2018-2019学年浙江省绍兴市八年级上册期末数学试卷(含答案解析)
浙教版2018-2019学年八年级数学竞赛试卷(含答案)

绝密★启用前浙教版2018-2019学年八年级数学竞赛试卷A题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共8小题,3*8=24)1.设a=﹣(﹣2)2,b=﹣(﹣3)3,c=﹣(﹣42),则﹣[a﹣(b﹣c)]=()A.15 B.7 C.﹣39 D.472.方程的解是x=()A.B.﹣C.D.﹣3.以下三个判断中,正确的判断的个数是()(1)x2+3x﹣1=0,则x3﹣10x=﹣3(2)若b+c﹣a=2+,c+a﹣b=4﹣,a+b﹣c=﹣2,则a4+b4+c4﹣2(a2b2+b2c2+c2a2)=﹣11 (3)若a2=a1q,a3=a2q,a4=a3q,则a1+a2+a3+a4=(q≠1)A.0 B.1 C.2 D.34.如图,D,E,F为等边三角形ABC三边中点,AE、BF、CD交于O,DE,EF,FD为三条中位线,则图中能数出不同的直角三角形的个数是()A.36 B.32 C.30 D.285.5名学生身高两两不同,把他们按从高到低排列,设前三名的平均身高为a米,后两名的平均身高为b米.又前两名的平均身高为c米,后三名的平均身高为d米,则()A.B.C.D.以上都不对6.把红珠、蓝珠各四颗串成一条(项链可以旋转,翻转),则实质不同的串法数是()A.6 B.7 C.8 D.107.能整除任意5个连续整数之和的最大整数是()A.1 B.2 C.3 D.58.一个屏幕封闭图形,只要有一条边不是直线段,就称为曲边形,例如圆、弓形、扇形等都是曲边形,则如图中,可以数出()个不同的曲边形.A.42 B.36 C.30 D.28第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共8小题,3*8=24)9.已知a﹣b=4,ab+c2+4=0,则a+b+c的值为.10.已知,则的值为.11.在平面直角坐标系中,点P[m(m+1),m﹣1](m为实数)不可能在第象限.12.有一只手表每小时比准确时间慢3分钟,若在清晨4:30与准确时间对准,则当天上午手表指示的时间是10:50,准确时间应该是.13.如图,P是平行四边形ABCD内一点,且S△P AB=5,S△P AD=2,则阴影部分的面积为.14.若10个数据的平均数是,平方和是10,则方差是.15.若直线323x+457y=1103与直线177x+543y=897的交点坐标是(a,b),则a2+2004b2的值是.16.某校组织师生春游,如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可以少租一辆,且余30个座位.则该校去参加春游的人数为;若已知45座客车的租金为每辆250元,60座客车租金为每辆300元,这次春游同时租用这两种客车,其中60座客车比45座客车多租1辆,所以租金比单独一种客车要节省,按这种方案需要租金元.评卷人得分三.解答题(共4小题,52分)17.(10分)已知关于x、y的方程组:,求出所有整数a,使得方程组有整数解(即x、y都是整数),并求出所有的整数解.18.(12分)求出所有的正整数n,使得12+22+32+42+…+n2﹣(n+1)2﹣(n+2)2﹣(n+3)2﹣…﹣(2n﹣1)2﹣(2n)2=﹣10115.(参考公式:1+2+3+4+…+n=)19.(15分)某市为了节约用水,规定:每户每月用水量不超过最低限量am3时,只付基本费8元和定额损耗费c元(c≤5);若用水量超过am3时,除了付同上的基本费和损耗费外,超过部分每1m3付b元的超额费.根据上表的表格中的数据,求a、b、c.20.(15分)如图,把一张长10cm,宽8cm的长方形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使无盖长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?(2)你认为折合而成的无盖长方体盒子的侧面积有可能等于52cm2吗?请说明理由;(3)如果把长方形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的长方形,然后折合成一个有盖的长方体盒子,那么它的侧面积(指的是高为剪去的正方形边长的长方体的侧面积)可以达到30cm2吗?请说明理由.参考答案与试题解析1.解:a=﹣(﹣2)2=﹣4,b=﹣(﹣3)3=27,c=﹣(﹣42)=16,∴﹣[a﹣(b﹣c)],=﹣[﹣4﹣(27﹣16)],=15.故选:A.2.解:移项合并同类项得:﹣[﹣(﹣1﹣x)﹣]=,∴﹣(﹣1﹣x)﹣=﹣,移项合并同类项得:﹣(﹣1﹣x)=,∴﹣1﹣x=﹣,∴x=﹣,故选:D.3.解:(1)x3﹣10x=x(x2﹣10)=x(1﹣3x﹣10)=﹣3(x2+3x)=﹣3,故(1)正确;(2)a4+b4+c4﹣2(a2b2+b2c2+c2a2)=(a2﹣b2﹣c2)2﹣4b2c2=(a2﹣b2﹣c2+2bc)(a2﹣b2﹣c2﹣2bc)=(a+b﹣c)(a﹣b+c)(a+b+c)(a﹣b﹣c)又知b+c﹣a=2+,c+a﹣b=4﹣,a+b﹣c=﹣2,可得a+b+c=4+,故a4+b4+c4﹣2(a2b2+b2c2+c2a2)=﹣11,故(2)正确;(3)当q=1时,a1+a2+a3+a4=4a1,当q≠1时,a1+a2+a3+a4=,故(3)正确,正确的有3个,故选D.4.解:①∵DE,EF,FD为等边△ABC三条中位线,∴AB=AC=BC,∴EF AB,ED AC,∴四边形CEDF是菱形,∴EF⊥CD,∴在菱形CEDF中有6个不同的直角三角形:Rt△CEG、Rt△CFG、Rt△DGE、Rt△DFG、Rt△EOG、Rt△FOG;同理,在菱形ADEF、菱形BEFD中各有6个不同的直角三角形;②∵D为等边三角形ABC三边中点,∴CD⊥AB,∴△ADC、△BDC、AOD、△BOD是直角三角形;同理,以BF、AE为直角边的三角形各有4个;综上所述,图中能数出的直角三角形由6×3+4×3=30(个);故选:C.5.解:∵3a+2b=2c+3d,∵a>d,∴2a+2b<2c+2d,∴a+b<c+d,∴<,即>,故选:B.6.解:①第一个●和第二个●两珠间隔0个蓝珠,即●●…;②第一个●和第二个●两珠间隔1个蓝珠,即●○●…;③第一个●和第二个●两珠间隔2个蓝珠,即●○○●…;④第一个●和第二个●两珠间隔3个蓝珠,即●○○○●…;⑤第一个●和第二个●两珠间隔4个蓝珠,即●○○○○●…;⑥第二个●和第三个●两珠间隔2个蓝珠,即●●○○…;⑦第二个●和第三个●两珠间隔3个蓝珠,即●●○○○…;⑧第二个●和第三个●两珠间隔4个蓝珠,即●●○○○○••;∵项链可以旋转,翻转,∴第三个●和第四个●两珠间隔珠的情况和第一和第二红珠间隔相同,以此类推…∴共8种方法.故选:C.7.解:设五个连续整数分别为a﹣2,a﹣1,a,a+1,a+2,所以这五个数的和为a﹣2+a﹣1+a+a+1+a+2=5a,因为5a是5的倍数,所以不论a为何值,五个连续整数的和都可以被5整除.故选:D.8.解:数曲边形,一定要有弧,五角星把圆周分成5个弧,我们按含有1个弧、2个弧、…、5个弧来分类,仅含1个弧有两种情况,每种情况按5个弧转一圈各有5个曲边形,共有5+5个;仅含2个弧可以分相连和不相连2种情况,相连的2个弧,按5个弧转一圈有5个曲边形;不相连的2个弧,似乎又有2种情况,按5个弧转一圈各有5个曲边形,但实际上转圈数时这两种情况是重复的,故不相连的2个弧可数出5个曲边形;仅含3个弧可以分相连和不相连2种情况,每种情况按5个弧转一圈可数出有5个曲边形,共有5+5个;仅含4个弧的情况,每种情况按5个弧转一圈可数出有5个曲边形;含全部5个弧的情况,1个曲边形.综上,一共有5+5+5+5+5+5+5+1=36个.故选:B.9.解:∵a﹣b=4,∴a=b+4,代入ab+c2+4=0,可得(b+4)b+c2+4=0,(b+2)2+c2=0,∴b=﹣2,c=0,∴a=b+4=2.∴a+b+c=0.故答案为:0.10.解:根据非负数性质可知a﹣1=0且ab﹣2=0解得a=1 b=2则原式=裂项得;故答案为11.解:(1)当m(m+1)>0时,有或,所以m>0或m<﹣1,因此m﹣1>﹣1或m﹣1<﹣2,即P[m(m+1),m﹣1]可能经过第一或四象限.