每日微题型 集合06集合的分类有限集和无限集

合集下载

集合知识点汇总与练习试题

集合知识点汇总与练习试题

1.1 集合1.1.1 集合的含义与表示一集合与元素1.集合是由元素组成的集合通常用大写字母A、B、C,…表示,元素常用小写字母a、b、c,…表示。

2.集合中元素的属性(1)确定性:一个元素要么属于这个集合,要么不属于这个集合,绝无模棱两可的情况。

(2)互异性:集合中的元素是互不相同的个体,相同的元素只能出现一次。

(3)无序性:集合中的元素在描述时没有固定的先后顺序。

3.元素与集合的关系(1)元素a是集合A中的元素,记做a∈A,读作“a属于集合A”;(2)元素a不是集合A中的元素,记做a∉A,读作“a不属于集合A”。

4.集合相等如果构成两个集合的元素一样,就称这两个集合相等,与元素的排列顺序无关。

二集合的分类1.有限集:集合中元素的个数是可数的,只含有一个元素的集合叫单元素集合;2.无限集:集合中元素的个数是不可数的;3.空集:不含有任何元素的集合,记做∅.三集合的表示方法1.常用数集(1)自然数集:又称为非负整数集,记做N;(2)正整数集:自然数集内排除0的集合,记做N+或N※;(3)整数集:全体整数的集合,记做Z(4)有理数集:全体有理数的集合,记做Q(5)实数集:全体实数的集合,记做R3.集合的表示方法(1)自然语言法:用文字叙述的形式描述集合。

如大于等于2且小于等于8的偶数构成的集合。

(2)列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法,一般适用于元素个数不多的有限集,简单、明了,能够一目了然地知道集合中的元素是什么。

注意事项:①元素间用逗号隔开;②元素不能重复;③元素之间不用考虑先后顺序;④元素较多且有规律的集合的表示:{0,1,2,3,…,100}表示不大于100的自然数构成的集合。

(3)描述法:用集合所含元素的共同特征表示集合的方法,一般形式是{x∈I | p(x)}.注意事项:①写清楚该集合中元素的代号;②说明该集合中元素的性质;③不能出现未被说明的字母;④多层描述时,应当准确使用“且”、“或”;⑤所有描述的内容都要写在集合符号内;⑥语句力求简明、准确。

(完整版)集合知识点点总结

(完整版)集合知识点点总结

集合概念一:集合有关概念1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。

2.一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。

3.集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。

例:世界上最高的山、中国古代四大美女、教室里面所有的人……(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。

例:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合例:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

1)列举法:将集合中的元素一一列举出来 {a,b,c……}2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

{x∈R| x-3>2} ,{x| x-3>2}①语言描述法:例:{不是直角三角形的三角形}4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合例:{x|x2=-5}5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A(2)元素不在集合里,则元素不属于集合,即:a A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集Z有理数集Q实数集R二、集合间的基本关系1.“包含”关系—子集(1)定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有A⊆(或B⊇A)包含关系,称集合A是集合B的子集。

记作:BA⊆有两种可能(1)A是B的一部分,;注意:B(2)A与B是同一集合。

集合知识点总结

集合知识点总结

第一章 集合 集合知识点总结: 一、集合1、集合的概念集合:一般地,把一些能够确定的不同的对象看出一个整体,就说这个整体是由这些对象的全体构成的集合(或集),通常用大写英文字母,,...A B C 表示。

集合的元素:构成集合的每个对象叫做这个集合的元素(或成员),通常用小写写英文字母,,...a b c 表示。

2、元素与集合的属于关系:∈∉、若a 是集合A 的元素,就说a 属于A ,记作:a A ∈,读作“a 属于A ”若a 不是集合A 的元素,就说a 不属于A ,记作:a A ∉,读作“a 不属于A ”。

3、空集∅:不含任何元素的集合叫做空集,记作∅。

4、集合元素的基本性质:确定性、互异性、无序性。

5、集合的分类:有限集:含有有限个元素的集合;无限集:含有无限个元素的集合。

6、常用数集的表示------------牢记,熟记自然数集(非负整数集)N ;正整数集N +或N *;整数集Z ;有理数集Q ;实数集R ;正实数集R +,均是无限集。

二、集合的表示法1、列举法:适用于有限集,且元素个数不多,或者是无限集,元素个数较多,但呈现一定规律,列出几个元素作为代表,其余用“⋅⋅⋅”代替。

2、描述法:元素的特征性质:如果在集合I 中,属于集合A 的任意一个元素都具有性质()p x ,而不属于A 的元素都不具有性质()p x ,则()p x 叫做集合A 的一个特征性质。

