∴R =22、如图,反比例函数(k≠0)图象经过点(1,2),并与直线y=2x+b 交于点A(x 1,y 1),B (x 2,y 2),且满足(x 1+x 2)(1﹣x 1x 2)=3.(1)求k 的值;(2)求b 的值及点A ,B 的坐标.【答案】(1)k=2;(2)b=﹣3,A (2,1),B (﹣,﹣4).【解析】试题分析:(1)根据反比例函数性质,k 为图象上点的坐标之积,易求k 值.(2)欲求b 的值及点A ,B 的坐标,先求方程组有两个不同解,根据一元二次方程根与系数关系即可求出.试题解析:(1)∵反比例函数y =(k ≠0)图象经过点(1,2),∴2=⇒k =2.(2)由题意⇒⇒2x 2+bx ﹣2=0①⇒△=b 2+16>0,则由(x 1+x 2)(1﹣x 1x 2)=3∴∴b =﹣3.∴①为2x 2﹣3x ﹣2=0解得:,即A(2,1),B(﹣,﹣4).23、解方程:【答案】原方程的解为x1=或x2=﹣1.【解析】试题分析:先去分母化为整式方程,解这个整式方程并进行验根即可.试题解析:方程两边都乘2x(x﹣1),得:2x2﹣2(x﹣1)(x+2)=3x(x﹣1),整理得:3x2﹣x﹣4=0∴(3x﹣4)(x+1)=0,解得x1=,x2=﹣1.检验x=或x=﹣1时,2x(x﹣1)≠0;所以原方程的解为x1=或x2=﹣1.24、计算:﹣22+cos45°+(﹣)﹣2﹣(π﹣2017)0【答案】原式=1【解析】试题分析:原式第一项进行有理数的乘方运算,第二项利用特殊角的三角函数值计算,第三项利用负指数幂法则计算,最后一项利用零指数幂法则计算即可得到结果.试题解析:原式=﹣4+2×+4﹣1=2﹣1=1;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年四川省广元市中考数学二模试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣的相反数是()A.4 B.﹣4 C.D.﹣2.下列计算正确的是()A. =﹣3 B.a2+a4=a6C.(﹣)﹣1=D.(﹣π)0=13.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④4.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数 B.方差 C.平均数D.中位数5.二元一次方程组的解为()A.B.C.D.6.如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为()A.50° B.40° C.45° D.25°7.方程的解是()A.x=1 B.x=﹣1 C.x=2 D.x=﹣28.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米9.如图,点O在△ABC内,且到三边的距离相等.若∠BOC=120°,则tanA的值为()A.B.C.D.10.如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是()A.B. C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.分解因式:a3b﹣4ab= .12.若+|b+3|=0,则(a+b)2017的值是.13.不等式组的整数解的和是.14.如图,A,B,C是⊙O上的三点,若∠BAO=65°,则∠ACB的度数是.15.如图,抛物线的对称轴是x=1,与x轴有两个交点,与y轴的交点坐标是(0,3),把它向下平移2个单位长度后,得到新的抛物线的解析式是y=ax2+bx+c,以下四个结论:①b2﹣4ac<0,②abc<0,③4a+2b+c=1,④a﹣b+c>0中,其中正确的是(填序号).三、解答题(本大题共9小题,共75分)16.计算:3cos60°﹣2﹣1+(π﹣3)0﹣.17.先化简,再求值:(a+1﹣)÷(﹣),其中a=2+.18.如图,在Rt△ABC中,∠BCA=90°,CD是AB边上的中线,分别过点C,D作BA和BC 的平行线,两线交于点E,且DE交AC于点O,连接AE.求证:四边形ADCE是菱形.19.2016年3月,我市某中学举行了“爱我中国•朗诵比赛”活动,根据学生的成绩划分为A、B、C、D四个等级,并绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:(1)参加朗诵比赛的学生共有人,并把条形统计图补充完整;(2)扇形统计图中,m= ,n= ;C等级对应扇形有圆心角为度;(3)学校欲从获A等级的学生中随机选取2人,参加市举办的朗诵比赛,请利用列表法或树形图法,求获A等级的小明参加市朗诵比赛的概率.20.