1.高考数学考点与题型全归纳——集合

合集下载

备战高考数学复习考点知识与题型讲解1---集合

备战高考数学复习考点知识与题型讲解1---集合

备战高考数学复习考点知识与题型讲解第1讲集合一、知识梳理1.集合与元素(1)集合元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于关系,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法A B(或B A )A∪B=A∩B=∁A=常用结论1.空集的性质空集不含任何元素,空集是任意一个集合A的子集,即∅⊆A.2.集合的运算性质(1)A∩A=A,A∩∅=∅.(2)A∪A=A,A∪∅=A.(3)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.(4)A∪B=A⇔B⊆A,A∩B=A⇔A⊆B.3.集合的子集个数若有限集A中有n个元素,则A的子集有2n个,非空子集有2n-1个,真子集有2n -1个.二、教材衍化1.(人A必修第一册P5习题1.1T1(4)改编)若集合A={x∈N|1≤x≤10},则( )A.8∈AB.9.1∈AC.{8}∈AD.{9.1}⊆A 答案:A2.(人A必修第一册P14习题1.3T4改编)设全集为R,A={x|3≤x<7},B={x|2<x<10},则∁R(A∪B)=________,(∁R A)∩B=________.解析:把集合A,B在数轴上表示如图.由图知,A∪B={x|2<x<10},(A∪B)={x|x≤2或x≥10},所以∁RA={x|x<3或x≥7},因为∁RA)∩B={x|2<x<3或7≤x<10}.所以(∁R答案:{x|x≤2或x≥10}{x|2<x<3或7≤x<10}一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)若集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A,B,C表示同一个集合.( )(2){x|x≤1}={t|t≤1}.()(3)若{x2,1}={0,1},则x=0或x=1.( )(4)若A∩B=A∩C,则B=C.( )答案:(1)×(2)√(3)×(4)×二、易错纠偏1.(多选)(混淆元素、集合间的关系致误)已知集合A={x|x2-2x=0},则有( )A.∅⊆AB.-2∈AC.{0,2}⊆AD.A⊆{y|y<3}解析:选ACD.因为A={0,2},所以∅⊆A,{0,2}⊆A,A⊆{y|y<3}均正确,-2∉A,故选ACD.2.(混淆子集与真子集的定义致误)已知集合A={x|x2<2,x∈Z},则A的真子集的个数为( )A.3B.4C.6D.7解析:选D.因为A={x|x2<2,x∈Z}={-1,0,1},所以其真子集的个数为23-1=7.故选D.3.(多选)(忽视空集致误)已知集合A={2,3},B={x|mx-6=0},若B⊆A,则实数m=( )A.3B.2C.1D.0解析:选ABD.当m =0时,可得集合B =∅,此时满足B ⊆A ;当m ≠0时,可得集合B=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫6m , 所以6m =2或6m=3,解得m =3或m =2,综上,实数m 等于0,2或3.考点一 集合的概念(自主练透)复习指导:1.了解集合的含义,体会元素与集合的“属于”关系.2.能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.1.(2022·常州市前黄高级中学高三适应性考试)设集合A ={1,2,3,4},B ={5,6},C ={x +y |x ∈A ,y ∈B },则C 中元素的个数为( )A.3B.4C.5D.6解析:选C.由题知,当y =5时,x +y 的值有6,7,8,9,当y =6时,x +y 的值有7,8,9,10,于是得C ={6,7,8,9,10},所以C 中元素的个数为5.2.设a ,b ∈R ,集合{1,a +b ,a }=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,b a ,b ,则a 2 023-b 2 023=( )A.1B.-1C.2D.-2解析:选D.由题易得a ≠0,所以a +b =0,则ba=-1,所以a =-1,b =1.所以a 2 023-b 2 023=-2.3.已知集合P ={}x |x =2k ,k ∈Z ,Q ={}x |x =2k +1,k ∈Z ,M ={}x |x =4k +1,k ∈Z ,且a ∈P ,b ∈Q ,则()A.a +b ∈PB.a +b ∈QC.a +b ∈MD.a +b 不属于P ,Q ,M 中的任意一个 解析:选B.因为a ∈P ,所以a =2k 1,k 1∈Z .因为b ∈Q ,所以b =2k 2+1,k 2∈Z .所以a +b =2(k 1+k 2)+1=2k +1∈Q (k 1,k 2,k ∈Z ).4.(多选)若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( ) A.92 B.98 C.0D.23解析:选BC.若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实数根或有两个相等的实数根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0得a =98,所以a 的值为0或98.与集合中元素有关问题的求解步骤步骤一:确定集合的元素是什么,集合是数集还是点集. 步骤二:看这些元素满足什么限制条件.步骤三:根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性.考点二 集合间的基本关系(思维发散)复习指导:理解集合之间包含与相等的含义,能识别给定集合的子集,了解全集与空集的含义.(1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A.1B.2C.3D.4(2)已知集合A ={x |(x +1)(x -3)<0},B ={x |-m <x <m }.若A ⊆B ,则m 的取值范围是________.【解析】 (1)由题意可得,A ={1,2},B ={1,2,3,4},又因为A ⊆C ⊆B ,所以C ={1,2}或{1,2,3}或{1,2,4}或{1,2,3,4}.(2)由题得,A ={x |-1<x <3},若A ⊆B (如图)可得⎩⎨⎧-m ≤-1,m ≥3,所以m ≥3.故m 的取值范围是[3,+∞). 【答案】 (1)D (2)[3,+∞)(链接常用结论1)本例(2)中,若“A ⊆B ”改为“B ⊆A ”,其他条件不变,则m 的取值范围是________.解析:当m ≤0时,B =∅, 显然B ⊆A .当m >0时,因为A ={x |-1<x <3}. 当B ⊆A 时,在数轴上标出两集合,如图,所以⎩⎨⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为(-∞,1]. 答案:(-∞,1](1)判断两集合关系的2种常用方法列举法:根据题中限定条件把集合元素表示出来,然后比较集合元素的异同,从而找出集合之间的关系.数轴法:在同一个数轴上表示出两个集合,比较端点之间的大小关系,从而确定集合与集合之间的关系.