(2)当m(m+1)<0时,有或,所以﹣1<m<0,因此﹣2<m﹣1<﹣1,即P[m(m+1),m﹣1]经过第三象限.综合得,P[m(m+1),m﹣1]不经过第二象限.12.解:设标准时间经过了x分钟,则57:60=380:x.解得x=400.400分钟合6小时40分钟,再加4小时30分钟=11小时10分钟.所以准确时间应该是11:10.故应填:11:10.13解:∵S△P AB+S△PCD=S▱ABCD=S△ACD,∴S△ACD﹣S△PCD=S△P AB,则S△P AC=S△ACD﹣S△PCD﹣S△P AD,=S△P AB﹣S△P AD,=5﹣2,=3.故答案为:3.14.解:方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]=[x12+x22+…+x n2﹣2(x1+x2+…+x n)+n2]=[x12+x22+…+x n2﹣2×n+n2]=[x12+x22+…+x n2]﹣2=×10﹣()2=.故填.15.解:把323x+457y=1103与177x+543y=897联立,解得,∴a=2,b=1,因此a2+2004b2=2008.故答案为:2008.16.解:设该校去参加春游的人数为a人,则有,解得:a=270设租用45座客车x辆,则租用60座客车(x+1)辆,由题意若单独租45座客车需要270÷45=6辆,租金250×6=1500元,若单独租60座客车需要(270+30)÷60=5辆,租金300×5=1500元,则有:,解得:2≤x<∵x为正整数∴x=2即租45座客车2辆,60座客车3辆,此时租金为:250×2+300×3=1400(元).故答案为270,1400.17.解:解原方程组得,,假设x=1时,可求得a=﹣7,y=﹣1;同样设x为其他整数,a、y的值都不能为整数,∴原方程组的整数解为.18.解:原式可化为:12﹣(n+1)2+22﹣(n+2)2+…n2﹣(2n)2=﹣10115,﹣n(n+2)﹣n(n+4)﹣n(n+6)﹣…﹣n(3n)=﹣10115,﹣n(n+2+n+4+n+6+…+3n﹣2+3n)=﹣10115,﹣n3﹣2n(1+2+3+…+n)=﹣10115,﹣n3﹣2n()=﹣10115,2n3+n2=10115∴n=17.19.解:设每月用水量为xm3,支付水费为y元.则y=,由题意知:0<c≤5∴8<8+c≤13从表中可知,第二、三月份的水费均大于13元,故用水量15m3、22m3均大于最低限量am3,将x=15,x=22分别代入②式,得解得b=2,2a=c+19 ⑤再分析一月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2(9﹣a)+c,即2a=c+17 ⑥⑥与⑤矛盾.故9≤a,则一月份的付款方式应选①式,则8+c=9,∴c=1代入⑤式得,a=10.答:a=10,b=2,c=1.20.解:(1)设剪去的正方形边长为xcm,由题意,得(10﹣2x)(8﹣2x)=48,即x2﹣9x+8=0解得x1=8(不合题意,舍去),x2=1.∴剪去的正方形的边长为1cm.…(2分)(2)折合而成的无盖长方体盒子的侧面积不可能等于52 cm2,理由如下:设剪去的正方形边长为xcm,由题意,得2[x(10﹣2x)+x(8﹣2x)]=52…(2分)整理得2x2﹣9x+13=0∵△=b2﹣4ac=81﹣4×2×13<0,∴原方程没有实数解.即折合而成的无盖长方体盒子的侧面积不可能等于52 cm2.…(2分)(3)设剪去的正方形边长为xcm,若按图1所示的方法剪折,解方程,得该方程没有实数解.…(3分)若按图2所示的方法剪折,解方程,得.∴当按图2所示的方法剪去的正方形边长为cm或3cm时,能使得到的有盖长方体盒子的侧面积达到30 cm2.…(3分)。
2018-2019学年浙江省绍兴市诸暨市七年级(上)期末数学试卷解析版

2018-2019学年浙江省绍兴市诸暨市七年级(上)期末数学试卷解析版2018-2019学年浙江省绍兴市诸暨市七年级(上)期末数学试卷⼀、选择题(本⼤题共10⼩题,共30.0分)1.下列说法正确的是()A. 负数没有倒数B. 正数的倒数⽐⾃⾝⼩C. 任何有理数都有倒数D. 的倒数是2.下列各数|-2|,-(-2)2,-(-2),(-2)3中,负数的个数有()A. 1个B. 2个C. 3个D. 4个3.在国家“⼀带⼀路”战略下,我国与欧洲开通了互利互惠的中欧班列.⾏程最长,途经城市和国家最多的⼀趟专列全程长13000km,将13000⽤科学记数法表⽰应为()A. B. C. D.4.若|b+2|与(a-3)2互为相反数,则b a的值为()A. B. C. D. 85.a、b、c、m都是有理数,且a+2b+3c=m,a+b+2c=m,那么b与c的关系是()A. 互为相反数B. 互为倒数C. 相等D. ⽆法确定6.下列计算正确的是()A. B. C. D.7.若⽅程(a+3)x|a|-2+6=0是关于x的⼀元⼀次⽅程,则a的值是()A. 3B.C.D.8.甲计划⽤若⼲个⼯作⽇完成某项⼯作,从第⼆个⼯作⽇起,⼄加⼊此项⼯作,且甲、⼄两⼈⼯作效率相同,结果提前3天完成任务,则甲计划完成此项⼯作的天数是()A. 5B. 6C. 7D. 89.某⼈沿电车路线⾏⾛,每隔12分钟有⼀辆电车从后⾯开来,每隔4分钟有⼀辆电车迎⾯开来,假设此⼈和电车都是匀速前进,车站的发车时间间隔相同,则发车时间间隔为()A. 6分钟B. 12分钟C. 8分钟D. 4分钟10.某企业接到为地震灾区⽣产活动房的任务,此企业拥有九个⽣产车间,现在每个车间原有的成品活动房⼀样多,每个车间的⽣产能⼒也⼀样.有A、B两组检验员,其中A组有8名检验员前两天时间将第⼀、⼆车间的所有成品(原来的和这两天⽣产的)检验完毕后,再去检验第三、四车间所有成品,⼜⽤去三天时间;同时这五天时间B组检验员也检验完余下的五个车间的所有成品.如果每个检验员的检验速度⼀样快,那么B组检验员⼈数为()A. 8⼈B. 10⼈C. 12⼈D. 14⼈⼆、填空题(本⼤题共10⼩题,共30.0分)11.的倒数是______.12.的平⽅根为______.13.3x m y4与x3y n是同类项,则2m-n=______.14.对于任意不相等的两个数a,b,定义⼀种运算*如下:a*b=,如3*2==,那么12*(3*1)=______.15.当x=1时,代数式px3+ax+1的值为2018,则当x=-1时,代数式px3+ax+1的值为______.16.化简(-)2+|1-|+的结果为______.17.若|2x-1|=7,则|5x+7|=______.18.观察算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256…,根据上述算式的规律,那么22018的个位数字是______.19.如图,已知OA⊥OB,点O为垂⾜,OC是∠AOB内任意⼀条射线,OB,OD分别平分∠COD,∠BOE,下列结论:①∠COD=∠BOE;②∠COE=3∠BOD;③∠BOE=∠AOC;④∠AOC与∠BOD互余,其中正确的有______(只填写正确结论的序号).20.如图,甲、⼄两动点分别从正⽅形ABCD的顶点,A,C同时沿正⽅形的边开始移动,甲点依顺时针⽅向环⾏,⼄点依逆时针⽅向环⾏,若⼄的速度是甲的速度的4倍,则它们第2019次相遇在______边上(填AB,BC,CD或AD).三、计算题(本⼤题共2⼩题,共14.0分)21.解下列⽅程:(1)-1=(2)=322.先化简,再求值(1)求代数式(4a2-2a-8)-(a-1),其中a=1;(2)求代数式x-2(x-y2)+(-x+y2)的值,其中x=,y=-2.四、解答题(本⼤题共3⼩题,共26.0分)23.已知多项式A=2x2-xy+my-8,B=-nx2+xy+y+7,A-2B中不含有x2项和y项,求n m+mn的值.24.某⽂艺团体为“希望⼯程”募捐义演,全价票为每张18元,学⽣享受半价,某场演出共售出966张票,收⼊15480元,问这场演出共售出学⽣票多少张.25.如图,P是线段AB上任⼀点,AB=12cm,C、D两点分别从P、B同时向A点运动,且C点的运动速度为2cm/s,D点的运动速度为3cm/s,运动的时间为ts.(1)若AP=8cm,①运动1s后,求CD的长;②当D在线段PB上运动时,试说明AC=2CD;(2)如果t=2s时,CD=1cm,试探索AP的值.答案和解析1.【答案】D【解析】解:A、负数有倒数,例如-1的倒数是-1,选项错误;B、正数的倒数不⼀定⽐⾃⾝⼩,例如0.5的倒数是2,选项错误;C、0没有倒数,选项错误;D、-1的倒数是-1,正确.