在江苏卫视《最强大脑》节目中,搭载百度大脑的小度机器人以3:1的总战绩,斩获2017年度脑王巅峰对决的晋级资格,人工智能时代已经扑面而来.某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?21.如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)22.如图,一次函数y=kx+b与反比例函数y=的图象交于A(1,4),B(4,n)两点.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)点P是x轴上的一动点,当PA+PB最小时,求点P的坐标.23.如图,AB是⊙O的直径,C、G是⊙O上两点,且AC=CG,过点C的直线CD⊥BG于点D,交BA的延长线于点E,连接BC,交OD于点F.(1)求证:CD是⊙O的切线.(2)若,求∠E的度数.(3)连接AD,在(2)的条件下,若CD=,求AD的长.24.如图,二次函数y=x2+bx+c的图象交x轴于A、B两点,交y轴于点C,顶点为点P,经过B、C两点的直线为y=﹣x+3.(1)求该二次函数的关系式;(2)在该抛物线的对称轴上是否存在点M,使以点C、P、M为顶点的三角形是等腰三角形?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由;(3)连接AC,在x轴上是否存在点Q,使以点P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.2017年四川省广元市中考数学二模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.﹣的相反数是()A.4 B.﹣4 C.D.﹣【考点】14:相反数.【分析】本题需根据相反数的有关概念求出﹣的相反数,即可得出答案.【解答】解:﹣的相反数是.故选C.2.下列计算正确的是()A. =﹣3 B.a2+a4=a6C.(﹣)﹣1=D.(﹣π)0=1【考点】22:算术平方根;35:合并同类项;6E:零指数幂;6F:负整数指数幂.【分析】利用算术平方根的性质、负整数指数幂和零指数幂对ACD运算,B不能运算,可得结果.【解答】解:A. = =3,所以A错误;B.a2与a4不是同类项,所以B错误;C. =﹣3,所以C错误;D.(﹣π)0=1,所以D正确,故选D.3.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④【考点】I7:展开图折叠成几何体.【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【解答】解:将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,故选:A.4.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的()A.众数 B.方差 C.平均数D.中位数【考点】W4:中位数.【分析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.【解答】解:因为7名学生进入前3名肯定是7名学生中最高成绩的3名,而且7个不同的分数按从小到大排序后,中位数之后的共有3个数,故只要知道自己的成绩和中位数就可以知道是否进入前3名.故选:D.5.二元一次方程组的解为()A.B.C.D.【考点】97:二元一次方程组的解.【分析】根据加减消元法,可得方程组的解.【解答】解:①+②,得 3x=9,解得x=3,把x=3代入①,得3+y=5,y=2,所以原方程组的解为.故选C.6.如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为()A.50° B.40° C.45° D.25°【考点】JA:平行线的性质;K7:三角形内角和定理.【分析】由EF⊥BD,∠1=50°,结合三角形内角和为180°即可求出∠D的度数,再由“两直线平行,同位角相等”即可得出结论.【解答】解:在△DEF中,∠1=∠F=50°,∠DEF=90°,∴∠D=180°﹣∠DEF﹣∠1=40°.∵AB∥CD,∴∠2=∠D=40°.故选B.7.方程的解是()A.x=1 B.x=﹣1 C.x=2 D.x=﹣2【考点】B3:解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣1﹣2=2x﹣4,解得:x=1,经检验x=1是分式方程的解,故选A8.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米【考点】L3:多边形内角与外角.