(2)根据两集合的关系求参数的方法①若集合元素是一一列举的,依据集合间的关系,转化为解方程(组)求解,此时注意集合中元素的互异性.②若集合表示的是不等式的解集,常依据数轴转化为不等式(组)求解,此时需注意端点值能否取到.[提醒] 题目中若有条件B ⊆A ,则应分B =∅和B ≠∅两种情况进行讨论.|跟踪训练|1.(2022·广州高一期中)已知集合M ={y |y =x -|x |,x ∈R },N ={y |y =x 12,x ≠0},则下列选项正确的是( )A.M =NB.N ⊆MC.M =∁R ND.∁R NM解析:选C.由题意,得集合M ={y |y ≤0},而集合N ={y |y >0},所以∁R N ={y |y ≤0},则M =∁R N ,故C 正确.2.(链接常用结论3)已知集合A ={x |x 2-2x -3≤0,x ∈N *},则集合A 的真子集的个数为( )A.7B.8C.15D.16解析:选A.因为集合A 中有3个元素,所以其真子集的个数为23-1=7(个). 3.(多选)(2022·河南范县高一月考)已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪14x +a ≥0,B ={x |x 2≤1},若B ⊆A ,则实数a 的取值可以是( )A.-2B.0C. 2D.4解析:选CD.因为A ={}x |x ≥-4a ,B ={x |-1≤x ≤1},又因为B ⊆A ,则-4a ≤-1,解得a ≥14,故选CD.考点三 集合的基本运算(多维探究)复习指导:1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集. 2.理解给定集合中一个子集的补集的含义,会求给定子集的补集.3.能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.角度1 集合的运算(1)(2021·新高考卷Ⅰ)设集合A ={x |-2<x <4},B ={2,3,4,5},则A ∩B=( )A.{2}B.{2,3}C.{3,4}D.{2,3,4}(2)(2021·高考全国卷乙)已知集合S ={s |s =2n +1,n ∈Z },T ={t |t =4n +1,n ∈Z },则S ∩T =( )A.∅B.SC.TD.Z【解析】 (1)由题易知A ∩B ={2,3},故选B.(2)S ={…,-3,-1,1,3,5,…},T ={…,-3,1,5,…},观察可知,T ⊆S ,所以T ∩S =T .【答案】 (1)B (2)C 角度2 利用集合的运算求参数(1)(2020·高考全国卷Ⅰ)设集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},且A ∩B={x |-2≤x ≤1},则a =( )A.-4B.-2C.2D.4(2)设集合A ={(x ,y )|2x +y =1,x ,y ∈R },集合B ={(x ,y )|a 2x +2y =a ,x ,y ∈R },若A ∩B =∅,则a 的值为( )A.2B.4C.2或-2D.-2【解析】 (1)易知A ={x |-2≤x ≤2},B ={x |x ≤-a2},因为A ∩B ={x |-2≤x ≤1},所以-a2=1,解得a =-2.(2)由题意可知,集合A ,B 的元素为有序数对,且都代表的是直线上的点.因为A ∩B=∅,所以两条直线没有公共点,所以两条直线平行,所以⎩⎨⎧4-a 2=0,-2a +a 2≠0,解得a =-2. 【答案】 (1)B (2)D本例(1)中,若“A ∩B ={x |-2≤x ≤1}”改成“A ∩B ⊆{x |-2≤x ≤1}”,则实数a 的取值范围是________.解析:A ={x |-2≤x ≤2},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x⎪⎪⎪x ≤-a 2, 当A ∩B =∅时,即-a2<-2,a >4时,符合题意;当A ∩B ≠∅时,令⎩⎪⎨⎪⎧-a 2≥-2,-a2≤1,得-2≤a ≤4.综上,实数a 的取值范围是a ≥-2. 答案:[-2,+∞) 角度3 集合的新定义问题(1)(2022·南阳一中第十四次考试)定义集合运算:A ⊙B ={Z |Z =xy ,x ∈A ,y∈B },设集合A ={-1,0,1},B ={sin α,cos α},则集合A ⊙B 的所有元素之和为 ( )A.1B.0C.-1D.sin α+cos α(2)(2022·保定一模)设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },如果P ={x |1<2x <4},Q ={y |y =2+sin x ,x ∈R },那么P -Q =( )A.{x |0<x ≤1}B.{x |0≤x <2}C.{x |1≤x <2}D.{x |0<x <1}【解析】 (1)因为x ∈A ,所以x 的可能取值为-1,0,1.同理,y 的可能取值为sinα,cos α,所以xy 的所有可能取值为(重复的只列举一次):-sin α,0,sin α,-cos α,cos α,所以所有元素之和为0.(2)由题意得P ={x |0<x <2},Q ={y |1≤y ≤3}, 所以P -Q ={x |0<x <1}. 【答案】 (1)B (2)D(1)集合运算的常用方法①若集合中的元素是离散的,则常用Venn 图求解.②若集合中的元素是连续的实数,则用数轴表示,此时要注意端点的情况. (2)利用集合的运算求参数的方法①与不等式有关的集合,一般利用数轴解决,要注意端点值的取舍.②若集合中的元素能一一列举,则一般先用观察法得到集合中元素之间的关系,再列方程(组)求解.在求出参数后,注意结果的验证(满足集合中元素的互异性). (3)解决以集合为背景的新定义问题,要抓住两点①准确转化.解决新定义问题时,一定要读懂新定义的本质含义,紧扣题目所给定义,结合题目的要求进行恰当转化,切忌同已有概念或定义相混淆.②方法选取.对于新定义问题,可恰当选用特例法、筛选法、一般逻辑推理等方法,并结合集合的相关性质求解.|跟踪训练|1.(2021·高考全国卷乙)已知全集U ={1,2,3,4,5},集合M ={1,2},N ={3,4},则∁U (M ∪N )=( )A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}解析:选A.因为集合M ={1,2},N ={3,4},所以M ∪N ={1,2,3,4}. 又全集U ={1,2,3,4,5},所以∁U (M ∪N )={5}. 2.(2021·高考全国卷甲)设集合M ={}x |0<x <4,N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13≤x ≤5,则M ∩N =( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x ≤13B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13≤x <4 C.{}x |4≤x <5 D.{}x |0<x ≤5解析:选B.M ∩N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪13≤x <4. 3.(2020·高考全国卷Ⅲ)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A.2B.3C.4D.6解析:选C.