故选:D.根据倒数的定义可知.本题主要考查了倒数的定义及性质.乘积是1的两个数互为倒数,除0以外的任何数都有倒数,倒数等于它本⾝的数是±1.2.【答案】B【解析】解:|-2|=2,-(-2)2=-4,-(-2)=2,(-2)3=-8,-4,-8是负数,∴负数有2个.故选:B.先对每个数进⾏化简,然后再确定负数的个数.本题考查了去绝对值,有理数的乘⽅、正数和负数的意义,关键准确掌握.3.【答案】B【解析】解:将13000⽤科学记数法表⽰为:1.3×104.故选:B.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,⼩数点移动了多少位,n的绝对值与⼩数点移动的位数相同.当原数绝对值≥1时,n 是⾮负数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表⽰⽅法.科学记数法的表⽰形式为a×10n的形式,其中1≤|a|<10,n 为整数,表⽰时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:∵|b+2|与(a-3)2互为相反数,∴|b+2|+(a-3)2=0,∴b+2=0,a-3=0,解得:b=-2,a=3.∴b a=(-2)3=-8.故选:C.先依据⾮负数的性质求得a、b的值,然后再利⽤乘⽅法则求解即可.本题主要考查的是偶次⽅的性质,依据⾮负数的性质求得a、b的值是解题的关键.5.【答案】A【解析】解:由题意得,a+2b+3c=m,a+b+2c=m,则a+2b+3c=a+b+2c,即b+c=0,b与c互为相反数.故选:A.由于a+2b+3c=m,a+b+2c=m,则a+2b+3c=a+b+2c,则b与c的关系即可求出.本题考查了代数式的换算,⽐较简单,容易掌握.6.【答案】C【解析】解:A、7a+a=8a,故本选项错误;B、5y-3y=2y,故本选项错误;C、3x2y-2yx2=x2y,故本选项正确;D、3a+2b=5ab,不是同类项,不能合并,故本选项错误;故选:C.根据合并同类项得法则依次判断即可.本题主要考查了合并同类项的法则,熟练掌握运算法则是解题的关键.7.【答案】A【解析】解:∵⽅程(x+3)x|a|-2+6=0是关于x的⼀元⼀次⽅程,∴|a|-2=1,且a+3≠0,解得:a=3,故选:A.利⽤⼀元⼀次⽅程的定义判断即可.本题考查的是⼀元⼀次⽅程的定义,根据题意列出关于a的不等式组是解答此题的关键.8.【答案】C【解析】解:(⽅法⼀)设甲计划完成此项⼯作的天数为x,根据题意得:x-(1+)=3,解得:x=7.(⽅法⼆)设甲计划完成此项⼯作的天数为x,依题意,得:+=1,解得:x=7,经检验,x=7是所列分式⽅程的解,且符合题意.故选:C.(⽅法⼀)设甲计划完成此项⼯作的天数为x,根据甲先⼲⼀天后甲⼄合作完成⽐甲单独完成提前3天,即可得出关于x的⼀元⼀次⽅程,解之即可得出结论;(⽅法⼆)设甲计划完成此项⼯作的天数为x,根据甲完成的⼯作量+⼄完成的⼯作量=总⼯程量(单位1),即可得出关于x的分式⽅程,解之经检验后即可得出结论.本题考查了⼀元⼀次(分式)⽅程的应⽤,找准等量关系,正确列出⼀元⼀次(分式)⽅程是解题的关键.9.【答案】A【解析】解:设⼈步⾏的速度为x⽶/分钟,电车的速度为y⽶/分钟,根据题意得:12(y-x)=4(x+y),∴y=2x,∴=6.故选:A.设⼈步⾏的速度为x⽶/分钟,电车的速度为y⽶/分钟,根据路程=速度×时间结合相邻两辆电车之间的距离相等,即可得出关于x,y的⼆元⼀次⽅程,解之可得出y=2x,再利⽤发车间隔时间=相邻两车间的距离÷电车的速度即可求出发车间隔时间.本题考查了⼆元⼀次⽅程的应⽤,找准等量关系,正确列出⼆元⼀次⽅程是解题的关键.10.【答案】C解:设每个车间原有成品a件,每个车间每天⽣产b件产品,根据检验速度相同得:,解得a=4b;则A组每名检验员每天检验的成品数为:2(a+2b)÷(2×8)=12b÷16=b.那么B组检验员的⼈数为:5(a+5b)÷(b)÷5=45b÷b÷5=12(⼈).故选:C.设A组所检验的每个车间原有成品a件,每个车间1天⽣产b件,可得A组前两天检验的总件数和后三天检验的总件数为.根据检验员的检验速度相同,可列式等式得到a和b的关系,即可得A组⼀名检验员每天检验的成品数.再根据B组检验员的⼈数=五个车间的所有成品÷A组⼀名检验员每天检验的成品数,列式即可得解.本题考查了⼀元⼀次⽅程的应⽤,本题是⼀道叙述⽐较长的题⽬,解题时应认真读题,理解各种量之间的关系列出等式.11.【答案】【解析】解:1÷(-)=-.故答案为:-.根据两个数的积为1,则两个数互为倒数,因此求⼀个数的倒数就是⽤1除以这个数求上即是.此题考查的知识点是倒数,关键是要明确倒数的意义.12.【答案】±3【解析】解:8l的平⽅根为±3.故答案为:±3.根据平⽅根的定义即可得出答案.此题考查了平⽅根的知识,属于基础题,掌握定义是关键.13.【答案】2【解析】解:∵3x m y4与x3y n是同类项,∴n=4,m=3,∴2m-n=2×3-4=6-4=2,故答案为2.根据3x m y4与x3y n是同类项,可以求得m、n的值,从⽽可以得到2m-n的值.本题考查同类项,解题的关键是明确同类项的定义,运⽤同类项的知识可以解答问题.【解析】解:∵3*1====1,∴12*(3*1)=12*1==,故答案为:.先依据定义列出算式,然后再进⾏计算即可.此题主要考查了实数运算,正确理解计算公式是解题关键.15.【答案】-2017【解析】解:解:将x=1代⼊px3+ax+1=2018,∴p+a+1=2018,∴p+a=2018,将x=-1代⼊px3+ax+1∴-p-a+1=-(p+a)+1=-2018+1=-2017,故答案为:-2017.将x=1代⼊px3+ax+1,求出p与a的关系式,然后将x=-1代⼊px3+ax+1即可求出答案.本题考查代数式求值,解题的关键是求利⽤的条件求出p+a的值,本题涉及整体的思想.16.【答案】-1【解析】解:原式=2+-1-2=-1,故答案为:-1.根据实数的混合运算顺序和运算法则计算可得.本题主要考查实数的运算,解题的关键是掌握实数的混合运算顺序和运算法则.17.【答案】47或8【解析】解:∵|2x-1|=7,∴2x-1=±7,解得:x=8或x=-3,把x=8代⼊|5x+7|=47,把x=-3代⼊|5x+7|=8,故答案为:47或8.根据绝对值得出x的值,进⽽解答即可.此题考查绝对值问题,关键是根据绝对值得出x的值.18.【答案】4【解析】解:∵2n的个位数字是2,4,8,6四个⼀循环,∵2018÷4=504…2,∴22018的末位数字应该是4.故答案为:4.先找出规律,求出2018÷4=504…2,即可得出答案.本题考查了尾数特征的应⽤,能根据已知找出规律是解此题的关键.19.【答案】①②④【解析】解:①∵OB,OD分别平分∠COD,∠BOE,∴∠COB=∠BOD=∠DOE,设∠COB=x,∴∠COD=2x,∠BOE=2x,∴∠COD=∠BOE,故①正确;②∵∠COE=3x,∠BOD=x,∴∠COE=3∠BOD,故②正确;③∵∠BOE=2x,∠AOC=90°-x,∴∠BOE与∠AOC不⼀定相等,故③不正确;④∵OA⊥OB,∴∠AOB=∠AOC+∠COB=90°,∵∠BOC=∠BOD,∴∠AOC与∠BOD互余,故④正确,∴本题正确的有:①②④;故答案为:①②④.由⾓平分线将⾓分成相等的两部分.结合选项得出正确结论.本题考查了⾓平分线的性质,互余的定义,垂直的定义,掌握图形间⾓的和、差、倍、分关系是解题的关键.20.【答案】BC【解析】解:根据题意分析可得:⼄的速度是甲的速度的4倍,故第1次相遇,甲⾛了正⽅形周长的×=;从第2次相遇起,每次甲⾛了正⽅形周长的,从第2次相遇起,5次⼀个循环.因此可得:从第2次相遇起,每次相遇的位置依次是:DC,点C,CB,BA,AD;依次循环.(2019-1)÷5=403…3,故它们第2019次相遇位置与第三次相同,在边BC上.故答案为BC.因为⼄的速度是甲的速度的4倍,所以第1次相遇,甲⾛了正⽅形周长的×=;从第2次相遇起,每次甲⾛了正⽅形周长的,从第2次相遇起,5次⼀个循环,从⽽不难求得它们第2019次相遇位置.此题主要考查了⾏程问题中的相遇问题及按⽐例分配的运⽤,通过计算发现规律是解题关键.21.