【分析】多边形的外角和为360°每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小华一共走了:15×10=150米.故选B.9.如图,点O在△ABC内,且到三边的距离相等.若∠BOC=120°,则tanA的值为()A.B.C.D.【考点】KF:角平分线的性质;T5:特殊角的三角函数值.【分析】由条件可知BO、CO平分∠ABC和∠ACB,利用三角形内角和可求得∠A,再由特殊角的三角函数的定义求得结论.【解答】解:∵点O到△ABC三边的距离相等,∴BO平分∠ABC,CO平分∠ACB,∴∠A=180°﹣(∠ABC+∠ACB)=180°﹣2(∠OBC+∠OCB)=180°﹣2×=180°﹣2×=60°,∴tanA=tan60°=,故选A.10.如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QD.设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是()A.B. C.D.【考点】E7:动点问题的函数图象.【分析】判断出△ABE是等腰直角三角形,根据等腰直角三角形的性质求出AE、BE,然后表示出PE、QE,再求出点Q到AD的距离,然后根据三角形的面积公式表示出y与x的关系式,再根据二次函数图象解答.【解答】解:∵∠ABE=45°,∠A=90°,∴△ABE是等腰直角三角形,∴AE=AB=2,BE=AB=2,∵BE=DE,PD=x,∴PE=DE﹣PD=2﹣x,∵PQ∥BD,BE=DE,∴QE=PE=2﹣x,又∵△ABE是等腰直角三角形(已证),∴点Q到AD的距离=(2﹣x)=2﹣x,∴△PQD的面积y=x(2﹣x)=﹣(x2﹣2x+2)=﹣(x﹣)2+,即y=﹣(x﹣)2+,纵观各选项,只有C选项符合.故选:C.二、填空题(本大题共5小题,每小题3分,共15分)11.分解因式:a3b﹣4ab= ab(a+2)(a﹣2).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=ab(a2﹣4)=ab(a+2)(a﹣2),故答案为:ab(a+2)(a﹣2)12.若+|b+3|=0,则(a+b)2017的值是﹣1 .【考点】23:非负数的性质:算术平方根;16:非负数的性质:绝对值.【分析】直接利用绝对值以及二次根式的性质得出a,b的值,进而得出答案.【解答】解:∵+|b+3|=0,∴a﹣2=0,b+3=0,解得:a=2,b=﹣3,故(a+b)2017=﹣1.故答案为:﹣1.13.不等式组的整数解的和是 3 .【考点】CC:一元一次不等式组的整数解.【分析】首先解每个不等式,两个不等式的公共部分就是不等式组的解集,确定解集中的整数解,然后求和即可.【解答】解:,解①得x≤2,解②得x>﹣1,则不等式组的解集是﹣1<x≤2.则整数解是0,1,2.整数解的和是3.故答案是:3.14.如图,A,B,C是⊙O上的三点,若∠BAO=65°,则∠ACB的度数是25°.【考点】M5:圆周角定理.【分析】连接OB,求出∠AOB的度数,再根据圆周角定理求出∠ACB的度数.【解答】解:连接OB,∵OA=OB,∠BAO=65°,∴∠OAB=∠OBA=65°,∴∠AOB=50°,∴∠ACB=25°,故答案为25°.15.如图,抛物线的对称轴是x=1,与x轴有两个交点,与y轴的交点坐标是(0,3),把它向下平移2个单位长度后,得到新的抛物线的解析式是y=ax2+bx+c,以下四个结论:①b2﹣4ac<0,②abc<0,③4a+2b+c=1,④a﹣b+c>0中,其中正确的是②③④(填序号).【考点】HA:抛物线与x轴的交点;H4:二次函数图象与系数的关系;H6:二次函数图象与几何变换.【分析】根据平移后的图象即可判定①,根据平移后的对称轴和与y轴的交点坐标,即可判定a和b的关系以及c的值,即可判定②,根据与y轴的交点求得对称点,即可判定③,根据图象即可判定④.【解答】解:根据题意平移后的抛物线的对称轴x=﹣=1,c=3﹣2=1,由图象可知,平移后的抛物线与x轴有两个交点,∴b2﹣4ac>0,故①错误;∵抛物线开口向上,∴a>0,b=﹣2a<0,∴abc<0,故②正确;∵平移后抛物线与y轴的交点为(0,1)对称轴x=1,∴点(2,1)点(0,1)的对称点,∴当x=2时,y=1,∴4a+2b+c=1,故③正确;由图象可知,当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故答案为:②③④.三、解答题(本大题共9小题,共75分)16.计算:3cos60°﹣2﹣1+(π﹣3)0﹣.