专题三抛体运动(二)

合集下载

高考物理一轮复习讲义抛体运动专题(三)斜抛运动类平抛运动平抛中的功与能

高考物理一轮复习讲义抛体运动专题(三)斜抛运动类平抛运动平抛中的功与能

斜抛运动、类平抛运动、平抛中的功与能一、斜抛运动1.定义:将物体以初速度v 0斜向上方或斜向下方抛出,物体只在重力作用下的运动.2.性质:斜抛运动是加速度为g 的匀变速曲线运动,运动轨迹是抛物线.3.研究方法二、类平抛运动1.类平抛运动的特点(1)有时物体的运动与平抛运动很相似,也是物体在某方向做匀速直线运动,在垂直匀速直线运动的方向上做初速度为零的匀加速直线运动。

对这种像平抛又不是平抛的运动,通常称为类平抛运动。

(2)受力特点:物体所受的合力为恒力,且与初速度的方向垂直。

(3)运动特点:在初速度v 0方向做匀速直线运动,在合外力方向做初速度为零的匀加速直线运动,加速度a =F 合m。

如图所示,将质量为m的小球从倾角为θ的光滑斜面上A点以速度v0水平抛出(v0的方向与CD平行),小球运动到B点的过程中做的就是类平抛运动。

2.类平抛运动与平抛运动的规律相类似,两者的区别(1)运动平面不同:类平抛运动→任意平面;平抛运动→竖直面。

(2)初速度方向不同:类平抛运动→任意方向;平抛运动→水平方向。

(3)加速度不同:类平抛运动→a=Fm,与初速度方向垂直;平抛运动→重力加速度g,竖直向下。

三、针对练习1、如图所示,从水平地面上的A、B两点分别斜抛出两小球,两小球均能垂直击中前方竖直墙面上的同一点P。

已知点P距地面的高度h=0.8 m,A、B两点距墙的距离分别为0.8 m 和0.4 m。

不计空气阻力,则从A、B两点抛出的两小球()A.从抛出到击中墙壁的时间之比为2∶1B.击中墙面的速率之比为1∶1C.抛出时的速率之比为17∶25D.抛出时速度方向与地面夹角的正切值之比为1∶22、甲、乙两个同学打乒乓球,某次动作中,甲同学持拍的拍面与水平方向成45°角,乙同学持拍的拍面与水平方向成30°角,如图所示.设乒乓球击打拍面时速度方向与拍面垂直,且乒乓球每次击打球拍前、后的速度大小相等,不计空气阻力,则乒乓球击打甲的球拍的速度v1与乒乓球击打乙的球拍的速度v2之比为()A.63B. 2 C.22D.333、如图所示,某同学在距离篮筐一定距离的地方起跳投篮,篮球在A点出手时与水平方向成60°角,速度大小为v0,在C点入框时速度与水平方向成45 角。

抛体运动答题策略与解题方法(含经典例题,超详!)

抛体运动答题策略与解题方法(含经典例题,超详!)

抛体运动专题审稿:李井军责编:郭金娟目标认知学习目标1、理解抛体运动的特点,掌握匀变速曲线运动的处理方法;2、理解平抛运动的性质,掌握平抛运动规律;3、能将匀变速直线运动的规律、运动合成与分解的方法,顺利的迁移到抛体运动中,以解决抛体(曲线)运动问题.学习重点和难点1、理解平抛运动的性质,掌握平抛运动规律;2、将匀变速直线运动的规律、运动合成与分解的方法,顺利的应用到抛体运动中,以解决抛体(曲线)运动问题.知识要点梳理知识点一、抛体运动的定义、性质及分类要点诠释:1、抛体运动的定义及性质(1)定义:以一定初速度抛出且只在重力作用下的运动叫抛体运动。

(2)理解:①物体只受重力,重力认为是恒力,方向竖直向下;②初速度不为零,物体的初速度方向可以与重力的方向成任意角度;③抛体运动是一理想化模型,因为它忽略了实际运动中空气的阻力,也忽略了重力大小和方向的变化。

(3)性质:抛体运动是匀变速运动,因为它受到恒定的重力mg作用,其加速度是恒定的重力加速度g。

2、抛体运动的分类按初速度的方向抛体运动可以分为:竖直上抛:初速度v0竖直向上,与重力方向相反,物体做匀减速直线运动;竖直下抛:初速度v0竖直向下,与重力方向相同,物体做匀加速直线运动;斜上抛:初速度v0的方向与重力的方向成钝角,物体做匀变速曲线运动;斜下抛:初速度v0的方向与重力的方向成锐角,物体做匀变速曲线运动;平抛:初速度v0的方向与重力的方向成直角,即物体以水平速度抛出,物体做匀变速曲线运动;3、匀变速曲线运动的处理方法以解决问题方便为原则,建立合适的坐标系,将曲线运动分解为两个方向的匀变速直线运动或者分解为一个方向的匀速直线运动和另一个方向的匀变速直线运动加以解决。

知识点二:抛体运动需要解决的几个问题要点诠释:1、抛体的位置抛体运动位置的描写:除上抛和下抛运动,一般来说,抛体运动是平面曲线运动,任意时刻的位置要由两个坐标来描写,建立坐标系,弄清在两个方向上物体分别做什么运动,写出x、y两个方向上的位移时间关系,x=x(t) y=y(t) ,问题得到解决。

【学霸笔记】物理必修二5.2抛体运动

【学霸笔记】物理必修二5.2抛体运动

第二节 平抛运动 一、抛体运动 1、定义:以一定的速度将物体抛出,且只在重力作用下所做的运动。

2、条件:①初速度,②只受重力作用。

3、分类:直线 竖直上抛运动分类 竖直下抛运动平抛运动曲线 斜上抛运动斜抛运动 斜下抛运动4、说明:①斜抛运动可能是直线运动,也可能是曲线运动。

②斜抛运动一定是匀变速运动。

5、处理方法:化曲为直。

二、平抛运动的规律1.条件:①水平初速度,②只受重力作用。

.2.平抛运动规律方法:①以v 方向为x 轴,以a 方向为y 轴,建立直角坐标系。

X 轴:(v 0、a x =0)匀速直线运动Y 轴:(v y =0、a y =g )自由落体运动②平抛运动的速度:X 轴:v x =v 0Y 轴:v y =gt速度:v =v 20+v 2y =v 20+(gt )2.速度的方向为tan θ=v y v 0=gt v 0. ③平抛运动的位移:X 轴:x =v 0tY 轴:y =12gt 2 位移:s =x 2+y 2,位移的方向:tan α=y x =gt 2v 0④平抛运动的轨迹方程:X 轴:x =v 0tY 轴:y =12gt 2 轨迹方程:y=(g/2v 02)x 2结论:平抛运动的轨迹为抛物线,所有匀变速曲线运动的轨迹都为抛物线.三、平抛运动的常见结论1、平抛运动的轨迹为抛物线,所有轨迹为曲线的抛体运动的轨迹都为抛物线.2、平面上的平抛运动的决定关系:①平抛运动的运动时间t = 2y g取决于下落的高度,与初速度的大小无关. ②平抛运动的水平位移x =v 0t =v 02y g取决于下落的高度和初速度. ③平抛运动的速度v =v 20+v 2y =v 20+2gy 取决于下落的高和初速度.④平抛运动的位移s =x 2+y 2取决于下落的高度和初速度.3、平抛运动速度变化量: ①平抛运动在任意相等的相邻或不相邻时间内速度的变化量都是相等的。