由题意得,A ∩B ={(1,7),(2,6),(3,5),(4,4)},所以A ∩B 中元素的个数为4.4.给定集合S={1,2,3,4,5,6,7,8},对于x∈S,如果x+1∉S且x-1∉S,那么x是S的一个“好元素”,由S的3个元素构成的所有集合中,不含“好元素”的集合共有________个.解析:由题意知这3个元素一定是连续的3个整数,故不含“好元素”的集合有{1,2,3},{2,3,4},{3,4,5},{4,5,6},{5,6,7},{6,7,8},共6个.答案:6[A 基础达标]0,m,m2-3m+2,且2∈A,1.(2022·湖南师大附中高二入学考试)已知集合A={}则实数m的值为( )A.0B.1C.2D.3解析:选D.若m=2,则m2-3m+2=0,不满足集合中元素的互异性,舍去;若m2-3m+2=2,则m=0或m=3,又m≠0,故m=3.2.(2022·豫北名校联盟4月联考)已知集合A={1,3,5,6},B={x∈N|0<x<8},则图中阴影部分表示的集合的元素个数为( )A.4B.3C.2D.1解析:选B.B={x∈N|0<x<8}={1,2,3,4,5,6,7},图中阴影部分表示的集合为∁B A={2,4,7},共3个元素.3.已知集合A={x∈N*|x2-3x-4<0},则集合A的真子集有( )A.7个B.8个C.15个D.16个解析:选A.因为集合A={1,2,3},所以集合A中共有3个元素,所以真子集有23-1=7(个).x|2x>7,则M∩N=( )4.(2021·高考全国卷甲)设集合M={1,3,5,7,9},N={}A.{7,9}B.{5,7,9}C.{3,5,7,9}D.{1,3,5,7,9}解析:选B.由题得集合N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >72,所以M ∩N ={5,7,9}.故选B.5.设集合M ={-1,1},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1x <2,则下列结论中正确的是()A.NM B.M NC.N ∩M =∅D.M ∪N =R解析:选B.由题意得,集合N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1x <2=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <0或x >12,所以M N .故选B.6.(多选)已知非空集合M 满足:①M ⊆{-2,-1,1,2,3,4},②若x ∈M ,则x 2∈M .则集合M 可能是( )A.{-1,1}B.{-1,1,2,4}C.{1}D.{1,-2,2}解析:选AC.由题意可知3∉M 且4∉M ,而-2或2与4同时出现,所以-2∉M 且2∉M ,所以满足条件的非空集合M 有{-1,1},{1}.7.(2022·福建厦门质量检查)已知集合A ={x |x 2-4x +3>0},B ={x |x -a <0},若B ⊆A ,则实数a 的取值范围为( )A.(3,+∞)B.[3,+∞)C.(-∞,1)D.(-∞,1]解析:选D.集合A ={x |x <1或x >3},B ={x |x <a }.因为B ⊆A ,所以a ≤1.8.设集合A ={-1,1,2},B ={a +1,a 2-2},若A ∩B ={-1,2},则a 的值为________. 解析:由题知⎩⎨⎧a +1=-1,a 2-2=2,或⎩⎨⎧a +1=2,a 2-2=-1,解得a =-2或a =1.经检验,a =-2和a =1均满足题意. 答案:-2或19.(2022·重庆高一月考)若集合M ={x ||x |>2},N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x +1x -3<0,则N =________;∁R (M ∩N )=________.解析:由题意得N ={x |-1<x <3},M ={x |x <-2或x >2},所以M ∩N ={x |2<x <3},所以∁R (M ∩N )={x |x ≤2或x ≥3}. 答案:{x |-1<x <3}{ |x x ≤2或 }x ≥310.已知集合A ={x |x -a ≤0},B ={1,2,3},若A ∩B ≠∅,则a 的取值范围为________. 解析:集合A ={x |x ≤a },集合B ={1,2,3},若A ∩B ≠∅,则1,2,3这三个元素至少有一个在集合A 中,若2或3在集合A 中,则1一定在集合A 中,因此只要保证1∈A 即可,所以a ≥1.答案:[1,+∞)[B 综合应用]11.对集合{1,5,9,13,17}用描述法来表示,其中正确的是 ( ) A.{x |x 是小于18的正奇数} B.{}x |x =4k +1,k ∈Z 且k <5 C.{}x |x =4s -3,s ∈N 且s ≤5 D.{}x |x =4s -3,s ∈N *且s ≤5解析:选D.对于A :{x |x 是小于18的正奇数}={}1,3,5,7,9,11,13,15,17,故A 错误;对于B :{}x |x =4k +1,k ∈Z 且k <5={}…,-3,1,5,9,13,17,故B 错误;对于C :{}x |x =4s -3,s ∈N 且s ≤5={}-3,1,5,9,13,17,故C 错误;对于D :{}x |x =4s -3,s ∈N *且s ≤5={}1,5,9,13,17,故D 正确.12.某班有46名学生,有围棋爱好者22人,足球爱好者27人,同时爱好这两项的最多人数为x ,最少人数为y ,则x -y =( )A.22B.21C.20D.19解析:选D.如图,设集合A ,B 分别表示围棋爱好者,足球爱好者,全班学生组成全集U ,A ∩B 就是两者都爱好的,要使A ∩B 中人数最多,则A ⊆B ,x =22,要使A ∩B 中人数最少,则A ∪B =U ,即22+27-y =46,解得y =3,所以x -y =22-3=19.13.已知集合A ={x ∈R ||x +2|<3},集合B ={x ∈R |(x -m )(x -2)<0},且A ∩B =(-1,n ),则m =________,n =________.解析:A ={x ∈R ||x +2|<3}={x ∈R |-5<x <1}, 由A ∩B =(-1,n ),可知m <2, 则B ={x |m <x <2},画出数轴, 可得m =-1,n =1.答案:-1 114.定义集合P ={p |a ≤p ≤b }的“长度”是b -a ,其中a ,b ∈R .已知集合M =⎩⎪⎨⎪⎧x ⎪⎪⎪⎭⎪⎬⎪⎫m ≤x ≤m +12,N =⎩⎪⎨⎪⎧x ⎪⎪⎪⎭⎪⎬⎪⎫n -35≤x ≤n ,且M ,N 都是集合{x |1≤x ≤2}的子集,那么集合M ∩N的“长度”的最小值是________.解析:因为集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪m ≤x ≤m +12,所以集合M 的长度为12,因为集合N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪n -35≤x ≤n ,所以集合N 的长度为35,因为M ,N 都是集合{x |1≤x ≤2}的子集,所以m 最小为1,n 最大为2,此时集合M ∩N 的“长度”最小,为32-75=110.答案:110。