()p x 是集合A 的一个特征性质,集合A 可以表示为(){}|x I p x ∈,它表示的集合A 为在集合I 中具有性质()p x 的所有元素构成的。

注意:若元素的范围为R 时,R ∈可以省略。

★经典例题:例一、现已知一个集合为{}21,,x x ,则实数x 满足的条件为 。

【1,1,0x ≠-】 解:由于元素的互易性,因此得到关系221;1;x x x x ≠≠≠,从而解得1,1,0x ≠-。

例二、用适当的符号填空:0 ∈ {}0;0 ∉ ∅;∅ ∈ {}∅;0 ∉ N +;{}0 ≠ ∅。

常见集合知识点总结

常见集合知识点总结

常见集合知识点总结在这篇文章中,我们将总结一些常见的集合知识点,包括集合的基本概念、运算、特殊的集合以及集合的应用等方面,希望可以帮助读者加深对集合理论的理解。

一、基本概念1.元素:集合中的个体称为元素,通常用小写字母表示。

例如,集合A={1,2,3}中的元素有1、2、3;集合B={a,b,c}中的元素有a、b、c。

2.空集:不包含任何元素的集合称为空集,通常用符号∅表示。

3.子集:若集合A的每个元素都是集合B的元素,则A是B的子集。

记作A⊆B或B⊇A。

4.集合的相等:若A⊆B且B⊆A,则称A和B相等,记作A=B。

5.万能集和全集:包含所有可能元素的集合称为万能集或全集。

通常用符号U表示。

6.交集与并集:设A和B为两个集合,A与B的交集是由A和B的共同元素组成的集合,记作A∩B;A与B的并集是由A和B中的所有元素组成的集合,记作A∪B。

二、集合的运算1.求交集:A和B的交集,记作A∩B,是由A和B中共同的元素组成的集合。

例如,设A={1,2,3},B={3,4,5},则A∩B={3}。

2.求并集:A和B的并集,记作A∪B,是由A和B中所有的元素组成的集合(去除重复元素)。

例如,设A={1,2,3},B={3,4,5},则A∪B={1,2,3,4,5}。

3.求差集:A和B的差集,记作A-B,是由A中属于B的元素去掉后的剩余元素组成的集合。

例如,设A={1,2,3},B={3,4,5},则A-B={1,2}。

4.求补集:集合A相对于全集U的补集,记作A',是由全集U中不属于A的元素组成的集合。

例如,设U={1,2,3,4,5},A={1,2,3},则A'={4,5}。

5.笛卡尔积:设A和B为两个集合,A和B的笛卡尔积,记作A×B,是由A中的每个元素与B中的每个元素所组成的有序对所构成的集合。

三、特殊的集合1.自然数集:由0、1、2、3、……所组成的集合,记作N。

2.整数集:由……,-3,-2,-1,0,1,2,3,……所组成的集合,记作Z。

2024年高考数学 高三大一轮复习专题01 集合

2024年高考数学 高三大一轮复习专题01 集合

专题01 集合【知识精讲】一、集合的基本概念 1.元素与集合的关系:a A a A∈⎧⎨∉⎩属于,记为不属于,记为.2.集合中元素的特征:即一个集合一旦3.集合的分类:有限集与无限集,特别地,我们把不含有任何元素的集合叫做空集,记作∅.4.常用数集及其记法:注意:实数集R 不能表示为{x |x 为所有实数}或{R },因为“{ }”包含“所有”“全体”的含义.5.集合的表示方法:自然语言、列举法、描述法、图示法. 二、集合间的基本关系或集合A ∅⊆,必记结论:(1)若集合A 中含有n 个元素,则有2n 个子集,有21n −个非空子集,有21n −个真子集,有22n −个非空真子集.(2)子集关系的传递性,即,A B B C A C ⊆⊆⇒⊆. 注意:空集是任何集合的子集,是任何非空集合的真子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解. 三、集合的基本运算 1.集合的基本运算{|B x x =|{B x x ={|UA x =2.集合运算的相关结论B A ⊆ B B ⊆ A A A = ∅=∅B A ⊇B B ⊇A A =A ∅=()UU A A =UU =∅ UU ∅=()U A A =∅()U A A U =3.必记结论(.)UUU A B A B A A B B A B A B ⊆⇔=⇔=⇔⊇=⇔∅【题型精讲】题型一 集合的基本概念【例1-1】设集合{}22,2,1A a a a =−+−,若4A ∈,则a 的值为( ).A .1−,2B .3−C .1−,3−,2D .3−,2【答案】D 【解析】 【分析】由集合中元素确定性得到:1a =−,2a =或3a =−,通过检验,排除掉1a =−. 【详解】由集合中元素的确定性知224a a −+=或14a −=.当224a a −+=时,1a =−或2a =;当14a −=时,3a =−.