②平抛运动的速度变化量的大小为Δv =g Δt ,方向竖直向下。

专题03 曲线运动、圆周运动、抛体运动(第03期)-2014年高考总复习物理选择题百题精练

专题03 曲线运动、圆周运动、抛体运动(第03期)-2014年高考总复习物理选择题百题精练

1.质点做曲线运动从A到B速率逐渐增加,如图所示,有四位同学用示意图表示A到B的轨迹及速度方向和加速度的方向,其中正确的是()2.一雨滴从足够高处竖直落下,下落一段时间后,突然遇到沿水平方向吹来的风,风速恒定.雨滴受到风力作用后,在较短时间内的运动轨迹如下图所示,其中可能正确的是()3.如图所示,一根轻杆(质量不计)的一端以O点为固定转轴,另一端固定一个小球,小球以O点为圆心在竖直平面内沿顺时针方向做匀速圆周运动。

当小球运动到图中位置时,轻杆对小球作用力的方向可能()A.沿F1的方向B.沿F2的方向C.沿F3的方向D.沿F4的方向4.(多选)如图所示,螺旋形光滑轨道竖直放置,P、Q为对应的轨道最高点,一个小球以一定速度沿轨道切线方向进入轨道,且能过轨道最高点P,则下列说法中不正确的是()A.轨道对小球做正功,小球的线速度v P>v Q B.轨道对小球不做功,小球的角速度ωP<ωQ C.小球的向心加速度a P>a Q D.轨道对小球的压力F P>F Q5.(多选)如图所示,轻杆长为3L,在杆的A、B两端分别固定质量均为m的球A和球B,杆上距球A为L处的点O装在光滑水平转动轴上,杆和球在竖直面内做匀速圆周运动,且杆对球A、B的最大约束力相同,则()A.B球在最低点较A球在最低点更易脱离轨道B.若B球在最低点和杆作用力为3mg,则A球在最高点受杆的拉力C.若某一周A球在最高点和B球在最高点受杆的力大小相等,则A球受杆的支持力、B球受杆的拉力D.若每一周做匀速圆周运动的角速度都增大、则同一周B球在最高点受杆的力一定大于A球在最高点受杆的力6.(多选)如图所示,在光滑水平面内建立直角坐标系xOy,一质点在该平面内O点受沿x正方向大小为F的力的作用从静止开始做匀加速直线运动,经过时间t质点运动到A点,A、O两点距离为a,在A点作用力突然变为沿y轴正方向,大小仍为F,再经时间t质点运动到B点,在B点作用力又变为大小等于4F、方向始终与速度方向垂直且在该平面内的变力,再经一段时间后质点运动到C点,此时速度方向沿x轴负方向,下列对运动过程的分析正确的是()A .A 、B 两点距离为a 2 B .C 点与x 轴的距离为a 224+ C .质点在B 点的速度方向与x 轴夹角为30°D .质点从B 点运动到C 点所用时间可能为t 1623π7.(多选)近年来的冬季,我国南方地区常发生冰雪灾害,持续的雨雪冰冻导致城区大面积停水断电,许多街道大树树枝被冰雪压断,给市民生活带来极大不便。

人教版高中物理必修二专题02 抛体运动【专项训练】(解析版)

人教版高中物理必修二专题02  抛体运动【专项训练】(解析版)

专题02 抛体运动考点1:曲线运动的速度、加速度1.如图所示的曲线为某同学抛出的铅球的运动轨迹(铅球视为质点),A、B、C为曲线上的三点,关于铅球在B点的速度方向,说法正确的是()A.为AB的方向B.为BD的方向C.为BC的方向D.为BE的方向【解析】物体做曲线运动的速度方向为运动轨迹上经过该点的切线方向,如题图中铅球实际沿ABC方向运动,故它在B点的速度方向应为切线BD的方向,B正确.故选B2.运动会上,铅球从运动员手中被斜向上推出后在空中飞行的过程中,若不计空气阻力,下列说法正确的是()A.铅球的加速度的大小和方向均不变B.铅球的加速度的大小不变,方向改变C.铅球运动是匀变速直线运动D.铅球的运动是非匀变速曲线运动【解析】铅球在空中仅受重力的作用,根据牛顿第二定律可知,其加速度为重力加速度,是定值,即铅球的加速度的大小和方向不变,故A正确,B错误;铅球运动过程中的加速度恒定,但加速度与速度方向不共线,因此铅球做匀变速曲线运动,故C、D均错误。

故选A3.关于曲线运动,下列说法中正确的是()A.做曲线运动的物体,在一段时间内运动的路程可能为零B.曲线运动一定是匀速运动C.在平衡力作用下,物体可以做曲线运动D.在恒力作用下,物体可以做曲线运动【解析】做曲线运动的物体,在一段时间内可能回到出发点,但路程不为零,位移可能为零,A错误;曲线运动的速度方向一定变化,所以一定是变速运动,B错误;由牛顿第一定律可知,在平衡力作用下,物体一定做匀速直线运动或处于静止状态,C错误;不论是否为恒力,只要物体受力方向与物体速度方向不共线,物体就做曲线运动,所以D正确.故选D4.若已知物体运动的初速度v0的方向及它受到的恒定的合力F的方向,如图所示.则可能的轨迹是()A B C D【解析】物体做曲线运动时,速度沿曲线的切线方向,合力方向和速度方向不共线,且指向曲线凹的一侧,则运动轨迹在合力与速度之间,且向合力的方向弯曲.故选B考点2:物体做曲线运动的条件1.汽车在水平公路上转弯,沿曲线由M向N行驶。