数学集合高考知识点汇总

数学集合高考知识点汇总

数学集合高考知识点汇总Introduction数学集合是高中数学中的一个非常重要的知识点,也是高考中经常涉及的内容之一。

在这篇文章中,我们将对数学集合的相关知识进行汇总和总结,帮助同学们更好地掌握这一知识点。

一、集合的基本概念集合是数学中的一个基本概念,它是由一些特定的元素组成,元素之间无顺序关系。

集合可以用大括号{}表示,元素用逗号分隔。

例如,集合A={1, 2, 3, 4}表示由元素1、2、3、4组成的集合A。

二、集合的运算1. 并集:并集指的是两个或多个集合中所有的元素组成的集合。

符号为"∪"。

例如,A={1, 2, 3},B={3, 4, 5},则A∪B={1, 2, 3, 4, 5}。

2. 交集:交集指的是两个或多个集合中共有的元素组成的集合。

符号为"∩"。

例如,A={1, 2, 3},B={3, 4, 5},则A∩B={3}。

3. 补集:补集指的是一个集合中不属于另一个集合的元素组成的集合。

符号为"'"。

例如,A={1, 2, 3},B={3, 4, 5},则A'={4, 5}。

三、集合的性质1. 子集:若集合A中的所有元素都属于集合B,则称A为B的子集,记作A⊆B。

例如,A={1, 2},B={1, 2, 3},则A⊆B。

2. 相等集合:若两个集合A和B的元素完全相同,则称A和B为相等集合,记作A=B。

例如,A={1, 2},B={2, 1},则A=B。

3. 空集:空集是不包含任何元素的集合,用符号"∅"表示。

四、集合的应用1. Venn图:Venn图是用来图形化表示集合及其运算的工具。

通过画圆来表示集合,并用重叠的部分表示集合的交集。

Venn图能够直观地展示集合之间的关系,方便进行集合运算的分析。

2. 集合的应用问题:数学集合在高考中常出现在与概率、函数、数列等相关的题目中。

要善于将集合的知识与其他数学知识相结合,应用到具体的问题中。

集合知识点及题型归纳总结(含答案)