当1a =−时,{}2,4,2A =不满足集合中元素的互异性,故1a =−舍去; 当2a =时,{}2,4,1A =−满足集合中元素的互异性,故2a =满足要求; 当3a =−时,{}2,14,4A =满足集合中元素的互异性,故3a =−满足要求. 综上,2a =或3a =−. 故选:D .【例1-2】(多选题)设集合{}22,,Z M a a x y x y ==−∈,则下列是集合M 中的元素的有( ) A .4n ,Z n ∈ B .41n +,Z n ∈ C .42n +,Z n ∈ D .43n +,Z n ∈【答案】ABD 【解析】 【分析】分别对x ,y 取整数,1x n =+,1y n =−可判断A ;由21x n =+,2y n =可判断B ;令()()42n x y x y +=+−,通过验证不成立可判断C ;由22x n =+,21y n =+可判断D ,进而可得正确选项. 【详解】对于A :因为()()22411n n n =+−−,Z n ∈,1Z n +∈,1Z n −∈,所以4n M ,故选项A正确;对于B :因为()()2241212n n n +=+−,Z n ∈,21Z n +∈,2Z n ∈,所以41n M ,故选项B 正确;对于C :若()42Z n n M +∈∈,则存在x ,Z y ∈使得2242x y n ,则()()42n x y x y +=+−,易知x y +和x y −同奇或同偶,若x y +和x y −都是奇数,则()()x y x y +−为奇数,而42n +是偶数,矛盾;若x y +和x y −都是偶数,则()()x y x y +−能被4整除,而42n +不能被4整除,矛盾,所以42nM ,故选项C 不正确;对于D :()()22432221n n n +=+−+,22Z n +∈,21Z n +∈,所以43n M ,故选项D正确; 故选:ABD.【例1-3】集合*83A x NN x ⎧⎫=∈∈⎨⎬−⎩⎭,用列举法可以表示为A =_________. 【答案】{1,2}、{2,1} 【解析】【分析】根据集合元素属性特征进行求解即可. 【详解】 因为83N x*∈−,所以31,2,4,8−=x ,可得2,1,1,5=−−x ,因为x N ∈,所以1,2x =,集合{1,2}A =.故答案为:{1,2}【练习1-1】已知集合 {}20,,32A m m m =−+,且 2A ∈,则实数m 的值为( )A .3B .2C .0或3D .0或2或3【答案】A 【解析】 【分析】依题意可得2m =或2322m m −+=,求出方程的根,再代入集合中检验即可; 【详解】解:因为{}20,,32A m m m =−+,且2A ∈,所以2m =或2322m m −+=,解得2m =或0m =或3m =,当2m =时2320m m −+=,即集合A 不满足集合元素的互异性,故2m ≠,当0m =时集合A 不满足集合元素的互异性,故0m ≠,当3m =时{}0,3,2A =满足条件; 故选:A【练习1-2】已知集合{}220A x x x a =−+>,且1A ∉,则实数a 的所有取值构成的集合是________. 【答案】(],1−∞ 【解析】 【分析】根据集合与元素见的关系直接列不等式,进而得解. 【详解】由1A ∉,得21210a −⨯+≤, 解得1a ≤,故答案为:(],1−∞.【练习1-3】已知,x y 均为非零实数,则代数式xy x yx y xy++的值所组成的集合的元素个数是______. 【答案】2 【解析】 【分析】 分析题意知代数式xy x yx y xy++的值与,x y 的符号有关,按其符号的不同分3种情况讨论,分别求出代数式的值,即可得解. 【详解】根据题意分2种情况讨论: 当,x y 全部为负数时,xy 为正数,则1111xyx y x y xy++=−−+=−; 当,x y 全部为正数时,xy 为正数,则1113xy x y x y xy++=++=; 当,x y 一正一负时,xy 为负数,则1111xy x y x y xy++=−−=−; 综上可知,xy x yx y xy++的值为1−或3,即代数式的值所组成的集合的元素个数是2 故答案为:2题型二 集合的基本关系【例2-1】若集合1|(21),9A x x k k Z ⎧⎫==+∈⎨⎬⎩⎭,41|,99B x x k k Z ⎧⎫==±∈⎨⎬⎩⎭,则集合,A B 之间的关系为( ) A .A B B .B A C .A B = D .A B ≠【答案】C 【解析】【分析】根据子集的定义证得A B ⊆和B A ⊆,即可得出结论. 【详解】设任意1x A ∈,则1111(21),9x k k Z =+∈,当12,k n n Z =∈时1141(41)999x n n =+=+, 所以1x B ∈;当121,k n n Z =−∈时,1141(41)999x n n =−=−,所以1x B ∈.