抛体运动知识点总结

抛体运动知识点总结

拋体运动知识点总结拋體運動的基本動作包括起跳、旋轉和落地。

運動員需要在短暫的時間內做出高度的起跳動作,然後完成多個旋轉動作,最終安全地著地。

這些動作需要運動員具備優秀的肌肉力量、平衡能力和協調能力,並且需要在極短的時間內做出反應。

因此,拋體運動是一項對運動員身體素質和技術要求都非常高的運動。

在體操拋體中,運動員會在槍手的幫助下進行起跳,然後完成多個旋轉動作,最終在軟墊上落地。

這項運動需要運動員具備優秀的柔韌性和協調能力,並且需要在空中完成多個動作。

因此,體操拋體是一項極具挑戰性的運動,需要運動員長期的訓練和精湛的技術。

在滑雪拋體中,運動員會利用滑雪板進行起跳,完成多個旋轉動作,最終安全地著地。

這項運動需要運動員具備良好的滑雪技術和極高的平衡能力,並且需要在高速下做出反應。

因此,滑雪拋體是一項極具危險性的運動,需要運動員具備強大的意志力和勇氣。

在飛輪拋體中,運動員會利用飛輪進行起跳,完成多個旋轉動作,最終安全地著地。

這項運動需要運動員具備優秀的肌肉力量和速度感,並且需要在高速下做出反應。

因此,飛輪拋體是一項極具挑戰性的運動,需要運動員具備良好的身體素質和極高的技術水平。

拋體運動是一項極富挑戰性的運動,需要運動員具備多方面的優秀素質,包括肌肉力量、柔韌性、平衡能力、協調能力、速度感和勇氣。

因此,拋體運動在世界各地都受到廣泛的關注和喜愛,並且成為了許多運動員進行訓練和比賽的項目之一。

拋體運動的危險性也不容忽視,運動員在訓練和比賽中都會面臨著很大的風險。

為了確保運動員的安全,各項拋體運動都有嚴格的訓練和比賽規則,並且需要運動員穿著合適的保護裝備。

此外,運動員在訓練和比賽中也需要具備良好的身體狀態和技術水平,才能夠克服各種困難和挑戰。

總的來說,拋體運動是一項極富挑戰性和危險性的運動,需要運動員具備多方面的優秀素質和技術水平。

只有在不斷的訓練和努力下,運動員才能夠在比賽中取得出色的成績,並且確保自己的安全。

专题03 曲线运动、圆周运动、抛体运动(第02期)-2014年高考总复习物理选择题百题精练

专题03 曲线运动、圆周运动、抛体运动(第02期)-2014年高考总复习物理选择题百题精练

1.距离河岸500 m处有一艘静止的船,船上的探照灯以1 r/min的转速水平转动。

若河岸看成直线,当光束与岸边成60°角时,光束沿岸边移动的速率为()A.52.3 m/s B.69.8 m/s C.666.7 m/s D.4 180 m/s2.(多选)一船在静水中的速度是8m/s,要渡过宽为180m、水流速度为6m/s的河流,则下列说法中正确的是()A.船在此河流中航行的最大速度为10m/s B.此船过河的最短时间是30sC.此船可以在对岸的任意位置靠岸D.此船可以垂直到达对岸3.(多选)如图所示,摩擦轮A和B通过中介轮C进行传动,A为主动轮,A的半径为20cm,B的半径为10cm,则A、B两轮边缘上的点()A.角速度之比为1∶2 B.向心加速度之比为1∶2 C.线速度之比为1∶2 D.线速度之比为1∶14.如图所示,某物体沿14光滑圆弧轨道由最高点滑到最低点过程中,物体的速率逐渐增大,则()A.物体的合力为零B.物体的合力大小不变,方向始终指向圆心OC.物体的合力就是向心力D.物体的合力方向始终与其运动方向不垂直(最低点除外)5.2013年6月11日,我国航天员聂海胜、张晓光和王亚平在“天宫一号”首次为青少年进行太空授课,开辟了我国太空教育的新篇章,在天宫一号里,长为L的细线一端固定,另一端系一个小球,拉直细线,让小球在B点以垂直于细线的速度v0开始做圆周运动,设卫星轨道处重力加速度为g,在运动的过程中,下列说法正确的是()A.小球做速率变化的圆周运动B.细线拉力的大小不断变化C.只要v0>0,小球都能通过A点D.只有v0≥gL5,小球才能通过A点6.(多选)“套圈圈”是小孩和大人都喜爱的一种游戏,游戏规则是:游戏者站在界外从手中水平抛出一个圆形圈圈,落下后套中前方的物体,所套即所得。

如图所示,小孩站在界外抛出圈圈并套取前方一物体,若大人也抛出圈圈并套取同一物体,则()A.大人站在小孩同样的位置,以小些的速度抛出圈圈B.大人站在小孩同样的位置,以大些的速度抛出圈圈C.大人退后并下蹲至与小孩等高,以大些的速度抛出圈圈D.大人退后并下蹲至与小孩等高,以小些的速度抛出圈圈7.(多选)如图所示,ab为竖直平面内的半圆环acb的水平直径,c为环上最低点,环半径为v沿ab方向抛出。

高考物理考前三个月:专题3-抛体运动与圆周运动(含答案)

高考物理考前三个月:专题3-抛体运动与圆周运动(含答案)