集合知识点及题型归纳总结(含答案)

集合知识点及题型归纳总结知识点精讲一、集合的有关概念 1.集合的含义与表示某些指定对象的部分或全体构成一个集合.构成集合的元素除了常见的数、点等数学对象外,还可以是其他对象.2.集合元素的特征(1)确定性:集合中的元素必须是确定的,任何一个对象都能明确判断出它是否为该集合中的元素. (2)互异性:集合中任何两个元素都是互不相同的,即相同元素在同一个集合中不能重复出现. (3)无序性:集合与其组成元素的顺序无关.如{}{},,,,a b c a c b =. 3.集合的常用表示法集合的常用表示法有列举法、描述法、图示法(韦恩图、数轴)和区间法. 4.常用数集的表示R 一实数集 Q 一有理数集 Z 一整数集 N 一自然数集*N 或N +一正整数集 C 一复数集二、集合间的关系1.元素与集合之间的关系元素与集合之间的关系包括属于(记作a A ∈)和不属于(记作a A ∉)两种. 空集:不含有任何元素的集合,记作∅. 2.集合与集合之间的关系 (1)包含关系.子集:如果对任意a A A B ∈⇒∈,则集合A 是集合B 的子集,记为A B ⊆或B A ⊇,显然A A ⊆.规定:A ∅⊆.(2)相等关系.对于两个集合A 与B ,如果A B ⊆,同时B A ⊆,那么集合A 与B 相等,记作A B =. (3)真子集关系.对于两个集合A 与B ,若A B ⊆,且存在b B ∈,但b A ∉,则集合A 是集合B 的真子集,记作AB 或B A .空集是任何集合的子集,是任何非空集合的真子集.三、集合的基本运算集合的基本运算包括集合的交集、并集和补集运算,如表11-所示.IA{|IA x x =1.交集由所有属于集合A 且属于集合B 的元素组成的集合,叫做A 与B 的交集,记作A B ⋂,即{}|A B x x A x B ⋂=∈∈且.2.并集由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 与B 的并集,记作A B ⋃,即{}|A B x x A x B ⋃=∈∈或.3.补集已知全集I ,集合A I ⊆,由I 中所有不属于A 的元素组成的集合,叫做集合A 相对于全集I 的补集,记作IA ,即{}|I A x x I x A =∈∉且.四、集合运算中常用的结论 1.集合中的逻辑关系 (1)交集的运算性质.A B B A ⋂=⋂,A B A ⋂⊆,A B B ⋂⊆ A I A ⋂=,A A A ⋂=,A ⋂∅=∅. (2)并集的运算性质.A B B A ⋃=⋃,A A B ⊆⋃,B A B ⊆⋃ A I I ⋃=,A A A ⋃=,A A ⋃∅=. (3)补集的运算性质.()II A A =,I I ∅=,I I =∅ ()I A A ⋂=∅,()I A A I ⋃.补充性质:II I A B A A B B A B B A A B ⋂=⇔⋃=⇔⊆⇔⊆⇔⋂=∅.(4)结合律与分配律.结合律:()()A B C A B C ⋃⋃=⋃⋃ ()()A B C A B C ⋂⋂=⋂⋂. 分配律:()()()A B C A B A C ⋂⋃=⋂⋃⋂ ()()()A B C A B A C ⋃⋂=⋃⋂⋃. (5)反演律(德摩根定律).()()()II I A B A B ⋂=⋃()()()II I A B A B ⋃=⋂.即“交的补=补的并”,“并的补=补的交”. 2.由*(N )n n ∈个元素组成的集合A 的子集个数A 的子集有2n 个,非空子集有21n -个,真子集有21n -个,非空真子集有22n -个.3.容斥原理()()()()Card A B Card A Card B Card A B ⋃=+-⋂.题型归纳及思路提示I AA题型1 集合的基本概念思路提示:利用集合元素的特征:确定性、无序性、互异性. 例1.1 设,a b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=( ) A .1 B .1- C .2 D .2-解析:由题意知{}01,,a b a ∈+,又0a ≠,故0a b +=,得1ba=-,则集合{}{}1,0,0,1,a b =-,可得1,1,2a b b a =-=-=,故选C 。