所以A B ⊆又设任意2x B ∈,则2222414(41),999x k k k Z =±=±∈ 因为22412(2)1k k +=+,22412(21)1k k −=−+, 且22k 表示所有的偶数,221k −表示所有的奇数.所以2241k k Z ±∈()与21()n n Z +∈都表示所有的奇数.所以2x A ∈. 所以B A ⊆故A B =. 故选:C.【例2-2】已知集合{}2230A x x x =−−=,{}20B x ax =−=,且B A ⊆,则实数a 的值为___________. 【答案】2a =−或23a =或0 【解析】 【分析】先求得集合A ,分情况讨论,0,a B ==∅满足题意;当0a ≠时,{}220B x ax a ⎧⎫=−==⎨⎬⎩⎭,因为B A ⊆,故得到21a =−或23a =,解出即可.【详解】解:已知集合{}{}22301,3A x x x =−−==−,{}20B x ax =−=,当0,a B ==∅,满足B A ⊆;当0a ≠时,{}220B x ax a ⎧⎫=−==⎨⎬⎩⎭,因为B A ⊆,故得到21a =−或23a=,解得2a =−或23a =;故答案为:2a =−或23a =或0.【例2-3】已知{}(){}22240,2110A xx x B x x a x a =+==+++−=∣∣. (1)若A 是B 的子集,求实数a 的值; (2)若B 是A 的子集,求实数a 的取值范围. 【答案】(1)1a =; (2)1a −或1a =. 【解析】 【分析】(1)由题得{}4,0B A ==−,解2Δ0402(1)401a a >⎧⎪−+=−+⎨⎪−⨯=−⎩即得解;(2)由题得B A ⊆,再对集合B 分三种情况讨论得解. (1)解:由题得{}4,0A =−.若A 是B 的子集,则{}4,0B A ==−,所以2Δ0402(1),1401a a a >⎧⎪−+=−+∴=⎨⎪−⨯=−⎩.(2)解:若B 是A 的子集,则B A ⊆.①若B 为空集,则()22Δ4(1)41880a a a =+−−=+<,解得1a <−; ②若B 为单元素集合,则()22Δ4(1)41880a a a =+−−=+=,解得1a =−. 将1a =−代入方程()222110x a x a +++−=,得20x =,即{}0,0x B ==,符合要求; ③若B 为双元素集合,{}4,0B A ==−,则1a =. 综上所述,1a −或1a =.【练习2-1】设集合18045,Z 2k M x x k ⎧⎫==⋅︒+︒∈⎨⎬⎩⎭,18045,Z 4kN x x k ⎧⎫==⋅︒+︒∈⎨⎬⎩⎭,则两集合间的关系是( ) A .MNB .M NC .N MD .M N ⋂=∅【答案】B 【解析】 【分析】变形(){}2145,Z M x x k k ==+⨯︒∈,(){}145,Z N x x k k =+⨯︒∈,分析比较即可得解. 【详解】由题意可(){}18045,Z 2145,Z 2kM x x k x x k k ⎧⎫==⋅︒+︒∈==+⨯︒∈⎨⎬⎩⎭即M 为45︒的奇数倍构成的集合,又(){}18045,Z 145,Z 4kN x x k x x k k ⎧⎫==⋅︒+︒∈==+⨯︒∈⎨⎬⎩⎭,即N 为45︒的整数倍构成的集合,M N ∴⊆,即M N 故选:B【练习2-2】已知集合{|4A x x =≥或}5x <−,{}|13B x a x a =+≤≤+,若B A ⊆,则实数a 的取值范围_________.【答案】{|8a a <−或}3a ≥ 【解析】 【分析】根据B A ⊆,利用数轴,列出不等式组,即可求出实数a 的取值范围. 【详解】用数轴表示两集合的位置关系,如上图所示,或要使B A ⊆,只需35a +<−或14a +≥,解得8a <−或3a ≥. 所以实数a 的取值范围{|8a a <−或}3a ≥. 故答案为:{|8a a <−或}3a ≥【练习2-3】满足{}1A ⊆ {1,2,3}的所有集合A 是___________. 【答案】{1}或{1,2}或{1,3} 【解析】 【分析】由题意可得集合A 中至少有一个元素1,且为集合{1,2,3}的真子集,从而可求出集合A 【详解】因为{}1A ⊆ {1,2,3},所以集合A 中至少有一个元素1,且为集合{1,2,3}的真子集, 所以集合A 是{1}或{1,2}或{1,3}, 故答案为:{1}或{1,2}或{1,3}题型三 集合的基本运算【例3-1】已知集合{}21A x x =−≤≤,集合{}2log 1B x x =<,则A B =( ) A .∅ B .(0,1] C .[2,1]− D .(0,2)【答案】B 【解析】 【分析】先求解集合B ,再利用交集运算即可. 