【答案】解:(1)2(x-3)-6=3(2x+4),2x-6-6=6x+12,2x-6x=12+6+6,-4x=24,x=-6;(2)-=3,5x-10-(2x+2)=3,5x-10-2x-2=3,5x-2x=3+10+2,3x=15,x=5.【解析】(1)依次去分母、去括号、移项、合并同类项、系数化为1求解可得;(2)先将分母化为整数,再依次去分母、去括号、移项、合并同类项、系数化为1可得.本题主要考查解⼀元⼀次⽅程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解⼀元⼀次⽅程的⼀般步骤,针对⽅程的特点,灵活应⽤,各种步骤都是为使⽅程逐渐向x=a形式转化.22.【答案】解:(1)原式=a2-a-2-a+1=a2-a-1,当a=1时,原式=1-1-1=-1;(2)原式=x-2x+y2-x+y2=y2-3x,当x=,y=-2时,原式=(-2)2-3×=4-2=2.【解析】(1)原式去括号合并得到最简结果,将a的值代⼊计算即可求出值.(2)原式去括号合并得到最简结果,将x和y的值代⼊计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.23.【答案】解:∵A=2x2-xy+my-8,B=-nx2+xy+y+7,∴A-2B=2x2-xy+my-8+2nx2-2xy-2y-14=(2+2n)x2-3xy+(m-2)y-22,由结果不含有x2项和y项,得到2+2n=0,m-2=0,解得:m=2,n=-1,则原式=1-2=-1.【解析】把A与B代⼊A-2B中,去括号合并得到最简结果,由结果不含有x2项和y项求出m与n的值,代⼊原式计算即可得到结果.此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.24.【答案】解:设这场演出共售出学⽣票x张,则全票为(966-x)张,根据题意可得:9x+18(966-x)=15480,解得:x=212,答:这场演出共售出学⽣票212张.【解析】直接设这场演出共售出学⽣票x张,则全票为(966-x)张,利⽤收⼊15480元,得出等式求出答案.此题主要考查了⼀元⼀次⽅程的应⽤,正确得出等式是解题关键.25.【答案】解:(1)①由题意可知:CP=2×1=2cm,DB=3×1=3cm∵AP=8cm,AB=12cm∴PB=AB-AP=4cm∴CD=CP+PB-DB=2+4-3=3cm②∵AP=8,AB=12,∴BP=4,AC=8-2t,∴DP=4-3t,∴CD=DP+CP=2t+4-3t=4-t,∴AC=2CD;(2)当t=2时,CP=2×2=4cm,DB=3×2=6cm,当点D在C的右边时,如图所⽰:由于CD=1cm,∴CB=CD+DB=7cm,∴AC=AB-CB=5cm,∴AP=AC+CP=9cm,当点D在C的左边时,如图所⽰:∴AD=AB-DB=6cm,∴AP=AD+CD+CP=11cm综上所述,AP=9或11【解析】(1)①先求出PB、CP与DB的长度,然后利⽤CD=CP+PB-DB即可求出答案.②⽤t表⽰出AC、DP、CD的长度即可求证AC=2CD;(2)当t=2时,求出CP、DB的长度,由于没有说明D点在C点的左边还是右边,故需要分情况讨论.本题考查两点间的距离,涉及列代数式,分类讨论的思想,属于中等题型.。
苏科版八年级上册数学期末易错试题汇总(含答案)

苏科版八年级上册数学期末易错试题汇总(含答案)—、选择题1.如图.在正方形网格中,若点A(U),点C(3,-2),则点3的坐标为()ABC2・下列运算正确的是()A.屮=2B. ∣∙3∣=∙ 3 C・ \阿=±2 D・导=33・下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()4.甲竹文是我国的一种古代文字,是汉字的早期形式,下列甲竹文中,不是轴对称的是A.甲和乙B.甲和丙C.乙和丙D.只有乙7.已知:如图,Z I = Z 2,则不一左能使AABD旻AACD的条件是()A. (1,2)B. (0,2)C. (2,0)D. (2J)5.下列根式中是最简二次根式的是(A- J^ B. √Jc. √9D. √126.如图,已知AABC的三条边和三个角,则职乙.丙三个三角形中和AABC全等的是( )8. 在平而直角坐标系中,将函数y = 3x 的图象向上平移6个单位长度,则平移后的图象与 X 轴的交点坐标为()A. (2,0) B ・(-2,0) C. (6z 0) D ・卜6,0)9. 在"BC 中,ZACB = 90°, CD 丄于点6 ZA = 30。
,以下说法错误的是()10.正比例函数y^kx ( ∕c≠0)的函数值y 随着X 增大而减小,则一次函数y=x÷k 的图象大致二. 填空题12・如图,在四边形ABCD 中,ZA=90°, AD=A 9连接BD, BD 丄CD, Z ADB=A C.若P 是BC 13.如图,一艘轮船由海平而上的人地出发向南偏西459的方向行驶50海里到达8地, 再由B地向北偏西159的方向行驶50海里到达C 地,则久C 两地相距 海里.B ・ BD = CD C. Z B = ZCD ・ Z BDA = Z CDA A. AC=2CD B. AD=2CD C. AD=3BD D ・ AB=2BC11∙若关于”的分式方程口一药 =1有增根,边上一动点,则DP 长的最小值为DA ・ AB =北14・如图,等边AOAB的边长为2,以它的顶点O为原点,03所在的直线为X轴,建立平而直角坐标系•若直线尸x+b与A0A3的边界总有两个公共点,则实数b的范帀是—・15.在一次函数歹=伙一l)x + 5中,)'随X的增大而增大,贝%的取值范围__________ ・16.如图「匸比例函数y=kx与反比例函数y=9的图象有一个交点A(2 , m) , AB丄X轴于点XB,___________________________________________________________________ 平移直线y=kx使其经过点B,得到直线I ,则直线I对应的函数表达式是__________________ ・17.已知一次函数y=mχ-3的图像与X轴的交点坐标为(畑0),且2≤x0≤3,则m的取值范围是________ .18.小明体重约为62.36千克,如果精确到0.1千克,其结果为_千克.19.已知函数y=×+m-2019 (m是常数)是正比例函数,则m= ________________20・如图,在2∖A3C中,ZC= 90% Z8 = 22.5o, DE垂直平分&3交BC于点& EC=I,则三角形ACE的面积为_・21.(1)计算:√16-√^8 :(2)求X 的值:(X +2)2-9 二0・22.已知2α-1的算术平方根是3, 3a + b-∖的平方根是±4,C是2√T的整数部分,求a +2b-c的平方根.23.某列车平均提速vkm∕h,用相同的时间,列车提速前行驶150km,提速后比提速前多行驶5Okm,提速前列车的平均速度为多少?(用含V的式子表示)24.某商店准备购进A,B两种商品,A种商品毎件的进价比3种商品每件的进价多20元用3000元购进A种商品和用1800元购进3种商品的数量相同.商店将A种商品每件的售价建为80元,〃种商品每件的售价建为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店汁划用不超过2560元的资金购两种商品共40件,苴中A种商品的数量不低于3种商品数疑的一半,该商店有几种进货方案?(3)端午节期间,商店开展优惠促销活动,决圧对每件A种商品售价优惠川 (10<w<20)元,〃种商品售价不变,在(2)条件下,请设计出销售这40件商品获得总利润最大的进货方案.25.如图,点D是AABC内部的一点,BD=CD,过点D作DE丄AB , DF丄AC,垂足分别为 E X F,且 BE=CF.求证:AB=AC .四、压轴题26.如图,已知等^AABC中,AB=AC, ZA<90o, CD是"8C的高,BF是MBC的角平分线,CD与BE交于点P.当ZA的大小变化时,HPC的形状也随之改变.(1)当ZA=44。
浙江省绍兴市越城区五校联考2019-2020学年八年级(上)期末数学试卷 解析版