高中数学集合知识点归纳

高中数学集合知识点归纳

高中数学集合知识点归纳一、集合的基本概念1. 集合的定义:集合是由一些明确的、互不相同的元素所构成的整体,用大写字母如A, B, C等表示。

2. 元素:集合中的每一个成员被称为元素,用小写字母如a, b, c等表示。

3. 空集:不包含任何元素的集合称为空集,记作∅。

4. 集合的表示:集合通常可以通过列举法或描述法来表示。

例如,集合A = {1, 2, 3} 或 A = {x | x 是一个正整数}。

二、集合间的关系1. 子集:如果集合B的所有元素都是集合A的元素,则称B是A的子集,记作B ⊆ A。

2. 真子集:如果集合B是A的子集,并且B不等于A,则称B是A的真子集,记作B ⊂ A。

3. 补集:对于集合A,其在全集U中的补集是包含U中所有不属于A的元素的集合,记作A' 或 C_U(A)。

4. 交集:两个集合A和B的交集是包含同时属于A和B的所有元素的集合,记作A ∩ B。

5. 并集:两个集合A和B的并集是包含属于A或属于B的所有元素的集合,记作A ∪ B。

三、集合运算1. 德摩根定律:对于任意集合A和B,(A ∪ B)' = A' ∩ B' 和 (A ∩ B)' = A' ∪ B'。

2. 集合的幂集:一个集合的所有子集构成的集合称为该集合的幂集。

3. 笛卡尔积:两个集合A和B的笛卡尔积是所有可能的有序对(a, b)的集合,其中a属于A,b属于B,记作A × B。

四、特殊集合1. 有限集:包含有限个元素的集合称为有限集。

2. 无限集:包含无限个元素的集合称为无限集。

3. 有界集:如果集合中的所有元素都小于或等于某个实数,那么这个集合是有上界的;类似地,如果所有元素都大于或等于某个实数,则集合有下界。

4. 区间:实数线上的一段,包括开区间、闭区间和半开半闭区间。

五、集合的应用1. 函数的定义域和值域:函数的定义域是函数中所有允许输入的x值的集合;值域是函数输出的所有y值的集合。

数学集合高考知识点

数学集合高考知识点

数学集合高考知识点在高考数学中,集合是一个重要的概念,涉及到许多基础的数学知识点。

本文将详细介绍数学集合的相关知识点,包括集合的定义、运算、常见性质等。

一、集合的定义集合是指具有某种特定性质的对象的总体。

常用大写字母表示集合,集合中的元素用小写字母表示。

例如,集合A={1, 2, 3, 4}表示由元素1、2、3和4组成的集合。

二、集合的表示方法1. 列举法:直接将集合中的元素列举出来。

例如,集合A={1, 2, 3, 4}。

2. 描述法:通过描述集合中元素的特点来表示集合。

例如,集合A={x|x是正整数且x < 5}表示由小于5的正整数组成的集合。

三、集合的基本运算1. 并集:表示两个或多个集合中所有元素的总和,用符号∪表示。

例如,A∪B表示集合A和集合B的并集。

2. 交集:表示两个或多个集合中共有的元素,用符号∩表示。

例如,A∩B表示集合A和集合B的交集。

3. 差集:表示从一个集合中减去另一个集合中的元素,用符号-表示。

例如,A-B表示从集合A中减去集合B中的元素。

4. 互斥:表示两个集合没有公共元素,用符号⊥表示。

例如,A⊥B表示集合A和集合B互斥。

5. 补集:表示在全集中存在但不在某个集合中的元素构成的集合,用符号A'表示。

例如,A'表示集合A的补集。

四、集合的常见性质1. 交换律:对于任意两个集合A和B,A∪B=B∪A,A∩B=B∩A。

2. 结合律:对于任意三个集合A、B和C,(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C)。

3. 分配律:对于任意三个集合A、B和C,A∪(B∩C)=(A∪B)∩(A∪C),A∩(B∪C)=(A∩B)∪(A∩C)。

4. 对于全集U来说,U∪A=U,U∩A=A,U-A=∅。

5. 幂集:对于集合A,由A的所有子集构成的集合称为A的幂集,用符号P(A)表示。

通过对集合的学习,可以帮助我们更好地理解和运用数学知识。

在高考中,集合相关的题目常常出现,掌握了集合的基本概念和运算规则,能够更好地解答相关题目,提高数学成绩。

高考数学集合知识点归纳

高考数学集合知识点归纳

高考数学集合知识点归纳数学作为高考的一门重要科目,其中的知识点繁多且涉及广泛。

在数学的各个领域中,集合论是一个基础且重要的概念。

集合是高考数学中常见的考点之一,掌握好集合的相关知识,对于解题和理解其他数学概念具有重要意义。

一、什么是集合集合是指将具有某种特性的对象放在一起,形成一个整体。

集合包括元素和空集。

元素是指集合中的个体,是集合的组成部分。

空集是指不含任何元素的集合。

集合的常见表示方式有两种:列举法和描述法。

列举法是将集合中的元素一一列举出来,用花括号“{}”包围起来。

描述法则是通过一定的条件描述来定义集合,使用“|”表示“满足条件的”或者“属于”的意思。

二、集合的关系集合之间有着一系列的关系,常见的有包含关系、相等关系、并集、交集、差集、补集等。

包含关系指的是一个集合是否包含另一个集合的所有元素。

如果一个集合的所有元素都属于另一个集合,则前者是后者的子集,后者是前者的包集。

相等关系指的是两个集合中的元素完全相同,即集合A与集合B对应的包含关系和相等关系同时成立。

并集是指把两个集合中的所有元素放在一起形成一个新的集合。

记作A∪B,表示集合A与集合B的并集。

交集是指两个集合中共有的元素组成的新集合。

记作A∩B,表示集合A与集合B的交集。

差集是指一个集合中减去另一个集合中相同元素之后的剩余部分。

记作A-B,表示集合A与集合B的差集。

补集是指某个全集中除了集合本身的元素之外的所有元素组成的集合。

记作A的补集,表示全集中所有不属于A的元素。

三、集合的运算性质集合的运算有一些基本的性质,这些性质在解题过程中经常被应用。

1. 交换律:即A∪B=B∪A,A∩B=B∩A。

交集和并集的运算结果与顺序无关。

2. 结合律:即(A∪B)∪C=A∪(B∪C),(A∩B)∩C=A∩(B∩C)。

对于交集和并集的运算,结果与括号的位置无关。

3. 分配律:即A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A∪C)。

高三数学高考集合知识点梳理

高三数学高考集合知识点梳理

高三数学高考集合知识点梳理集合是数学中一个重要的概念,广泛应用于各个数学分支。

在高考数学中,集合也是一个重要的考点。

本文将对高三数学高考集合知识点进行梳理,以帮助同学们更好地掌握和应用这些知识。

一、集合的定义与表示方法集合是由一些特定对象组成的整体,这些对象被称为集合的元素。

常用的表示方法主要有以下几种:1. 列举法:直接列举出集合的所有元素,用大括号{}表示。

2. 描述法:通过给出元素满足的条件来描述集合,用大括号{}表示,并用逗号分隔元素。

二、集合间的关系与运算1. 子集关系:若集合A的所有元素同时也是集合B的元素,则称A是B的子集,记作A⊆B。

特别地,一个集合是其本身的子集。

2. 并集运算:将两个集合中的所有元素放在一起组成一个集合,记作A∪B。

3. 交集运算:两个集合中相同的元素组成的集合,记作A∩B。

4. 差集运算:从一个集合中去掉与另一个集合相同的元素后得到的集合,记作A-B或者A\B。

5. 互斥集:两个集合没有相同的元素,记作A∩B=∅,称为互斥集。

6. 补集运算:对于给定的全集U,集合A的补集是指所有不属于集合A的元素组成的集合,记作A'或者Ā。

三、集合的性质与定理1. 幂集性质:集合A的幂集是指以A的所有子集为元素的集合,记作P(A)。

对于一个有n个元素的集合来说,它的幂集将有2^n个元素。

2. 交换律、结合律、分配律等:并集和交集运算满足交换律、结合律、分配律等基本的运算性质。

3. 德摩根律:对于给定的全集U、集合A和集合B,德摩根律表示为以下两个公式:(A∪B)' = A'∩B'(A∩B)' = A'∪B'四、集合的应用集合在数学中有着广泛的应用,它不仅在高考数学中出现,还涉及到概率、统计、逻辑等许多领域。