【详解】解:由题得集合{|02}B x x =<<,所以{|01}A B x x =<≤. 故选:B .【例3-2】已知U=R 是实数集,21M x x ⎧⎫=>⎨⎬⎩⎭,{N x y ==,则()N M =R ( )A .(),0∞−B .(),1−∞C .(]0,1D .()0,1【答案】D【解析】【分析】 先求得集合M 、N ,再运用集合的交集、补集运算求得答案.【详解】解:∵{}221002x M x x x x x x ⎧⎫⎧⎫−=>=<=<<⎨⎬⎨⎬⎩⎭⎩⎭,{{}1N x y x x ===≥, ∴(){}{}{}10201R N M x x x x x x ⋂=<⋂<<=<<,故选:D.【例3-3】已知集合{2}A xa x a =<<∣,{4B x x =≤−或}3x ≥. (1)当2a =时,求()R A B ⋃;(2)若R A B ⊆,求a 的取值范围.【答案】(1){44}xx −<<∣ (2)3,2⎛⎤−∞ ⎥⎝⎦ 【解析】【分析】(1)由补集和并集的定义可运算求得结果;(2)分别在A =∅和A ≠∅两种情况下,根据交集为空集可构造不等式求得结果.(1) 由题意得{}24A x x =<<,{4B x x =≤−或}3x ≥, {}R 43B x x ∴=−<<,故(){}R 44A B x x ⋃=−<<.(2)当0a ≤时,A =∅,符合题意,当0a >时,由23a ≤,得302<≤a , 故a 的取值范围为3,2⎛⎤−∞ ⎥⎝⎦.【练习3-1】已知集合{}1,0,1,2A =−,集合{}lg 0B x x =>,则() AB =R ( ) A .{}1,0,1−B .{}1,0−C .{}0,1D .(],1−∞ 【答案】A【解析】【分析】解不等式后由补集与交集的概念运算【详解】 因为集合{}{}lg 01B x x x x =>=>,所以{}1R B x x =≤,又集合{}1,0,1,2A =−,所以(){} 1,0,1A B =−R ,故选:A 【练习3-2】设全集为R ,{|1A x x =<−或}4x >,{}123B x a x a =−≤≤+.(1)若1a =,求A B ,()R A B .(2)已知A B =∅,求实数a 的取值范围.【答案】(1){}45A B xx ⋂=<≤∣,(){}R 15A B x x ⋃=−≤≤∣; (2)12a ≤. 【解析】【分析】(1)当1a =时求出集合B ,再进行交集,补集,并集运算即可求解;(2)讨论B =∅和B ≠∅两种情况,列不等式解不等式即可求解.(1)因为1a =,所以{}05B x x =≤≤∣,{}R |14A x x =−≤≤,所以{}45A B xx ⋂=<≤∣,(){}R 15A B x x ⋃=−≤≤∣. (2)因为A B =∅,当B =∅时,满足A B =∅,所以123a a −>+,得23a <−;当B ≠∅时,因为A B =∅,所以23111234a a a a +≥−⎧⎪−≥−⎨⎪+≤⎩,解得2132a −≤≤, 综上实数a 的取值范围为:12a ≤. 题型四 Venn 图及其应用【例4-1】如图,三个圆的内部区域分别代表集合A ,B ,C ,全集为I ,则图中阴影部分的区域表示( )A .ABC ⋂⋂B .()I AC B ⋂⋂ C .()I A B C ⋂⋂D .()I B C A ⋂⋂【答案】B【解析】【分析】找到每一个选项对应的区域即得解.【详解】解:如图所示,A. A B C ⋂⋂对应的是区域1;B. ()I A C B ⋂⋂对应的是区域2;C. ()I A B C ⋂⋂对应的是区域3;D. ()I B C A ⋂⋂对应的是区域4.故选:B【例4-2】已知全集R U =,集合{}|2,1x A y y x ==>,{}|24B x x =−<<,则图中阴影部分表示的集合为( )A .[2,2]−B .(2,2)−C .(2,2]−D .[2,2)−【答案】C【解析】【分析】求出集合A ,阴影部分表示为:()U B A ⋂,再分析求解即可.【详解】因为{}|2,1x A y y x ==>,所以()2,A =+∞,又{}|24B x x =−<<,全集R U =, 所以图中阴影部分表示的集合为()(2,2]U B A =−.故选:C.【练习4-1】已知M ,N 为R 的两个不相等的非空子集,若M N M ⋂=,则( )A .M N =RB .M N ⋃=R RC .N M ⋃=R RD .M N ⋃=R R R【答案】C【解析】【分析】依题意可得M N ,结合韦恩图即可判断;【详解】解:依题意M N M ⋂=,所以M N ,则集合M ,N 与R 的关系如下图所示:所以N M ⋃=R R ;故选:C【练习4-2】已知全集U =R ,集合{}290A x x =−>,122x B x ⎧⎫⎪⎪⎛⎫=≥⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则图中阴影部分所表示的集合为( )A .