1.(·新课标全国Ⅰ·18)一带有乒乓球发射机的乒乓球台如图1所示.水平台面的长和宽分别为L 1和L 2,中间球网高度为h .发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h .不计空气的作用,重力加速度大小为g .若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( )图1A.L 12g6h <v <L 1g6hB.L 14gh <v < (4L 21+L 22)g6h C.L 12g 6h <v <12 (4L 21+L 22)g 6h D.L 14g h <v <12(4L 21+L 22)g 6h答案 D解析 发射机无论向哪个方向水平发射,乒乓球都做平抛运动.当速度v 最小时,球沿中线恰好过网,有: 3h -h =gt 212①L 12=v 1t 1② 联立①②得v 1=L 14g h当速度最大时,球斜向右侧台面两个角发射,有 (L 22)2+L 21=v 2t 2③ 3h =12gt 22④联立③④得v 2=12(4L 21+L 22)g 6h所以使乒乓球落到球网右侧台面上,v 的最大取值范围为L 14g h <v <12(4L 21+L 22)g6h,选项D 正确.2.(·浙江理综·19)如图2所示为赛车场的一个水平“U ”形弯道,转弯处为圆心在O 点的半圆,内外半径分别为r 和2r .一辆质量为m 的赛车通过AB 线经弯道到达A ′B ′线,有如图所示的①、②、③三条路线,其中路线③是以O ′为圆心的半圆,OO ′=r .赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max .选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则( )图2A .选择路线①,赛车经过的路程最短B .选择路线②,赛车的速率最小C .选择路线③,赛车所用时间最短D .①、②、③三条路线的圆弧上,赛车的向心加速度大小相等 答案 ACD解析 赛车经过路线①的路程s 1=πr +2r =(π+2)r ,路线②的路程s 2=2πr +2r =(2π+2)r ,路线③的路程s 3=2πr ,A 正确;根据F max =m v 2R ,可知R 越小,其不打滑的最大速率越小,所以路线①的最大速率最小,B 错误;三种路线对应的最大速率v 2=v 3=2v 1,则选择路线①所用时间t 1=(π+2)r v 1,路线②所用时间t 2=(2π+2)r 2v 1,路线③所用时间t 3=2πr2v 1,t 3最小,C 正确;由F max =ma ,可知三条路线对应的a 相等,D 正确.3.(·海南单科·14)如图3所示,位于竖直平面内的光滑轨道由四分之一圆弧ab 和抛物线bc 组成,圆弧半径Oa 水平,b 点为抛物线顶点.已知h =2 m ,s = 2 m .取重力加速度大小g =10 m/s 2.图3(1)一小环套在轨道上从a 点由静止滑下,当其在bc 段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径;(2)若环从b 点由静止因微小扰动而开始滑下,求环到达c 点时速度的水平分量的大小. 答案 (1)0.25 m (2)2103m/s解析 (1)小环在bc 段轨道运动时,与轨道之间无相互作用力,则说明下落到b 点时的速度水平,使小环做平抛运动的轨迹与轨道bc 重合,故有s =v b t ① h =12gt 2② 在ab 滑落过程中,根据动能定理可得mgR =12m v 2b ③联立三式可得R =s 24h=0.25 m(2)下滑过程中,初速度为零,只有重力做功,根据动能定理可得mgh =12m v 2c④因为小环滑到c 点时速度与竖直方向的夹角等于(1)问中做平抛运动过程中经过c 点时速度与竖直方向的夹角,设为θ,则根据平抛运动规律可知sin θ=v bv 2b +2gh⑤根据运动的合成与分解可得sin θ=v 水平v c ⑥联立①②④⑤⑥可得v 水平=2103m/s.1.题型特点抛体运动与圆周运动是高考热点之一.考查的知识点有:对平抛运动的理解及综合运用、运动的合成与分解思想方法的应用、竖直面内圆周运动的理解和应用.高考中单独考查曲线运动的知识点时,题型为选择题,将曲线运动与功和能、电场与磁场综合时题型为计算题.2.应考策略抓住处理问题的基本方法即运动的合成与分解,灵活掌握常见的曲线运动模型:平抛运动及类平抛运动、竖直面内的圆周运动及完成圆周运动的临界条件.考题一运动的合成与分解1.如图4所示,河水以相同的速度向右流动,落水者甲随水漂流,至b点时,救生员乙从O 点出发对甲实施救助,则救生员乙相对水的运动方向应为图中的()图4A.Oa方向B.Ob方向C.Oc方向D.Od方向答案 B解析人在水中相对于水游动的同时还要随着水一起相对地面向下游漂流,以水为参考系,落水者甲静止不动,救援者做匀速直线运动,则救援者直接沿着Ob方向即可对甲实施救助.2.如图5所示,在一端封闭的光滑细玻璃管中注满清水,水中放一红蜡块R(R视为质点).将玻璃管的开口端用胶塞塞紧后竖直倒置且与y轴重合,在R从坐标原点以速度v0=3 cm/s匀速上浮的同时,玻璃管沿x轴正向做初速度为零的匀加速直线运动,合速度的方向与y轴夹角为α.则红蜡块R的()图5A.分位移y与x成正比B.分位移y的平方与x成正比C.合速度v的大小与时间t成正比D .tan α与时间t 成正比 答案 BD解析 由题意可知,y 轴方向,y =v 0t .而x 轴方向,x =12at 2,联立可得:y 2=2v 20a x ,故A 错误,B 正确;x 轴方向,v x =at ,那么合速度的大小v =v 20+a 2t 2,则v 的大小与时间t 不成正比,故C 错误;tan α=at v 0=av 0t ,故D 正确.3.如图6所示,将质量为2m 的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m 的环,环套在竖直固定的光滑直杆上,光滑的轻小定滑轮与直杆的距离为d ,杆上的A 点与定滑轮等高,杆上的B 点在A 点下方距离为d 处.现将环从A 处由静止释放,不计一切摩擦阻力,下列说法正确的是( )图6A .环到达B 处时,重物上升的高度h =d2B .环到达B 处时,环与重物的速度大小相等C .环从A 到B ,环减少的机械能等于重物增加的机械能D .环能下降的最大高度为43d答案 CD解析 环到达B 处时,重物上升的高度为(2-1)d ,选项A 错误;环到达B 处时,重物的速度与环的速度大小关系为:v 物=v 环sin 45°,即环与重物的速度大小不相等,选项B 错误;根据机械能守恒定律,对环和重物组成的系统机械能守恒,则环从A 到B ,环减少的机械能等于重物增加的机械能,选项C 正确;设环能下降的最大距离为H ,则 对环和重物组成的系统,根据机械能守恒定律可得:mgH =2mg (H 2+d 2-d ),解得H =43d ,选项D 正确.1.合运动与分运动的关系:(1)独立性:两个分运动可能共线、可能互成角度.两个分运动各自独立,互不干扰. (2)等效性:两个分运动的规律、位移、速度、加速度叠加起来与合运动的规律、位移、速度、加速度效果相同.