1. 概率:在概率计算中,集合用于描述事件的样本空间以及事件的发生情况,通过集合的交并运算和概率的定义,可以计算出事件发生的概率。

高考数学集合知识点

高考数学集合知识点

高考数学集合知识点集合是高中数学中的一个重要概念,也是高考中必考内容之一。

掌握集合的相关知识点对于提高数学成绩至关重要。

本文将介绍高考数学中与集合相关的知识点,帮助考生系统地理解和掌握。

一、集合的基本概念集合是指由各种对象组成的整体,这些对象称为集合的元素。

通常用大写字母A、B、C等表示集合,用小写字母a、b、c等表示集合的元素。

集合内的元素可以是数、图形、对象等各种各样的事物。

二、集合的表示方法1. 列举法:直接列举出集合中的元素,用花括号{}括起来。

例如,集合A={1, 2, 3}表示A是包含1、2和3三个元素的集合。

2. 描述法:通过一定的条件来描述集合中的元素。

例如,集合B={x|x是正整数,且x<10}表示B是由小于10的正整数组成的集合。

三、集合的运算1. 交集:给定两个集合A和B,它们的交集记作A∩B,表示同时属于A和B的元素组成的集合。

2. 并集:给定两个集合A和B,它们的并集记作A∪B,表示属于A或B中的元素组成的集合。

3. 差集:给定两个集合A和B,A减去B的差集记作A-B,表示属于A但不属于B的元素组成的集合。

4. 补集:给定一个全集U以及一个集合A,称全集U中属于A'而不属于A的元素组成的集合为集合A的补集,记作A'。

四、集合的性质1. 互斥:两个集合A和B没有相同的元素,即A∩B=∅。

2. 包含与被包含:集合A包含于集合B,即A⊆B,表示A中的任意元素也属于B;集合A被集合B包含,即B⊇A。

3. 子集与真子集:若集合A包含于集合B,且A≠B,则称A 为B的子集,记作A⊂B;若A⊂B且存在x∈B,但x∉A,则称A 为B的真子集,记作A⊊B。

4. 幂集:给定一个集合A,A的所有子集所构成的集合称为A 的幂集,记作P(A)。

例如,若A={1, 2},则P(A)={{},{1},{2},{1,2}}。

五、常用定理与应用1. 德摩根定律:对于任意的集合A和B,有以下关系成立:(1)(A∪B)'=A'∩B'(2)(A∩B)'=A'∪B'2. 分配律:对于任意的集合A、B和C,有以下关系成立:(1)A∩(B∪C)=(A∩B)∪(A∩C)(2)A∪(B∩C)=(A∪B)∩(A∪C)六、集合在高考中的应用1. 题型一:集合的基本运算高考中常会出现对两个或三个集合进行并、交、差等运算的求解题目。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.集合间的基本关系
2.1.子集:一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,则称A是B的子集,记作A⊆B(或B⊇A).
2.2.真子集:如果集合A是集合B的子集,但集合B中至少有一个元素不属于A,则称A是B的真子集,记作AB或B A.
A B⇔ 既要说明A中任何一个元素都属于B,也要说明B中存在一个元素不属于A.
A.1B.2
C.3D.4
解析:选D因为A={1,2},由题意知C={1,2,3,4},所以满足条件的B可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.
2. 若本例(3)中,把条件“B⊆A”变为“A⊆B”,其他条件不变,则m的取值范围为________.
解析:若A⊆B,由 得m≥3,
2.若集合A={x∈R|ax2-3x+2=0}中只有一个元素,则a等于()
A. B.
C.0D.0或
解析:选D若集合A中只有一个元素,则方程ax2-3x+2=0只有一个实根或有两个相等实根.
当a=0时,x= ,符合题意.
当a≠0时,由Δ=(-3)2-8a=0,得a= ,
所以a的值为0或 .
3.(2018·厦门模拟)已知P={x|2<x<k,x∈N},若集合P中恰有3个元素,则k的取值范围为.
第一章
第一节
基础知识
1.集合的有关概念
1.1.集合元素的三个特性:确定性、无序性、互异性.
1.2.集合的三种表示方法:列举法、描述法、图示法.
1.3.元素与集合的两种关系:属于,记为∈;不属于,记为∉.
1.4.五个特定的集合及其关系图:
N*或N+表示正整数集,N表示自然数集,Z表示整数集,Q表示有理数集,R表示实数集.
A.3B.2
C.1D.0