{}3x x <B .{}13x x −<<C .{}1x x >−D .{}11x x −<≤【答案】B【解析】【分析】根据不等式的解法和指数函数的性质,分别求得集合,A B ,结合题意和集合的运算法则,即可求解.【详解】由不等式290−>x ,解得33x −<<,即集合{}33A x x =−<<, 又由122x ⎛⎫≥ ⎪⎝⎭,解得1x ≤−,即集合{}1B x x =≤−,则{}|1U B x x =>−, 又因为图中阴影部分表示的集合为()U A B ∩,所以(){}|13U AB x x =−<<.故选:B.题型五 集合中的创新型问题【例5-1】定义集合,A B 的一种运算:2{|,,}A B x x a b a A b B ⊗==−∈∈,若{}1,0A =−,{}1,2B =,则A B ⊗中的元素个数为( )A .1B .2C .3D .4【答案】C【解析】【分析】 根据集合的新定义确定集合中的元素.【详解】因为2{|,,}A B x x a b a A b B ⊗==−∈∈,{}1,0A =−,{}1,2B =,所以{0,1,2}A B ⊗=−−,故集合A B ⊗中的元素个数为3,故选:C.【例5-2】(多选题)设P 是一个数集,且至少含有两个元素.若对任意的a b P ∈,,都有a ab a b ab P b+−∈,,,(除数0b ≠),则称P 是一个数域.则关于数域的理解正确的是( )A .有理数集Q 是一个数域B .整数集是数域C .若有理数集Q M ⊆,则数集M 必为数域D .数域必为无限集【答案】AD【解析】【分析】根据数域的定义逐项进行分析即可求解.【详解】对于A ,若Q a b ∈,,则()Q Q Q Q 0aa b a b ab b b+∈−∈∈∈≠,,,,所以有理数集Q 是一个数域,故A 正确;对于B ,因为1Z Z,∈∈,2所以1Z 2∉,所以整数集不是数域,故B 不正确;对于C,令数集}{Q 2M =,则1,M M ∈但1M ,故C 不正确;对于D ,根据定义,如果()0a b b ≠,在数域中,那么,2,,a b a b a kb +++(k 为整数),都在数域中,故数域必为无限集,故D 正确.故选:AD.【例5-3】已知有限集合{}123,,,,n A a a a a =⋅⋅⋅,定义集合{}1,,i j B a a i j n i j *=+≤<≤∈N 中的元素的个数为集合A 的“容量”,记为()L A .若集合{}13A x x *=∈≤≤N ,则()L A =______;若集合{}1A x x n *=∈≤≤N ,且()4041L A =,则正整数n 的值是______. 【答案】 3 2022【解析】【分析】化简A ,可得()L A ;根据“容量”定义可得{}1A x x n *=∈≤≤N 的()4041L A =,解方程即可.【详解】{}{}131,2,3A x x *=∈≤≤=N ,则集合{}3,4,5B =,所以()3L A =.若集合{}1A x x n *=∈≤≤N , 则集合(){}{}3,4,,13,4,,21B n n n =⋅⋅⋅−+=⋅⋅⋅−,故()212234041L A n n =−−=−=,解得2022n =.故答案为:3;2022【练习5-1】设集合{}3,4,5P =,{}6,7Q =,定义(){},|,P Q a b a P b Q ⊗=∈∈,则P Q ⊗中元素的个数为( )A .3B .4C .5D .6【答案】D【解析】【分析】用列举法表示出集合,即可得到结论.【详解】因为集合{}3,4,5P =,{}6,7Q =,定义(){},|,P Q a b a P b Q ⊗=∈∈,所以(){}()()()()()(){},|,3,6,3,7,4,6,4,7,5,6,5,7P Q a b a P b Q ⊗=∈∈=.一共6个元素.故选:D【练习5-2】若一个集合是另一个集合的子集,则称两个集合构成“鲸吞”;若两个集合有公共元素,且互不为对方子集,则称两个集合构成“蚕食”,对于集合1,2A ,{}22,0B x ax a ==≥,若这两个集合构成“鲸吞”或“蚕食”,则a 的取值集合为_____. 【答案】10,,22⎧⎫⎨⎬⎩⎭ 【解析】【分析】分“鲸吞”或“蚕食”两种情况分类讨论求出a 值,即可求解【详解】当0a =时,B =∅,此时满足B A ⊆,当0a >时,B ⎧⎪=⎨⎪⎩,此时,A B 集合只能是“蚕食”关系,所以当,A B 集合有公共元素1=−时,解得2a =,当,A B 2=时,解得12a =, 故a 的取值集合为10,,22⎧⎫⎨⎬⎩⎭. 故答案为:10,,22⎧⎫⎨⎬⎩⎭。