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】直接利用负指数幂的性质以及零指数幂的性质和二次根式的性质、特殊角的三角函数值分别化简求出答案.【解答】解:原式=3×﹣+1﹣2=0.17.先化简,再求值:(a+1﹣)÷(﹣),其中a=2+.【考点】6D:分式的化简求值.【分析】首先对括号内的分式进行通分相加,把除法转化为乘法,然后计算乘法即可化简,最后代入求解即可.【解答】解:原式=÷=•=a(a﹣2).当a=2+时,原式=2+2.18.如图,在Rt△ABC中,∠BCA=90°,CD是AB边上的中线,分别过点C,D作BA和BC 的平行线,两线交于点E,且DE交AC于点O,连接AE.求证:四边形ADCE是菱形.【考点】L9:菱形的判定;KP:直角三角形斜边上的中线.【分析】欲证明四边形ADCE是菱形,需先证明四边形ADCE为平行四边形,然后再证明其对角线相互垂直即可.【解答】证明:∵DE∥BC,EC∥AB,∴四边形DBCE是平行四边形.∴EC∥DB,且EC=DB.在Rt△ABC中,CD为AB边上的中线,∴AD=DB=CD.∴EC=AD.∴四边形ADCE是平行四边形.∴ED∥BC.∴∠AOD=∠ACB.∵∠ACB=90°,∴∠AOD=∠ACB=90°.∴平行四边形ADCE是菱形.19.2016年3月,我市某中学举行了“爱我中国•朗诵比赛”活动,根据学生的成绩划分为A、B、C、D四个等级,并绘制了不完整的两种统计图.根据图中提供的信息,回答下列问题:(1)参加朗诵比赛的学生共有40 人,并把条形统计图补充完整;(2)扇形统计图中,m= 10 ,n= 40 ;C等级对应扇形有圆心角为144 度;(3)学校欲从获A等级的学生中随机选取2人,参加市举办的朗诵比赛,请利用列表法或树形图法,求获A等级的小明参加市朗诵比赛的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)由D等级人数及百分比可得总人数,根据各等级人数之和等于总数可得答案;(2)根据A、C等级人数及总人数可得百分比,用360度乘以C等级百分比可得圆心角度数;(3)画树状图列出所有结果,利用概率公式可得答案.【解答】解:(1)参加比赛学生共有:12÷30%=40(人);B等级学生数是40﹣4﹣16﹣12=8(人),(2)m=×100=10,n=×100=40,C等级对应扇形有圆心角为360°×40%=144°,故答案为:10,40,144;(3)设获A等级的小明用A表示,其他的三位同学用a,b,c,表示:共12种情况,其中小明参加的情况有6种,则P(小明参加市比赛)==.20.在江苏卫视《最强大脑》节目中,搭载百度大脑的小度机器人以3:1的总战绩,斩获2017年度脑王巅峰对决的晋级资格,人工智能时代已经扑面而来.某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.(1)求该商家第一次购进机器人多少个?(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)设该商家第一次购进机器人x个,根据“第一次用11000元购进某款拼装机器人,用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元”列出方程并解答;(2)设每个机器人的标价是a元.根据“全部销售完毕的利润率不低于20%”列出不等式并解答.【解答】解(1)设该商家第一次购进机器人x个,依题意得: +10=,解得x=100.经检验x=100是所列方程的解,且符合题意.答:该商家第一次购进机器人100个.(2)设每个机器人的标价是a元.则依题意得:a﹣11000﹣24000≥×20%,解得a≥140.答:每个机器人的标价至少是140元.21.如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)【考点】TA:解直角三角形的应用﹣仰角俯角问题;T9:解直角三角形的应用﹣坡度坡角问题.【分析】过点E作EF⊥BC的延长线于F,EH⊥AB于点H,根据CE=20米,坡度为i=1:,分别求出EF、CF的长度,在Rt△AEH中求出AH,继而可得楼房AB的高.【解答】解:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,在Rt△CEF中,∵i===tan∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+10)米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.答:楼房AB的高为(35+10)米.22.如图,一次函数y=kx+b与反比例函数y=的图象交于A(1,4),B(4,n)两点.