2019-2020学年八年级(上)期末数学试卷一.选择题(共10小题)1.以下列各组数为边长,能组成一个三角形的是()A.3,4,5 B.2,2,5 C.1,2,3 D.10,20,40 2.若等腰三角形的两边长分别为4和6,则它的周长是()A.14 B.15 C.16 D.14或163.对一个假命题举反例时,应使所举反例()A.满足命题的条件,并满足命题的结论B.满足命题的条件,但不满足命题的结论C.不满足命题的条件,但满足命题的结论D.不满足命题的条件,也不满足命题的结论4.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y 5.点P(﹣2,﹣4)与点Q(6,﹣4)的位置关系是()A.关于直线x=2对称B.关于直线y=2对称C.关于x轴对称D.关于y轴对称6.如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.AB=AC B.∠BAC=90°C.BD=AC D.∠B=45°7.如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6﹣b,a﹣10)落在第几象限?()A.一B.二C.三D.四8.已知不等式x﹣1≥0,此不等式的解集在数轴上表示为()A.B.C.D.9.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.10.如图,直线y=x+m与y=nx﹣5n(n≠0)的交点的横坐标为3,则关于x的不等式x+m >nx﹣5n>0的整数解为()A.3 B.4 C.5 D.6二.填空题(共6小题)11.下列图形中全等图形是(填标号).12.如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x y(用“>”或“<”填空).13.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是°.14.如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E为垂足,连接CD,若BD=1,则AC的长是.15.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.16.如图,直线l1:y=﹣2x+2交x轴于点A,交y轴于点B,直线l2:y=x+1交x轴于点D,交y轴于点C,直线l1、l2交于点M.(1)点M坐标为;(2)若点E在y轴上,且△BME是以BM为一腰的等腰三角形,则E点坐标为.三.解答题(共7小题)17.解不等式组18.如图,在方格纸中,以格点连线为边的三角形叫格点三角形,请按要求完成下列操作:先将格点△ABC向右平移4个单位得到△A1B1C1,再将△A1B1C1绕点C1点旋转180°得到△A2B2C2.19.在△ABC中,∠ABC=45°,F是高AD与高BE的交点.(1)求证:△ADC≌△BDF.(2)连接CF,若CD=4,求CF的长.20.在平面直角坐标系中,已知直线l:y=﹣x+2交x轴于点A,交y轴于点B,直线l 上的点P(m,n)在第一象限内,设△AOP的面积是S.(1)写出S与m之间的函数表达式,并写出m的取值范围.(2)当S=3时,求点P的坐标.(3)若直线OP平分△AOB的面积,求点P的坐标.21.如图,已知在△ABC中,AB=AC,D是BC边上任意一点,E在AC边上,且AD=AE.(1)若∠BAD=40°,求∠EDC的度数;(2)若∠EDC=15°,求∠BAD的度数;(3)根据上述两小题的答案,试探索∠EDC与∠BAD的关系.22.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A 型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.23.如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.以下列各组数为边长,能组成一个三角形的是()A.3,4,5 B.2,2,5 C.1,2,3 D.10,20,40 【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、3+4>5,能组成三角形;B、2+2<5,不能组成三角形;C、1+2=3,不能组成三角形;D、10+20<40,不能组成三角形.故选:A.2.若等腰三角形的两边长分别为4和6,则它的周长是()A.14 B.15 C.16 D.14或16【分析】根据等腰三角形的性质,分两种情况:①当腰长为6时,②当腰长为4时,解答出即可.【解答】解:根据题意,①当腰长为6时,符合三角形三边关系,周长=6+6+4=16;②当腰长为4时,符合三角形三边关系,周长=4+4+6=14.故选:D.3.对一个假命题举反例时,应使所举反例()A.满足命题的条件,并满足命题的结论B.满足命题的条件,但不满足命题的结论C.不满足命题的条件,但满足命题的结论D.不满足命题的条件,也不满足命题的结论【分析】利用反例判断命题为假命题的方法对各选项进行判断.【解答】解:对一个假命题举反例时,应使所举反例满足命题的条件,但不满足命题的结论.故选:B.4.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y 【分析】根据不等式的基本性质,进行判断即可.【解答】解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A选项正确;B、根据不等式的性质2,可得>,故B选项正确;C、根据不等式的性质1,可得x+3>y+3,故C选项正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;故选:D.5.点P(﹣2,﹣4)与点Q(6,﹣4)的位置关系是()A.关于直线x=2对称B.关于直线y=2对称C.关于x轴对称D.关于y轴对称【分析】根据轴对称的性质解决问题即可.【解答】解:点P(﹣2,﹣4)与点Q(6,﹣4)的位置关系是关于直线x=2对称,故选:A.6.如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.AB=AC B.∠BAC=90°C.BD=AC D.∠B=45°【分析】此题是开放型题型,根据题目现有条件,AD=AD,∠ADB=∠ADC=90°,可以用HL判断确定,也可以用SAS,AAS,SSS判断两个三角形全等.【解答】解:添加AB=AC,符合判定定理HL;添加BD=DC,符合判定定理SAS;添加∠B=∠C,符合判定定理AAS;添加∠BAD=∠CAD,符合判定定理ASA;选其中任何一个均可.故选:A.7.如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6﹣b,a﹣10)落在第几象限?()A.一B.二C.三D.四【分析】由平面直角坐标系判断出a<7,b<5,然后求出6﹣b,a﹣10的正负情况,再根据各象限内点的坐标特征解答.【解答】解:∵(5,a)、(b,7),∴a<7,b<5,∴6﹣b>0,a﹣10<0,∴点(6﹣b,a﹣10)在第四象限.故选:D.8.已知不等式x﹣1≥0,此不等式的解集在数轴上表示为()A.B.C.D.【分析】根据不等式的性质求出不等式的解集,再在数轴上表示出不等式的解集即可.【解答】解:∵x﹣1≥0,∴x≥1,在数轴上表示不等式的解集为:,故选:C.9.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.【分析】根据题意画出相应的图形,如图所示,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD垂直于AB,由直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘以斜边上的高CD除以2来求,两者相等,将AC,AB及BC的长代入求出CD的长,即为C到AB的距离.【解答】解:根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB==15,过C作CD⊥AB,交AB于点D,又S△ABC=AC•BC=AB•CD,∴CD===,则点C到AB的距离是.故选:A.10.如图,直线y=x+m与y=nx﹣5n(n≠0)的交点的横坐标为3,则关于x的不等式x+m >nx﹣5n>0的整数解为()A.3 B.4 C.5 D.6【分析】令y=0可求出直线y=nx﹣5n与x轴的交点坐标,根据两函数图象与x轴的上下位置关系结合交点横坐标即可得出不等式x+m>nx﹣5n>0的解,找出其内的整数即可.【解答】解:当y=0时,nx﹣5n=0,解得:x=5,∴直线y=nx﹣5n与x轴的交点坐标为(5,0).