集合经典题型总结练习题与答案

集合经典题型总结练习题与答案

必修一集合集合与第函数概一念章函数及其定义函数的.概念表示方法:列举法、描述法基本关系:交集、并集、补集、全集、属于基本运算交、并、补元素的概念、个数概念定义域、值域对应关系区间:闭开,半开半闭展示发放:图像法、列表增函数单调性基本性质最大、最小值定义义奇偶性;判断方法减函数第二章基本初等函指数函数互为反函数对数函数.a r a s a r s指数与指数幂的运算( a r) s a rs( ab) r a r b r整数指数幂指数幂有理数指数幂无理数指数幂定义定义域 R指数函数性性质值域( 0,+∞)质图像过定点( 0,1)单调性对数底数对数真数定义log a ( M N ) log a M log a N与对log a M log a M log a N数运运算N算log a MnMn log a定义定义域对数函数及性值域图象质过点( 1, 0)性质幂函数定义单调性性质过( 1,1)奇偶性单调性第三章函数与程函数的应用函数模型及应用.定义关系方程的根与函数的零点零点定理二分法定义用二分法求方程的近视根求根步骤几类不同增长的函数模型函数模型的应用实例建立实际问题的函数模型.集合学习过程一、复习预习考纲要求:1.理解集合的概念。

2.能在具体的数学环境中,应用集合知识。

3.特别是集合间的运算。

4.灵活应用集合知识与其它知识间的联系,集合是一种方法。

二、知识讲解1.集合的相关概念基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.集合的表示法:列举法、描述法、图形表示法.集合元素的特征:确定性、互异性、无序性.常见的数集:自然数集、整数集、有理数集、实数集2集合间的关系任何一个集合是它本身的子集,记为A A;空集是任何集合的子集,记为 A ;空集是任何非空集合的真子集;n 元集的子集个数共有2n个;真子集有2n1个;非空子集有2n1个;非空的真子集有2n 2 个.3.集合间的运算交:AI B{ x | x A,且 x B}并:AUB{ x | x A或 x B}补: C U A{ x U ,且x A}( 1)A A,A,A U,C U A U,包含关系:B,B C A C;AI B A,AI B B;AUB A,AUB B.A( 2)等价关系: A B A I B A A U B B C U AUB U ( 3)集合的运算律:交换律: A B B A; A B B A.新课标第一网结合律 : (A B)C A( B C); (A B)C A(B C)分配律 :.A(BC)( A B)( A C); A( B C )( A B)(A C)三、例题精析考点一子集、真子集【例题 1】:集合{ 1,0,1}共有个子集【答案】: 8【解析】: n 元集的子集个数共有2n个,所以是8个。

集合知识点+基础习题(有答案)

集合知识点+基础习题(有答案)

集合练习题知识点一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称集).1.集合中元素具的有几个特征⑴确定性-因集合是由一些元素组成的总体,当然,我们所说的“一些元素”是确定的.⑵互异性-即集合中的元素是互不相同的,如果出现了两个(或几个)相同的元素就只能算一个,即集合中的元素是不重复出现的.⑶无序性-即集合中的元素没有次序之分.2.常用的数集及其记法我们通常用大写拉丁字母A,B,C,…表示集合,用小写拉丁字母a,b,c,…表示集合中的元素.常用数集及其记法非负整数集(或自然数集),记作N正整数集,记作N*或N+;整数集,记作Z有理数集,记作Q实数集,记作R3.元素与集合之间的关系4.反馈演练1.填空题2.选择题⑴以下说法正确的( )(A) “实数集”可记为{R}或{实数集}(B){a,b,c,d}与{c,d,b,a}是两个不同的集合(C)“我校高一年级全体数学学得好的同学”不能组成一个集合,因为其元素不确定⑵已知2是集合M={ }中的元素,则实数为( )(A) 2 (B)0或3 (C) 3 (D)0,2,3均可二、集合的几种表示方法1、列举法-将所给集合中的元素一一列举出来,写在大括号里,元素与元素之间用逗号分开.*有限集与无限集*⑴有限集-------含有有限个元素的集合叫有限集例如: A={1~20以内所有质数}⑵无限集--------含有无限个元素的集合叫无限集例如: B={不大于3的所有实数}2、描述法-用集合所含元素的共同特征表示集合的方法.具体方法:在花括号内先写上表示这个集合元素的一般符号及以取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.3、图示法 -- 画一条封闭曲线,用它的内部来表示一个集合.常用于表示不需给具体元素的抽象集合.对已给出了具体元素的集合也当然可以用图示法来表示如: 集合{1,2,3,4,5}用图示法表示为:三、集合间的基本关系观察下面几组集合,集合A与集合B具有什么关系?(1) A={1,2,3},B={1,2,3,4,5}.(2) A={x|x>3},B={x|3x-6>0}.(3) A={正方形},B={四边形}.(4) A=∅,B={0}.1.子集定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,记作A⊆B(或B⊇A),即若任意x∈A,有x∈B,则A⊆B(或A⊂B)。