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)点P是x轴上的一动点,当PA+PB最小时,求点P的坐标.【考点】G8:反比例函数与一次函数的交点问题;PA:轴对称﹣最短路线问题.【分析】(1)将点A(1,4)代入反比例函数解析式可得其解析式;(2)先根据反比例函数解析式求得点B坐标,再由A、B坐标可得直线解析式;(3)作B的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,根据B的坐标求得B′的坐标,然后根据待定系数法求得直线AB′的解析式,进而求得与x轴的交点即可.【解答】解:(1)把A(1,4)代入y=,得:m=4,∴反比例函数的解析式为y=;(2)把B(4,n)代入y=,得:n=1,∴B(4,1),把A(1,4)、(4,1)代入y=kx+b,得:,解得:,∴一次函数的解析式为y=﹣x+5;(3)作B的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,∵B(4,1),∴B′(4,﹣1),设直线AB′的解析式为y=mx+n,∴,解得,∴直线AB′的解析式为y=﹣x+,令y=0,得﹣x+=0,解得x=,∴点P的坐标为(,0).23.如图,AB是⊙O的直径,C、G是⊙O上两点,且AC=CG,过点C的直线CD⊥BG于点D,交BA的延长线于点E,连接BC,交OD于点F.(1)求证:CD是⊙O的切线.(2)若,求∠E的度数.(3)连接AD,在(2)的条件下,若CD=,求AD的长.【考点】MR:圆的综合题.【分析】(1)如图1,连接OC,AC,CG,由圆周角定理得到∠ABC=∠CBG,根据同圆的半径相等得到OC=OB,于是得到∠OCB=∠OBC,等量代换得到∠OCB=∠CBG,根据平行线的判定得到OC∥BG,即可得到结论;(2)由OC∥BD,得到△OCF∽△BDF,△EOC∽△EBD,得到,,根据直角三角形的性质即可得到结论;(3)如图2,过A作AH⊥DE于H,解直角三角形得到BD=3,DE=3,BE=6,在R t△DAH中,AD===.【解答】(1)证明:如图1,连接OC,AC,CG,∴,∴∠ABC=∠CBG,∵OC=OB,∴∠OCB=∠OBC,∴∠OCB=∠CBG,∴OC∥BG,∵CD⊥BG,∴OC⊥CD,∴CD是⊙O的切线;(2)解:∵OC∥BD,∴△OCF∽△BDF,△EOC∽△EBD,∴,∴,∵OA=OB,∴AE=OA=OB,∴OC=OE,∵∠ECO=90°,∴∠E=30°;(3)解:如图2,过A作AH⊥DE于H,∵∠E=30°∴∠EBD=60°,∴∠CBD=EBD=30°,∵CD=,∴BD=3,DE=3,BE=6,∴AE=BE=2,∴EH=,∴DH=2,在R t△DAH中,AD===.24.如图,二次函数y=x2+bx+c的图象交x轴于A、B两点,交y轴于点C,顶点为点P,经过B、C两点的直线为y=﹣x+3.(1)求该二次函数的关系式;(2)在该抛物线的对称轴上是否存在点M,使以点C、P、M为顶点的三角形是等腰三角形?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由;(3)连接AC,在x轴上是否存在点Q,使以点P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)先求出B、C坐标,代入抛物线解析式解方程组即可解决问题.(2)分三种情形讨论即可①CM=CP,②PM=PC,③MP=MC,画出图形即可解决问题.(3)分两种情形讨论即可①=时,△ABC∽△PBQ1,列出方程即可解决.②当=时,△ABC∽△Q2BP,列出方程即可解决.【解答】解:(1)∵直线y=﹣x+3经过B、C两点,∴B(3,0),C(0,3),∵二次函数y=x2+bx+c图象交x轴于A、B两点,交y轴于点C,∴解得,∴二次函数解析式为y=x2﹣4x+3.(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴该抛物线的对称轴为直线x=2,顶点坐标为P(2,﹣1),∴如图1所示,满足条件的点M分别为M1(2,7),M2(2,2﹣1),M3(2,),M4(2,﹣2﹣1).(3)由(1)(2)得A(1,0),BP=,BC=3,AB=2,如图2所示,连接BP,∠CBA=∠ABP=45°,①=时,△ABC∽△PBQ1,此时, =,∴BQ1=3,∴Q1(0,0).②当=时,△ABC∽△Q2BP,此时, =,∴BQ2=,∴Q2(,0),综上所述,存在点Q使得以点P、B、Q为顶点的三角形与△ABC相似.点Q坐标(0,0)或(,0).。

相关文档
最新文档