(3)等时性:各个分运动及其合运动总是同时发生,同时结束,经历的时间相等. (4)合运动一定是物体的实际运动.物体实际发生的运动就是物体相对地面发生的运动,或者说是相对于地面上的观察者所发生的运动.2.判断以下说法的对错.(1)曲线运动一定是变速运动.( √ ) (2)变速运动一定是曲线运动.( × )(3)做曲线运动的物体所受的合外力一定是变力.( × )考题二 平抛(类平抛)运动的规律4.如图7所示,A 、B 两点在同一条竖直线上,A 点离地面的高度为2.5h .B 点离地面的高度为2h .将两个小球分别从A 、B 两点水平抛出,它们在P 点相遇,P 点离地面的高度为h .已知重力加速度为g ,则( )图7A .两个小球一定同时抛出B .两个小球抛出的时间间隔为(3-2)h gC .小球A 、B 抛出的初速度之比v A v B =32 D .小球A 、B 抛出的初速度之比v Av B =23 答案 BD解析 平抛运动在竖直方向上做自由落体运动,由h =12gt 2,得t =2hg,由于A 到P 的竖直高度较大,所以从A 点抛出的小球运动时间较长,应先抛出.故A 错误;由t =2h g,得两个小球抛出的时间间隔为Δt =t A -t B =2×1.5hg-2hg=(3-2)hg .故B 正确;由x =v 0t 得v 0=xg 2h ,x 相等,则小球A 、B 抛出的初速度之比v A v B= h B h A= h 1.5h=23,故C 错误,D 正确.5.在水平地面上的O 点同时将甲、乙两块小石头斜向上抛出,甲、乙在同一竖直面内运动,其轨迹如图8所示,A 点是两轨迹在空中的交点,甲、乙运动的最大高度相等.若不计空气阻力,则下列判断正确的是( )图8A .甲先到达最大高度处B .乙先到达最大高度处C .乙先到达A 点D .甲先到达水平地面 答案 C解析 斜抛可以分解为水平匀速运动和竖直匀变速运动,由于甲、乙运动的最大高度相等,由v 2=2gh ,则可知其竖直方向初速度相同,则甲、乙同时到达最高点,故A 、B 错误;由前面分析,结合图像可知,乙到达A 点时,甲在上升阶段,故C 正确;由于甲、乙竖直方向运动一致,故会同时到达地面,故D 错误.6.如图9,斜面与水平面之间的夹角为45°,在斜面底端A 点正上方高度为10 m 处的O 点,以5 m/s 的速度水平抛出一个小球,则飞行一段时间后撞在斜面上时速度与水平方向夹角的正切值为(g =10 m/s 2)( )图9A .2B .0.5C .1 D. 2答案 A解析 如图所示,由三角形的边角关系可知, AQ =PQ所以在竖直方向上有, OQ +AQ =10 m所以有:v 0t +12gt 2=10 m ,解得:t =1 s. v y =gt =10 m/s 所以tan θ=v yv 0=21.平抛运动规律以抛出点为坐标原点,水平初速度v 0方向为x 轴正方向,竖直向下的方向为y 轴正方向,建立如图10所示的坐标系,则平抛运动规律如下.图10(1)水平方向:v x =v 0 x =v 0t (2)竖直方向:v y =gt y =12gt 2(3)合运动:合速度:v t =v 2x +v 2y =v 20+g 2t 2合位移:s =x 2+y 2合速度与水平方向夹角的正切值tan α=v y v 0=gtv 0合位移与水平方向夹角的正切值tan θ=y x =gt2v 02.平抛运动的两个重要推论推论Ⅰ:做平抛(或类平抛)运动的物体在任一时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移方向与水平方向的夹角为θ,则tan α=2tan θ.推论Ⅱ:做平抛(或类平抛)运动的物体,任意时刻的瞬时速度方向的反向延长线一定通过此时水平位移的中点.考题三 圆周运动问题的分析7.如图11所示,轻杆长3L ,在杆两端分别固定质量均为m 的球A 和B ,光滑水平转轴穿过杆上距球A 为L 处的O 点,外界给系统一定能量后,杆和球在竖直平面内转动,球B 运动到最高点时,杆对球B 恰好无作用力.忽略空气阻力.则球B 在最高点时( )图11A .球B 的速度为零 B .球A 的速度大小为2gLC .水平转轴对杆的作用力为1.5mgD .水平转轴对杆的作用力为2.5mg 答案 C解析 球B 运动到最高点时,杆对球B 恰好无作用力,即重力恰好提供向心力,有mg =mv 22L 解得v =2gL ,故A 错误;由于A 、B 两球的角速度相等,则球A 的速度大小v ′=2gL2,故B 错误;球B 到最高点时,对杆无弹力,此时球A 受重力和拉力的合力提供向心力,有F -mg =m v ′2L解得:F =1.5mg ,故C 正确,D 错误.8.如图12所示,质量为m 的竖直光滑圆环A 的半径为r ,竖直固定在质量为m 的木板B 上,木板B 的两侧各有一竖直挡板固定在地面上,使木板不能左右运动.在环的最低点静置一质量为m 的小球C .现给小球一水平向右的瞬时速度v 0,小球会在环内侧做圆周运动.为保证小球能通过环的最高点,且不会使木板离开地面,则初速度v 0必须满足( )图12A.3gr ≤v 0≤5grB.gr ≤v 0≤3grC.7gr ≤v 0≤3grD.5gr ≤v 0≤7gr答案 D解析 在最高点,速度最小时有:mg =m v 21r解得:v 1=gr .从最高点到最低点的过程中,机械能守恒,设最低点的速度为v 1′,根据机械能守恒定律,有: 2mgr +12mv 21=12mv 1′2解得v 1′=5gr . 要使木板不会在竖直方向上跳起,球对环的压力最大为:F =mg +mg =2mg 从最高点到最低点的过程中,机械能守恒,设此时最低点的速度为v 2′, 在最高点,速度最大时有:mg +2mg =m v 22r 解得:v 2=3gr .根据机械能守恒定律有:2mgr +12mv 22=12mv 2′2解得:v 2′=7gr .所以保证小球能通过环的最高点,且不会使木板在竖直方向上跳起,在最低点的速度范围为:5gr ≤v ≤7gr .9.如图13所示,光滑杆AB 长为L ,B 端固定一根劲度系数为k 、原长为l 0的轻弹簧,质量为m 的小球套在光滑杆上并与弹簧的上端连接.OO ′为过B 点的竖直轴,杆与水平面间的夹角始终为θ.图13(1)杆保持静止状态,让小球从弹簧的原长位置静止释放,求小球释放瞬间的加速度大小a 及小球速度最大时弹簧的压缩量Δl 1;(2)当球随杆一起绕OO ′轴匀速转动时,弹簧伸长量为Δl 2,求匀速转动的角速度ω; (3)若θ=30°,移去弹簧,当杆绕OO ′轴以角速度ω0=gL匀速转动时,小球恰好在杆上某一位置随杆在水平面内匀速转动,球受轻微扰动后沿杆向上滑动,到最高点A 时球沿杆方向的速度大小为v 0,求小球从开始滑动到离开杆过程中,杆对球所做的功W . 答案 见解析解析 (1)小球从弹簧的原长位置静止释放时,根据牛顿第二定律有 mg sin θ=ma 解得a =g sin θ 小球速度最大时其加速度为零,则 k Δl 1=mg sin θ 解得Δl 1=mg sin θk(2)设弹簧伸长Δl 2时,球受到杆的支持力为N ,水平方向上有N sin θ+k Δl 2cos θ=mω2(l 0+Δl 2)cos θ竖直方向上有N cos θ-k Δl 2sin θ-mg =0 解得ω=mg sin θ+k Δl 2ml 0+Δl 2cos 2θ(3)当杆绕OO ′轴以角速度ω0匀速转动时,设小球距离B 点L 0, 此时有mg tan θ=mω20L 0cos θ 解得L 0=2L 3此时小球的动能E k0=12m (ω0L 0cos θ)2小球在最高点A 离开杆瞬间的动能 E k A =12m [v 20+(ω0L cos θ)2]根据动能定理有W -mg (L -L 0)sin θ=E k A -E k0 解得W =38mgL +12mv 201.