观察函数图象可知:当3<x<5时,直线y=x+m在直线y=nx﹣5n的上方,且两直线均在x轴上方,∴不等式x+m>nx﹣5n>0的解为3<x<5,∴不等式x+m>nx﹣5n>0的整数解为4.故选:B.二.填空题(共6小题)11.下列图形中全等图形是⑤和⑦(填标号).【分析】要认真观察图形,从①开始找寻,看后面的谁与之全等,然后是②,看后面的哪一个与它全等,如此找寻,可得答案.【解答】解:由全等形的概念可知:共有1对图形全等,即⑤和⑦能够重合.故答案为:⑤和⑦.12.如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x<y(用“>”或“<”填空).【分析】由图知1号同学比2号同学矮,据此可解答.【解答】解:如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x<y,故答案为:<.13.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是140 °.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.故答案为:140.14.如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E为垂足,连接CD,若BD=1,则AC的长是2.【分析】求出∠ACB,根据线段垂直平分线求出AD=CD,求出∠ACD、∠DCB,求出CD、AD、AB,由勾股定理求出BC,再求出AC即可.【解答】解:∵∠A=30°,∠B=90°,∴∠ACB=180°﹣30°﹣90°=60°,∵DE垂直平分斜边AC,∴AD=CD,∴∠A=∠ACD=30°,∴∠DCB=60°﹣30°=30°,∵BD=1,∴CD=AD=2,∴AB=1+2=3,在Rt△BCD中,由勾股定理得:CB=,在Rt△ABC中,由勾股定理得:AC==2,故答案为:2.15.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.【分析】根据函数的图形可以得到甲用了30分钟行驶了12千米,乙用12分钟行驶了12千米,分别算出速度即可求得结果.【解答】解:∵据函数图形知:甲用了30分钟行驶了12千米,乙用(18﹣6)分钟行驶了12千米,∴甲每分钟行驶12÷30=千米,乙每分钟行驶12÷12=1千米,∴每分钟乙比甲多行驶1﹣=千米,故答案为:.16.如图,直线l1:y=﹣2x+2交x轴于点A,交y轴于点B,直线l2:y=x+1交x轴于点D,交y轴于点C,直线l1、l2交于点M.(1)点M坐标为(,);(2)若点E在y轴上,且△BME是以BM为一腰的等腰三角形,则E点坐标为(0,)或(0,)或(0,).【分析】(1)解析式联立,解方程即可求得;(2)求得BM的长,分两种情况讨论即可.【解答】解:(1)解得,∴点M坐标为(,),故答案为(,);(2)∵直线l1:y=﹣2x+2交x轴于点A,交y轴于点B,∴B(0,2),∴BM==,当B为顶点,则E(0,)或(0,);当M为顶点点,则MB=ME,E(0,),综上,E点的坐标为(0,)或(0,)或(0,),故答案为(0,)或(0,)或(0,).三.解答题(共7小题)17.解不等式组【分析】首先分别计算出两个不等式的解集,再根据解集的规律确定不等式组的解集.【解答】解:,解①得:x<10,解②得:1≤x,故不等式组的解为:1≤x<10.18.如图,在方格纸中,以格点连线为边的三角形叫格点三角形,请按要求完成下列操作:先将格点△ABC向右平移4个单位得到△A1B1C1,再将△A1B1C1绕点C1点旋转180°得到△A2B2C2.【分析】将△ABC向右平移4个单位后,横坐标变为x+4,而纵坐标不变,所以点A1、B1、C1的坐标可知,确定坐标点连线即可画出图形,将△ABC中的各点A、B、C旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2.【解答】解:如图所示:.19.在△ABC中,∠ABC=45°,F是高AD与高BE的交点.(1)求证:△ADC≌△BDF.(2)连接CF,若CD=4,求CF的长.【分析】(1)先证明AD=BD,再证明∠FBD=∠DAC,从而利用ASA证明△BDF≌△ADC;(2)利用全等三角形对应边相等得出DF=CD=4,根据勾股定理求出CF即可.【解答】(1)证明:∵AD⊥BC,∴∠FDB=∠ADC=90°,∵∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,∵BE⊥AC,∴∠AEF=∠FDB=90°,∵∠AFE=∠BFD,∴由三角形内角和定理得:∠CAD=∠FBD,在△ADC和△BDE中∴△ADC≌△BDE(ASA);(2)解:∵△ADC≌△BDE,CD=4,∴DF=CD=4,在Rt△FDC中,由勾股定理得:CF===4.20.在平面直角坐标系中,已知直线l:y=﹣x+2交x轴于点A,交y轴于点B,直线l 上的点P(m,n)在第一象限内,设△AOP的面积是S.(1)写出S与m之间的函数表达式,并写出m的取值范围.(2)当S=3时,求点P的坐标.(3)若直线OP平分△AOB的面积,求点P的坐标.【分析】(1)根据点A、P的坐标求得△AOP的底边与高线的长度;然后根据三角形的面积公式即可求得S与m的函数关系式;(2)将S=3代入(1)中所求的式子,即可求出点P的坐标;(3)由直线OP平分△AOB的面积,可知OP为△AOB的中线,点P为AB的中点,根据中点坐标公式即可求解.【解答】解:∵直线l:y=﹣x+2交x轴于点A,交y轴于点B,∴A(4,0),B(0,2),∵P(m,n)∴S=×4×(4﹣m)=4﹣m,即S=4﹣m.∵点P(m,n)在第一象限内,∴m+2n=4,∴,解得0<m<4;(2)当S=3时,4﹣m=3,解得m=1,此时y=(4﹣1)=,故点P的坐标为(1,);(3)若直线OP平分△AOB的面积,则点P为AB的中点.∵A(4,0),B(0,2),∴点P的坐标为(2,1).21.如图,已知在△ABC中,AB=AC,D是BC边上任意一点,E在AC边上,且AD=AE.(1)若∠BAD=40°,求∠EDC的度数;(2)若∠EDC=15°,求∠BAD的度数;(3)根据上述两小题的答案,试探索∠EDC与∠BAD的关系.【分析】(1)根据等腰三角形性质求出∠B的度数,根据三角形的外角性质求出∠ADC,求出∠DAC,根据等腰三角形性质求出∠ADE即可;(2)根据三角形的一个外角等于和它不相邻的两个内角的和,∠AED=∠EDC+∠C,∠ADC =∠B+∠BAD,再根据等边对等角的性质∠B=∠C,∠ADE=∠AED,代入数据计算即可求出∠BAD的度数;(3)根据(1)(2)的结论猜出即可.【解答】解:(1)∵AB=AC,∴∠B=∠C=(180°﹣∠BAC)=90°﹣∠BAC,∴∠ADC=∠B+∠BAD=90°﹣∠BAC+40°=130°﹣∠BAC,∵∠DAC=∠BAC﹣∠BAD=∠BAC﹣40°,∴∠ADE=∠AED=(180°﹣∠DAC)=110°﹣∠BAC,∴∠EDC=∠ADC﹣∠ADE=(130°﹣∠BAC)﹣(110°﹣∠BAC)=20°,故∠EDC的度数是20°.(2)∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,∵AD=AE,∴∠AED=∠ADE,∵AB=AC,∴∠B=∠C,∴∠B+∠BAD=∠EDC+∠C+∠EDC,即∠BAD=2∠EDC,∵∠EDC=15°,∴∠BAD=30°.(3)∠EDC与∠BAD的数量关系是∠EDC=∠BAD.22.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A 型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【分析】(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意列出方程组求解,(2)①据题意得,y=﹣50x+15000,②利用不等式求出x的范围,又因为y=﹣50x+15000是减函数,所以x取34,y取最大值,(3)据题意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三种情况讨论,①当0<m<50时,y随x的增大而减小,②m=50时,m﹣50=0,y=15000,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.