2.已知a,b∈R,若 ={a2,a+b,0},则a2 019+b2 019的值为()
A.1B.0
C.-1D.±1
[解析]
(1)因为A表示圆x2+y2=1上的点的集合,B表示直线y=x上的点的集合,直线y=x与圆x2+y2=1有两个交点,所以A∩B中元素的个数为2.
(2)由已知得a≠0,则 =0,所以b=0,于是a2=1,即a=1或a=-1.又根据集合中元素的互异性可知a=1应舍去,因此a=-1,故a2 019+b2 019=(-1)2 019+02 019=-1.
(4)补集的性质:A∪∁UA=U,A∩∁UA=∅,∁U(∁UA)=A,∁AA=∅,∁A∅=A.
(5)含有n个元素的集合共有2n个子集,其中有2n-1个真子集,2n-1个非空子集.
(6)等价关系:A∩B=A⇔A⊆B;A∪B=A⇔A⊇B.
考点一 集合的基本概念
[典例]
1.(2017·全国卷Ⅲ)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()
(3)当m≤0时,B=∅,显然B⊆A.
当m>0时,因为A={x|-1<x<3}.
若B⊆A,在数轴上标出两集合,如图,
所以 所以0<m≤1.
综上所述,m的取值范围为(-∞,1].
[答案](1)C(2)C(3)(-∞,1]
[变透练清]
1. 若本例(2)中A不变,C={x|0<x<5,x∈N},则满足条件A⊆B⊆C的集合B的个数为()
[答案](1)B(2)C
[提醒]集合中元素的互异性常常容易忽略,求解问题时要特别注意.
[题组训练]
1.设集合A={0,1,2,3},B={x|-x∈A,1-x∉A},则集合B中元素的个数为()
A.1B.2
C.3D.4
解析:选A若x∈B,则-x∈A,故x只可能是0,-1,-2,-3,当0∈B时,1-0=1∈A;当-1∈B时,1-(-1)=2∈A;当-2∈B时,1-(-2)=3∈A;当-3∈B时,1-(-3)=4∉A,所以B={-3},故集合B中元素的个Hale Waihona Puke 为1.3.集合间的基本运算
(1)交集:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B}.
(2)并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}.
(3)补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作∁UA,即∁UA={x|x∈U,且x∉A}.
∴m的取值范围为[3,+∞).
答案:[3,+∞)
3.已知集合A={1,2},B={x|x2+mx+1=0,x∈R},若B⊆A,则实数m的取值范围为________.
求集合A的补集的前提是“A是全集U的子集”,集合A其实是给定的条件.从全集U中取出集合A的全部元素,剩下的元素构成的集合即为∁UA.
常用结论
(1)子集的性质:A⊆A,∅⊆A,A∩B⊆A,A∩B⊆B.
(2)交集的性质:A∩A=A,A∩∅=∅,A∩B=B∩A.
(3)并集的性质:A∪B=B∪A,A∪B⊇A,A∪B⊇B,A∪A=A,A∪∅=∅∪A=A.
A.2B.3
C.4D.8
3.已知集合A={x|-1<x<3},B={x|-m<x<m},若B⊆A,则m的取值范围为________.
[解析]
(1)由x2-3x+2=0得x=1或x=2,∴A={1,2}.由题意知B={1,2,3,4},比较A,B中的元素可知AB,故选C.
(2)∵A={x∈N*|x2-3x<0}={x∈N*|0<x<3}={1,2},又B⊆A,∴满足条件B⊆A的集合B的个数为22=4,故选C.
2.3.集合相等:如果A⊆B,并且B⊆A,则A=B.
两集合相等:A=B⇔ A中任意一个元素都符合B中元素的特性,B中任意一个元素也符合A中元素的特性.
2.4.空集:不含任何元素的集合.空集是任何集合A的子集,是任何非空集合B的真子集.记作∅.
∅∈{∅},∅⊆{∅},0∉∅,0∉{∅},0∈{0},∅⊆{0}.
解析:因为P中恰有3个元素,所以P={3,4,5},故k的取值范围为5<k≤6.
答案:(5,6]
[典例]
1.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则()
A.B⊆AB.A=B
C.ABD.BA
2.(2019·湖北八校联考)已知集合A={x∈N*|x2-3x<0},则满足条件B⊆A的集合B的个数为()
相关文档
最新文档