圆周运动主要分为水平面内的圆周运动(转盘上的物体、汽车拐弯、火车拐弯、圆锥摆等)和竖直平面内的圆周运动(绳模型、汽车过拱形桥、水流星、内轨道、轻杆模型、管道模型). 3.注意有些题目中有“恰能”、“刚好”、“正好”、“最大”、“最小”、“至多”、“至少”等字眼,明显表明题述的过程存在着临界点.考题四 抛体运动与圆周运动的综合10.如图14所示,小球沿水平面以初速度v 0通过O 点进入半径为R 的竖直半圆弧轨道,不计一切阻力,则( )图14A .球进入竖直半圆弧轨道后做匀速圆周运动B .若小球能通过半圆弧最高点P ,则球在P 点受力平衡C .若小球的初速度v 0=3gR ,则小球一定能通过P 点D .若小球恰能通过半圆弧最高点P ,则小球落地点到O 点的水平距离为2R 答案 CD解析 不计一切阻力,小球机械能守恒,随着高度增加,E k 减少,故做变速圆周运动A 错误;在最高点P 需要向心力,故受力不平衡,B 错误.恰好通过P 点,则有mg =mv 2PR得v P =gR , mg ·2R +12mv 2P =12mv 2得v =5gR <3gR ,故C 正确; 过P 点 x =v P ·t 2R =12gt 2得:x =gR ·2Rg=2R ,故D 正确. 11.如图15所示,参加某电视台娱乐节目的选手从较高的平台以v 0=8 m/s 的速度从A 点水平跃出后,沿B 点切线方向进入光滑圆弧轨道,沿轨道滑到C 点后离开轨道.已知A 、B 之间的竖直高度H =1.8 m ,圆弧轨道半径R =10 m ,选手质量m =50 kg ,不计空气阻力,g =10 m/s 2,求:图15(1)选手从A 点运动到B 点的时间及到达B 点的速度; (2)选手到达C 点时对轨道的压力.答案 (1)0.6 s 10 m/s ,与水平方向的夹角为37° (2)1 200 N ,方向竖直向下 解析 (1)选手离开平台后做平抛运动,在竖直方向H =12gt 2解得:t =2Hg=0.6 s 在竖直方向 v y =gt =6 m/s 选手到达B 点速度为v B =v 20+v 2y =10 m/s与水平方向的夹角为θ,则tan θ=v yv 0=0.75,则θ=37°(2)从B 点到C 点:mgR (1-cos θ)=12mv 2C -12mv 2B 在C 点:N C -mg =m v 2C RN C =1 200 N由牛顿第三定律得,选手对轨道的压力 N C ′=N C =1 200 N ,方向竖直向下曲线运动的综合题往往涉及圆周运动、平抛运动等多个运动过程,常结合功能关系进行求解,解答时可从以下两点进行突破: 1.分析临界点对于物体在临界点相关的多个物理量,需要区分哪些物理量能够突变,哪些物理量不能突变,而不能突变的物理量(一般指线速度)往往是解决问题的突破口. 2.分析每个运动过程的运动性质对于物体参与的多个运动过程,要仔细分析每个运动过程做何种运动:(1)若为圆周运动,应明确是水平面的匀速圆周运动,还是竖直平面的变速圆周运动,机械能是否守恒.(2)若为抛体运动,应明确是平抛运动,还是类平抛运动,垂直于初速度方向的力是由哪个力、哪个力的分力或哪几个力提供的.专题综合练1.关于物体的运动,以下说法正确的是()A.物体做平抛运动时,加速度不变B.物体做匀速圆周运动时,加速度不变C.物体做曲线运动时,加速度一定改变D.物体做曲线运动时,速度一定变化答案AD解析物体做平抛运动时,物体只受到重力的作用,加速度为重力加速度,所以加速度是不变的,所以A正确;物体做匀速圆周运动时,要受到向心加速度的作用,向心加速度的大小不变,但是向心加速度的方向是在不断的变化的,所以加速度要变化,所以B错误;物体做曲线运动时,加速度不一定改变,比如平抛运动的加速度就为重力加速度,是不变的,所以C错误;物体既然做曲线运动,速度的方向一定在变化,所以速度一定变化,所以D正确.2.如图16所示,河水流动的速度为v且处处相同,河宽为a.在船下水点A的下游距离为b 处是瀑布.为了使小船渡河安全(不掉到瀑布里去)()图16A.小船船头垂直河岸渡河时间最短,最短时间为t=bv.速度最大,最大速度为v max=a vbB.小船轨迹沿y轴方向渡河位移最小.速度最大,最大速度为v max=a2+b2v bC .小船沿轨迹AB 运动位移最大、时间最长.速度最小,最小速度v min =a v bD .小船沿轨迹AB 运动位移最大、速度最小.则小船的最小速度v min =a va 2+b 2答案 D解析 小船船头垂直河岸渡河时间最短,最短时间为t =a v 船,不掉到瀑布里t =a v 船≤bv ,解得v 船≥a v b ,船最小速度为a vb ,A 错误;小船轨迹沿y 轴方向渡河应是时间最小,B 错误;小船沿轨迹AB 运动位移最大,但时间的长短取决于垂直河岸的速度,但有最小速度为a va 2+b 2,所以C 错误,而D 正确.3.如图17所示,水平光滑长杆上套有一个质量为m A 的小物块A ,细线跨过O 点的轻小光滑定滑轮一端连接A ,另一端悬挂质量为m B 的小物块B ,C 为O 点正下方杆上一点,定滑轮到杆的距离OC =h .开始时A 位于P 点,PO 与水平方向的夹角为30°.现将A 、B 同时由静止释放,则下列分析正确的是( )图17A .物块B 从释放到最低点的过程中,物块A 的动能不断增大B .物块A 由P 点出发第一次到达C 点的过程中,物块B 的机械能先增大后减小 C .PO 与水平方向的夹角为45°时,物块A 、B 速度大小关系是v A =22v BD .物块A 在运动过程中最大速度为 2m B ghm A答案 AD解析 物块B 从释放到最低点过程中,由机械能守恒可知,物块B 的机械能不断减小,则物块A 的动能不断增大,故A 正确;物块A 由P 点出发第一次到达C 点过程中,物块B 动能先增大后减小,而其机械能不断减小,故B 错误;PO 与水平方向的夹角为45°时,有:v A cos 45°=v B ,则:v A =2v B ,故C 错误;B 的机械能最小时,即为A 到达C 点,此时A 的速度最大,此时物块B 下落高度为h ,由机械能守恒定律得:12m A v 2A =m B gh ,解得:v A =2m B ghm A,故D 正确.4.如图18所示,从倾角为θ的足够长的斜面顶端P 以速度v 0抛出一个小球,落在斜面上某处Q 点,小球落在斜面上的速度与斜面的夹角为α,若把初速度变为2v 0,小球仍落在斜面上,则以下说法正确的是( )图18A .夹角α将变大B .夹角α与初速度大小无关C .小球在空中的运动时间不变D .PQ 间距是原来间距的3倍 答案 B解析 根据tan θ=12gt 2v 0t =gt 2v 0得,小球在空中运动的时间t =2v 0tan θg ,因为初速度变为原来的2倍,则小球在空中运动的时间变为原来的2倍.故C 错误.