【解答】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.23.如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,即可求得A和C的坐标;(2)根据题意可知△ACD是等腰三角形,算出AD长即可求得D点坐标,最后即可求出CD的解析式;(3)将点P在不同象限进行分类,根据全等三角形的判定方法找出所有全等三角形,找出符合题意的点P的坐标.【解答】解:(1)A(2,0);C(0,4)(2分)(2)由折叠知:CD=AD.设AD=x,则CD=x,BD=4﹣x,根据题意得:(4﹣x)2+22=x2解得:此时,AD=,(2分)设直线CD为y=kx+4,把代入得(1分)解得:∴直线CD解析式为(1分)(3)①当点P与点O重合时,△APC≌△CBA,此时P(0,0)②当点P在第一象限时,如图,由△APC≌△CBA得∠ACP=∠CAB,则点P在直线CD上.过P作PQ⊥AD于点Q,在Rt△ADP中,AD=,PD=BD==,AP=BC=2由AD×PQ=DP×AP得:∴∴,把代入得此时(也可通过Rt△APQ勾股定理求AQ长得到点P的纵坐标)③当点P在第二象限时,如图同理可求得:∴此时综合得,满足条件的点P有三个,分别为:P1(0,0);;.。
2018-2019学年度八年级上数学期末试卷(解析版)

2018-2019学年联考八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
浙江省绍兴市柯桥区2020-2021学年八年级上学期期末数学试题(word版含答案)

2020 学年第一学期八年级期终学业评价调测试卷(2021.1)数学(满分:100 分 考试时间:120 分钟 考试中不允许使用计算器 命题人:姚志敏)一、选择题(每小题 2 分,共 20 分)1.下列二次根式中,是最简二次根式的是( ▲ )A .B . bC .D .2.如果 a >b ,那么下列各式中正确的是( ▲ ) A .a +1<b +1 B .-a+3<-b+3 C .-a >-b D .22a b 3. 如图,点 C ,D 在线段 AB 的同侧,如果∠CAB =∠DBA ,那么下列条件中不能..判定△ABD ≌△BAC 的是( ▲ )A .∠D =∠CB .∠CAD =∠DBC C .AD =BC D .BD =AC4.下列选项中,可以用来证明命题“若 a > 0 ,则 a > 0 ”是假命题的反例的是( ▲ ) A .a=-1 B .a=0 C .a=1 D .a=2 5.关于一次函数 y =5x ﹣3 的描述,下列说法正确的是( ▲ ) A .图象经过第一、二、三象限 B .向下平移 3个单位长度,可得到 y =5x C .函数的图象与 x 轴的交点坐标是(0,﹣3) D .图象经过点(1,2)6.等腰三角形的一个内角为 70°,则另外两个内角的度数分别是( ▲ ) A .55°,55° B .70°,40°或 70°,55° C .70°,40° D .55°,55°或 70°,40°7.如图,直线 y 1=x +b 与 y 2=kx -1 相交于点 P ,点 P 的横坐标为-1,则关于 x 的不等式 x +b >kx -1 的解集在数轴上表示正确的是(▲)A. B. C. D.8.如图,已知矩形OABC,A(4,0),C(0,4),动点P 从点A出发,沿A﹣B﹣C﹣O 的路线匀速运动,设动点P 的运动路程为t,△OAP 的面积为S,则下列能大致反映S 与t 之间关系的图象是(▲)A.B.C.D.9. 如图,在△ABC 中,已知点D,E,F 分别是BC,AD,CE 的中点,且SΔABC=8,则SΔBEF的值是(▲)A.2B. 3C.4D. 510. 已知点P 是△ABC 内一点,且它到三角形的三个顶点距离之和最小,则P 点叫△ABC 的费马点(Fermat point).已经证明:在三个内角均小于120°的△ABC 中,当∠APB=∠APC=∠BPC=1200 时,P 就是△ABC 的费马点.若点P 是腰长为6 的等腰直角三角形DEF 的费马点,则PD+PE+PF=(▲)A .6B + 3C .D .9 二、填空题(每小题 3 分,共 30 分) 11.“对顶角相等”的逆命题是 ▲ .12.一个三角形的三边长分别为 6,8,10,则这个三角形最长边上的中线为 ▲ . 13.若点 B (7a +14,a -3)在第四象限,则 a 的取值范围是 ▲ .14.如图,在平面直角坐标系中,已知点 A (1,1),B (- 1,1),C (-1,-2),D (1,-2).现把一条长为 2021 个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点 A 处,并按A -B -C -D -A - …的顺序紧绕在四边形 ABCD 的边上,则细线另一端所在位置的点的坐标是 ▲ .15. 如果三角形三边长分别为12,k ,7225k -的结果是 ▲ . 16.2002 年 8 月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图 1),且大正方形的面积是 15,小正方形的面积是 3,直角三角形的较短直角边为 a ,较长直角边为 b .如果将四个全等的直角三角形按如图 2 的形式摆放,那么图 2 中最大的正方形的面积为 ▲ .17.如图,等边三角形纸片 ABC ,点 E 在 AC 边上,点 F 在 AB 边上,沿 EF 折叠,使点A 落在 BC 边上的点 D 的位置,且 ED ⊥BC ,则∠EFD = ▲ .18.已知点 P 是直线 y = −2x + 4 上的一个动点,若点 P 到两坐标轴的距离相等,则点 P 的坐标是 ▲ . 19.如图,在△ABC 中,∠ABC 的平分线与 AC 的垂直平分线相交于点 D ,过点 D 作DF ⊥BC ,DG ⊥AB ,垂足分别为 F 、G .若 BG =5,AC =6,则△ABC 的周长是 ▲ .20.如图,在 Rt △ABC 中,CA =CB ,M 是 AB 的中点,点 D 在 BM 上,AE ⊥CD ,BF ⊥CD ,垂足分别为 E ,F ,连接 EM .则下列结论中:①BF =CE ; ②∠AEM =∠DEM ;③AE ﹣CE= 2 ME ;④DE 2+DF 2=2DM 2; ⑤若 AE 平分∠BAC ,则 EF :BF=:1; 正确的有 ▲ .(只填序号)三、解答题(本大题共 7 小题 , 共 50 分) 21.(本小题满分 6 分) (1)化简:)11(2)解不等式组 363104x x ⎧<⎪⎨-+≥⎪⎩①②22. (本小题满分 6 分)如图,是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为 1,线段 AC 的两个端点均在小正方形的顶点上.(1)在图1 中画出以AC 为底边的等腰直角三角形ABC,点B 在小正方形顶点上;(2)在图2 中画出以AC 为腰的等腰三角形ACD,点D 在小正方形的顶点上,且△ACD 的面积为8.23.(本小题满分7 分)某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为▲L,机器工作的过程中每分钟耗油量为▲L.(2)求机器工作时y 关于x 的函数解析式,并写出自变量x 的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x 的值.24.(本小题满分5 分)如图,∠BAD=∠CAE,AB=AD,AC=AE.且E,F,C,D 在同一直线上.(1)求证:△ABC≌△ADE;(2)若∠B=30°,∠BAC=100°,点F 是CE 的中点,连结AF,求∠F AE 的度数.25.(本小题满分8 分)某商店销售A 型和B 型两种型号的平板,销售一台A 型平板可获利120 元,销售一台 B 型平板可获利140 元.该商店计划一次购进两种型号的平板共100 台,其中 B 型平板的进货量不超过A 型平板的3 倍.设购进 A 型平板x 台,这100 台平板的销售总利润为y 元.(1)求 A 型平板至少多少台?(2)该商店购进A 型、B 型平板各多少台,才能使销售利润最大?(3)若限定商店最多购进A 型平板60 台,则这100 台平板的销售总利润能否为13600元?