集合 1.有限集和无线集的交集运算 5分 数学运算

集合 1.有限集和无线集的交集运算 5分 数学运算

集合是数学中一个非常重要的概念,它是一个由不同元素组成的整体。

在集合中,元素之间没有顺序关系,而且每个元素都是唯一的。

集合的运算是对集合之间进行操作或者运算的过程,其中包括交集、并集、补集等。

本文将重点介绍有限集和无限集的交集运算。

1. 有限集和无限集的定义我们先来了解一下有限集和无限集的定义。

有限集是指元素个数有限的集合,而无限集则是元素个数无限的集合。

{1, 2, 3, 4, 5}是一个有限集,因为它的元素个数是有限的;而{1, 2, 3, 4, 5, 6, ...}就是一个无限集,因为它的元素个数是无限的。

在集合论中,有限集和无限集是两个重要的概念,它们在集合运算中起着重要作用。

2. 有限集和无限集的交集运算接下来,我们来探讨有限集和无限集的交集运算。

交集运算是指给定几个集合,找出它们共有的元素的过程。

对于有限集来说,其交集运算比较直观,我们可以通过列举所有的元素来找出它们的交集。

对于集合A={1, 2, 3, 4}和集合B={3, 4, 5, 6},它们的交集就是{3, 4},因为3和4是它们共有的元素。

而对于无限集来说,其交集运算可能会更加复杂,因为无限集的元素个数是无限的,我们无法通过简单的列举来找出其交集。

在实际计算中,我们通常会借助于集合论中的相关定理和方法来进行无限集的交集运算。

对于集合C={2, 4, 6, 8, ...}和集合D={3, 6, 9, 12, ...},它们的交集其实是空集,因为它们没有共有的元素。

在这种情况下,我们就需要通过集合论中的相关理论来证明它们的交集是空集。

3. 有限集和无限集的交集运算的应用有限集和无限集的交集运算在实际应用中有着重要的作用。

它可以帮助我们找出几个集合共有的元素,从而帮助我们进行数据的筛选和处理。

在数据分析和数据库查询中,交集运算经常被用来进行数据的匹配和比对。

通过交集运算,我们可以找出两个数据集中共有的部分,从而进行进一步的分析和处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

每日微题型 集合的分类有限集和无限集
集合的分类:
(1)按集合中元素的个数分类:_______,_________
空集:不含任何元素的集合,记作:____.空集是有限集还是无限集.
(2)集合中的“对象”所指的就是数学中的数、点、代数式吗?
提示:集合中的“对象”所指的范围非常广泛,可以是数学中的数、点、代数式,也可以是现实生活中的各种各样的事物或人等.
按元素的性质进行分类:________,_________,________. 所以在读取集合时注意集合的代表元素
1.用适当的方法表示下列集合,并指出它是有限集还是无限集.
(1)由方程x 2+x-2=0的根组成的集合.
(2)由直线y=-x+4上的横坐标和纵坐标都是自然数的点组成的集合.
(3)不等式3x+4≥x 的解集.
1【解析】(1)因为方程x 2+x-2=0的两根为x 1=-2,x 2=1,
所以由方程x 2+x-2=0的根组成的集合为{-2,1}.有限集.
(2)用描述法表示该集合为M={(x ,y)|y=-x+4,x ∈N ,y ∈N},或用列举法表示该集合为{(0,
4),(1,3),(2,2),(3,1),(4,0)}.有限集.
(3)由3x+4≥x 得2x ≥-4,所以x ≥-2,所以不等式3x+4≥x 的解集是[-2,+∞).无限集.
2.下列5个写法:①{0}∈{0,1};②{}0⊂∅≠;
③{0,-1,1}{-1,0,1};④0∈∅;⑤ {(0,0)}={0}. 其中错误的个数是( )A.2 B.3 C.4 D.5
3.已知集合2{|320}A x ax x ∈=
-+=R . (1)若A ∅=,求实数a 的取值范围;
(2)若A 是单元素集,求a 的值及集合A ;
(3)求集合{|}M a A ∈≠∅=R
4.有下列说法:
①0与{0}表示同一个集合;
②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};
③方程(x -1)2(x -2)=0的所有解的集合可表示为{1,1,2};
④集合{x |4<x <5}是有限集.
其中正确的说法是
( ) A .只有①和④
B .只有②和③
C .只有②
D .以上四种说法都不对。

相关文档
最新文档