速度与水平方向的夹角的正切值tan β=gtv 0=2tan θ,因为θ不变,则速度与水平方向的夹角不变,可知α不变,与初速度无关,故A 错误,B 正确.PQ 的间距s =x cos θ=v 0t cos θ=2v 20tan θg cos θ,初速度变为原来的2倍,则PQ 的间距变为原来的4倍,故D 错误.5.如图19所示,水平地面附近,小球B 以初速度v 斜向上瞄准另一小球A 射出,恰巧在B 球射出的同时,A 球由静止开始下落,不计空气阻力.则两球在空中运动的过程中( )图19A .A 做匀变速直线运动,B 做变加速曲线运动 B .相同时间内B 的速度变化一定比A 的速度变化大C .两球的动能都随离地竖直高度均匀变化D .A 、B 两球一定会相碰 答案 C解析 A 球做的是自由落体运动,是匀变速直线运动,B球做的是斜抛运动,是匀变速曲线运动,故A 错误.根据公式Δv =a Δt ,由于A 和B 的加速度都是重力加速度,所以相同时间内A 的速度变化等于B 的速度变化,故B 错误.根据动能定理得:W G =ΔE k ,重力做功随离地竖直高度均匀变化,所以A 、B 两球的动能都随离地竖直高度均匀变化,故C 正确.A 球做的是自由落体运动,B 球做的是斜抛运动,在水平方向匀速运动,在竖直方向匀减速运动,由于不清楚具体的距离关系,所以A 、B 两球可能在空中不相碰,故D 错误.6.如图20所示,一个质量为0.4 kg 的小物块从高h =0.05 m 的坡面顶端由静止释放,滑到水平台上,滑行一段距离后,从边缘O 点水平飞出,击中平台右下侧挡板上的P 点.现以O 为原点在竖直面内建立如图所示的平面直角坐标系,挡板的形状满足方程y =x 2-6(单位:m),不计一切摩擦和空气阻力,g =10 m/s 2,则下列说法正确的是( )图20A .小物块从水平台上O 点飞出的速度大小为1 m/sB .小物块从O 点运动到P 点的时间为1 sC .小物块刚到P 点时速度方向与水平方向夹角的正切值等于5D .小物块刚到P 点时速度的大小为10 m/s 答案 AB解析 从坡面顶端到O 点,由机械能守恒,mgh =12m v 2,v =1 m/s ,故A 正确;O 到P 平抛,水平方向x =v t ,竖直方向h ′=12gt 2;由数学知识y =x 2-6,-h ′=x 2-6,即-12gt 2=(v t )2-6,解得t =1 s ,则B 正确;tan α=gtv =10,故C 错误;到P 的速度v P =v 2+(gt )2=101 m/s ,D 错误.7.如图21所示,一根质量不计的轻杆绕水平固定转轴O 顺时针匀速转动,另一端固定有一个质量为m 的小球,当小球运动到图中位置时,轻杆对小球作用力的方向可能( )图21A.沿F1的方向B.沿F2的方向C.沿F3的方向D.沿F4的方向答案 C解析因小球做匀速圆周运动,故小球所受的合力方向指向圆心,小球受竖直向下的重力作用,故轻杆对小球作用力的方向与重力的合力方向指向圆心,故杆对小球作用力的方向可能在F3的方向,故选C.8.如图22所示,粗糙水平圆盘上,质量相等的A、B两物块叠放在一起,随圆盘一起做匀速圆周运动,则下列说法正确的是()图22A.B的向心力是A的向心力的2倍B.盘对B的摩擦力是B对A的摩擦力的2倍C.A、B都有沿半径向外滑动的趋势D.若B先滑动,则B与A间的动摩擦因数μA小于盘与B间的动摩擦因数μB答案BC解析因为A、B两物体的角速度大小相等,根据F n=mrω2,因为两物块的角速度大小相等,转动半径相等,质量相等,则向心力相等,故A错误;对A、B整体分析,f B=2mrω2,对A 分析,有:f A=mrω2,知盘对B的摩擦力是B对A的摩擦力的2倍,故B正确;A所受的静摩擦力方向指向圆心,可知A有沿半径向外滑动的趋势,B受到盘的静摩擦力方向指向圆心,,有沿半径向外滑动的趋势,故C正确;对A、B整体分析,μB×2mg=2mrω2B,解得ωB=μB gr,因为B先滑动,可知B先达到临界角速度,可对A分析,μA mg=mrω2A,解得ωA=μA gr知B的临界角速度较小,即μB<μA,故D错误.9.如图23所示,水平的粗糙轨道与竖直的光滑圆形轨道相连,圆形轨道间不相互重叠,即小球离开圆形轨道后可继续沿水平轨道运动.圆形轨道半径R=0.2 m,右侧水平轨道BC长为L=4 m,C点右侧有一壕沟,C、D两点的竖直高度h=1 m,水平距离s=2 m,小球与水平轨道间的动摩擦因数μ=0.2,重力加速度g=10 m/s2.小球从圆形轨道最低点B以某一水平向右的初速度出发,进入圆形轨道.试求:图23(1)若小球通过圆形轨道最高点A 时给轨道的压力大小恰为小球的重力大小,求小球在B 点的初速度多大?(2)若小球从B 点向右出发,在以后的运动过程中,小球既不脱离圆形轨道,又不掉进壕沟,求小球在B 点的初速度大小的范围.答案 (1)2 3 m/s (2)v B ≤2 m/s 或10 m /s≤v B ≤4 m/s 或v B ≥6 m/s 解析 (1)小球在最高点A 处,根据牛顿第三定律可知轨道对小球的压力 N =N ′=mg ①根据牛顿第二定律N +mg =mv 2A R②从B 到A 过程,由动能定理可得-mg ·(2R )=12mv 2A -12mv 20③ 代入数据可解得v 0=2 3 m/s ④(2)情况一:若小球恰好停在C 处,对全程进行研究,则有: -μmgL =0-12mv 21⑤得v 1=4 m/s ⑥ 若小球恰好过最高点A mg =mv A ′2R⑦从B 到A 过程-mg ·(2R )=12mv A ′2-12mv 22⑧得v 2=10 m/s ⑨所以当10 m/s≤v B ≤4 m/s 时,小球停在BC 间.⑩情况二:若小球恰能越过壕沟,则有-μmgL =12mv 2C -12mv 23⑪ h =12gt 2⑪ s =v C t ⑬得v 3=6 m/s ⑭所以当v B ≥6 m/s 时,小球越过壕沟.⑮情况三:若小球刚好能运动到与圆心等高位置,则有 -mgR =0-12mv 24⑯得v 4=2 m/s ⑰所以当v B ≤2 m/s 时,小球又沿圆轨道返回.⑱综上,小球在B 点的初速度大小的范围是v B ≤2 m/s 或10 m/s≤v B ≤4 m/s 或v B ≥6 m/s 10.如图24所示,半径R =2.5 m 的光滑半圆轨道ABC 与倾角θ=37°的粗糙斜面轨道DC 相切于C 点,半圆轨道的直径AC 与斜面垂直.质量m =1 kg 的小球从A 点左上方距A 点高h =0.45 m 的P 点以某一速度v 0水平抛出,刚好与半圆轨道的A 点相切进入半圆轨道内侧,之后经半圆轨道沿斜面刚好滑到与抛出点等高的D 点.已知当地的重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,不计空气阻力,求:图24(1)小球从P 点抛出时的速度大小v 0;(2)小球从C 点运动到D 点过程中摩擦力做的功W ; (3)小球从D 点返回经过轨道最低点B 的压力大小. 答案 (1)4 m/s (2)-8 J (3)56 N 解析 (1)在A 点有: v 2y =2gh ① v yv 0=tan θ② 由①②式解得:v 0=4 m/s ③(2)整个运动过程中,重力做功为零,根据动能定理得知:小球沿斜面上滑过程中克服摩擦力做的功等于小球做平抛运动的初动能: W =-12mv 20=-8 J。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

姓名: __________ 打卡时间: __________
1.知道分析一般抛体运动的方法——运动的合成与分解。

2.熟练掌握平抛运动的规律,并能自行推倒出推论。

熟练运用推论、理解类平抛运动。

1.
做平抛(或类平抛)运动的物体在任一时刻任一位置处,设其末速度方向与水平方向的夹角为θ,位移与水平方向的夹角为φ,则tan θ=2tan φ。

证明:如图甲所示,由平抛运动规律得tan θ=v ⊥v 0=gt v 0,tan φ=y x =12·gt 2v 0t =gt 2v 0,所以tan θ=2
tan φ。

2.做平抛(或类平抛)运动的物体任意时刻的瞬时速度的反向延长线一定通过此时水平位移的中点。

如图乙中所示B 点。

例1 如图所示,在水平面上有一个半圆形的坑,在坑的左边沿
有一个物块以一定的初速度v 0沿水平方向飞出,物块落到坑上时其
速度方向与初速度方向的夹角为θ,当v 0从很小值(趋近于0)逐渐增
大时,对应的θ角的变化情况是 ( )
专题三:平抛运动(二)
平抛运动两个重要推论及其应用
A .一直变大
B .一直变小
C .先变大后变小
D .先变小后变大
解析 根据平抛运动的一个重要推论:做平抛(或类平抛)运
动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平
位移的中点,则对物块运动进行分析,如图所示,则可知随着
v 0的增大,物块落到坑上时其速度方向与初速度方向的夹角θ
一直变小。

本题的正确答案为B 。

1. 如图所示,薄半球壳ACB 的水平直径为AB ,C 为
最低点,半径为R 。

一个小球从A 点以速度v 0水平抛出,不
计空气阻力。

则下列判断正确的是 ( )
A .只要v 0足够大,小球可以击中
B 点
B .v 0取值不同时,小球落在球壳上的速度方向和水平方向之间的夹角可以相同
C .v 0取值适当,可以使小球垂直撞击到半球壳上
D .无论v 0取何值,小球都不可能垂直撞击到半球壳上
有时物体的运动与平抛运动很相似,也是在某方向物体做匀速直线运动,另一垂直方向做初速度为零的匀加速直线运动,通常此类运动我们称之为类平抛运动。

1.类平抛运动的受力特点
物体所受合力为恒力,且与初速度的方向垂直。

2.类平抛运动的运动特点在初速度v 0方向做匀速直线运动,在合外力方向做初速度为零的匀加速直线运动,加速度a =F
m 。

3.类平抛运动的求解方法
(1)常规分解法:将类平抛运动分解为沿初速度方向的匀速直线运动和垂直于初速度方向(即沿合力的方向)的匀加速直线运动,两分运动彼此独立,互不影响,且与合运动具有等时性。

(2)特殊分解法:对于有些问题,可以过抛出点建立适当的直角坐标系,将加速度分解为a x 、a y ,初速度v 0分解为v x 、v y ,然后分别在x 、y 方向列方程求解。

类平抛问题
4.类平抛运动问题的求解思路
(1)根据物体受力特点和运动特点判断该问题属于类平抛运动问题。

(2)求出物体运动的加速度。

(3)根据具体问题选择用常规分解法还是特殊分解法求解。

注意 类平抛运动是对平抛运动研究方法的迁移,是高考命题的热点问题。

例2 在光滑的水平面内,一质量m =1 kg 的质点以速度v 0=10
m/s 沿x 轴正方向运动,经过原点后受一沿y 轴正方向的水平恒力F =
15 N 作用,直线OA 与x 轴成α=37°角,如图所示曲线为质点的运动
轨迹图(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8)。

(1)如果质点的运动轨迹与直线OA 相交于P 点,求质点从O 点到P 点所经历
的时间以及P 点的坐标;
(2)求质点经过P 点的速度大小。

解析 (1)质点在x 轴方向上不受外力作用做匀速直线运动,在y 轴方向上受恒力F 作用做匀加速直线运动。

由牛顿第二定律得:a =F m =151m/s 2=15 m/s 2。

设质点从O 点到P 点经历的时间为t ,P 点坐标为(x P ,y P ),则x P =v 0t ,y P =12at 2, 又tan α=y
p x p 联立解得:t =1 s ,x P =10 m ,y P =7.5 m 。

即P 点坐标为(10 m ,7.5 m)
(2)质点经过P 点时沿y 轴方向的速度v y =at =15 m/s
故质点经过P 点的速度大小v P =√v 02+v y
2=5√13m/s 。

2.A 、B 两个质点以相同的水平速度v 0抛出,A 在竖直平面
内运动,落地点为P 1。

B 沿光滑斜面运动,落地点为P 2,不计
阻力,如图所示,下列比较P 1、P 2在x 轴方向上距抛出点远近
关系的判断正确的是 ( )
A .P 1较远
B .P 2较远
C.P
1、P
2
等远D.A、B两项都有可能
配点训练1 答案D
解析小球做平抛运动,竖直方向有位移,v
0再大也不可能击中B点;v
不同,小球会落
在半球壳内不同点上,落点和A点的连线与AB的夹角φ不同,由推论tan θ=2 tan φ可知,小球落在球壳的不同位置上时的速度方向和水平方向之间的夹角θ也不相同,若小球垂直撞击到半球壳上,则其速度反向延长线一定经过半球壳的球心,且该反向延长线与AB的交点为水平位移的中点,而这是不可能的。

配点训练2
答案 B
解析A质点水平抛出后,只受重力,做平抛运动,在竖直方向有h=1
2
 g t12。

B质点水平抛出后,受重力和支持力,在斜面平面内所受合力为mg sin θ,大小恒定且与初速度方向垂
直,所以B质点做类平抛运动,在沿斜面向下方向上有:ℎ
sinθ=1
2
g sin θ·t22。

解得t
2
>t
1
,由于二
者在水平方向上都做速度为v
0的匀速运动,显然x
2
>x
1。

专题三:参考答案。

相关文档
最新文档