若能,请求出此时该商店购进A 型平板的台数;若不能,请求出这100 台平板销售总利润的范围.26.(本小题满分8 分)定义:若一个三角形两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,这两边的交点称为勾股顶点.(1)如图①,已知△ABC 为勾股高三角形,其中 A 为勾股顶点,AD 是BC 边上的高.若BD=1,CD=2,求高AD 的长;(2)如图②,△ABC 中,AB=AC=3,BC=3 3 -3,求证:△ABC 是勾股高三角形.①②27.(本小题满分10 分)如图,平面直角坐标系中,直线m 交x 轴于点A,交y 轴于点B.且点 A (),∠BAO = 60° .点C 为AB 中点,过点C 作直线n 垂直于m,交x轴于点D.(1)请直接写出B、C、D 的坐标.(2)在x 轴上找一点E, 使得S△BCE=6,求点E 的坐标.(3)直线m 上有一点M, y 轴上有一点N, 若△DMN 是等腰直角三角形,求出点M 的坐标.第27 题备用图1 备用图22020学年第一学期期末学业评价调测试卷八年级数学参考答案一、选择题(每小题2分,共20分)二、填空题(每小题3分,共30分)11、 相等的角是对顶角 12、 5 13、 -2<a <3 14、 (0,1) 15、 11-3k 16、 27 17、 45° 18、()444,433⎛⎫- ⎪⎝⎭,, 19、16 20、①②③④⑤ 三、解答题(本大题共7小题 , 共50分)21、 (1)31=--2=(2) 解①得2x <,….1’,解②得:1x ≥- ….1’,∴12x -≤<22、(1)作AC 的垂直平分线,作以AC 为直径的圆,垂直平分线与圆的交点即为点B ; (2)以C 为圆心,AC 为半径作圆,格点即为点D ;23、解:(1)由图象可得,机器每分钟加油量为:30÷10=3(L ),机器工作的过程中每分钟耗油量为:(30﹣5)÷(60﹣10)=0.5(L ), 故答案为:3,0.5;(2)当10<x ≤60时,设y 关于x 的函数解析式为y =ax +b ,1030605a b a b +=⎧⎨+=⎩,解得,0.535a b =-⎧⎨=⎩, 即机器工作时y 关于x 的函数解析式为y =﹣0.5x +35(10<x ≤60); (3)当3x =30÷2时,得x =5, 当﹣0.5x +35=30÷2时,得x =40,即油箱中油量为油箱容积的一半时x 的值是5或40. 24、(1)∵∠BAD=∠CAE ∴∠BAD+∠DAC=∠CAE+∠DAC 即∠BAC=∠DAE ∵AB=AD ,AC=AE∴△ABC ≌△ADE (SAS ) (2)∵∠B +∠ACB +∠BAC=180° ∴∠ACB=180°-∠B -∠BAC=50° ∵△ABC ≌△ADE∴∠ACB=∠AED=50° ∵点F 是CE 的中点 ∴AF ⊥CE∴∠F AE=90°-∠E=40°25、解:(1)100﹣x ≤3x ,解得x ≥25 ∴A 型平板至少25台。
2018-2019学年浙江省嘉兴市八年级(上)期末数学试卷(解析版)

2018-2019学年浙江省嘉兴市八年级(上)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)在直角坐标系中,点(2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)下列选项中可以用来说明命题“若x2>1,则x>1”是假命题的反例是()A.x=1B.x=﹣1C.x=2D.x=﹣23.(3分)若a>b,则下列不等式成立的是()A.a+1<b+1B.a﹣5<b﹣5C.﹣3a>﹣3b D.>4.(3分)一副三角板,按如图所示叠放在一起,则图中∠α的度数是()A.75°B.105°C.110°D.120°5.(3分)已知点(﹣1,y1),(﹣0.5,y2),(1.5,y3)是直线y=﹣2x+1上的三个点,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y3>y1>y2 6.(3分)如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=36°,则∠DCB的度数为()A.54°B.64°C.72°D.75°7.(3分)对于一次函数y=mx﹣m(m>0),下列说法正确的是()A.函数图象经过第一、二、三象限B.函数图象y随x的增大而减小C.函数图象一定交于y轴的负半轴D.函数图象一定经过点(﹣1,0)8.(3分)如图,在钝角三角形ABC中,∠ABC为钝角,以点B为圆心,AB长为半径面弧;再以点C为圆心,AC长为半径画弧;两弧交于点D,连结AD,CB的延长线交AD 于点E.下列结论错误的是()A.CE垂直平分AD B.CE平分∠ACDC.△ABD是等腰三角形D.△ACD是等边三角形9.(3分)某商店将定价为3元的商品,按下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小聪有27元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品x件,则根据题意,可列不等式为()A.3×5+3×0.8x≤27B.3×5+3×0.8x≥27C.3×5+3×0.8(x﹣5)≤27D.3×5+3×0.8(x﹣5)≥2710.(3分)如图,在Rt△ABC中,∠ACB=90°,分别以AB、AC为腰向外作等腰直角三角形△ABD和△ACE,连结DE,CA的延长线交DE于点F,则与线段AF相等的是()A.B.C.BC D.AB二、填空题(共10小题,每小题3分,满分30分)11.(3分)平面直角坐标系中,点A(1,﹣2)到x轴的距离是.12.(3分)如图是不等式组的解在数轴上的表示,则此不等式组的整数解是.13.(3分)命题“对顶角相等”的逆命题是.14.(3分)如图,已知点A、D、C、F在同一条直线上,AB∥DE,AD=CF,要使△ABC ≌△DEF,还需要添加一个条件是.(只需添加一个即可)15.(3分)小明从A 处出发沿北偏东40°的方向走了30米到达B 处:小军也从A 处出发,沿南偏东α°(0<α<90)的方向走了40米到达C 处,若B 、C 两处的距离为50米,则α= .16.(3分)已知等腰三角形的周长为20,腰长为x ,x 的取值范围是 . 17.(3分)小明爸爸开车带小明去杭州游玩,一路上匀速前行,小明记下了如下数据从9点开始,记汽车行驶的时间为t (min ),汽车离抗州的距离为s (km ),则s 关于t 的函数表达式为 .18.(3分)如图,在Rt △ABC 中,∠C =90°,DE 垂直平分AB ,连结AD ,若AC =6,BC =8,则CD 的长为.19.(3分)如图,一次函数y =kx +b 的图象经过点(﹣2,0),则关于x 的不等式k (x ﹣3)+b >0的解集为 .20.(3分)如图,在一张直角三角形纸片ABC 中,∠ACB =90°,BC =1,AC =,P 是边AB 上的一动点,将△ACP 沿着CP 折叠至△A 1CP ,当△A 1CP 与△ABC 的重叠部分为等腰三角形时,则∠ACP 的度数为 .三、解答题(第21~24题,每题6分,第25、26题,每题8分,共40分21.(6分)解不等式:5x﹣2≤3x,并在数轴上表示解集.22.(6分)如图,已知AB∥CF,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=7,CF=4,求BD长.23.(6分)已知直线y=x+b分别交x轴于点A、交y轴于点B(0,2)(1)求该直线的函数表达式;(2)求线段AB的长.24.(6分)如图,△ABC的三个顶点分别是A(﹣4,1),B(﹣2,1),C(﹣1,3),以x轴为对称轴,将△ABC作轴对称变换得到△A1B1C1,然后将△A1B1C1向右平移6个单位后得到△A2B2C2.(1)请在图中作出△A1B1C1;(2)直接写出经过上述两次变换后,对应点A2的坐标.25.(8分)如图,在正△ABC的AC,BC上各取一点D,E,使AD=CE,AE,BD相交于点M.(1)如图1,求∠BME的度数;(2)如图2,过点B作直线AE的垂线BH,垂足为H.①求证:2MH+DM=AE;②若BE=2EC=2,求BH的长.26.(8分)甲、乙两位同学从学校出发沿同一条绿道到相距学校1500m的图书馆去看书,甲步行,乙骑自行车.图1中OD,AC分别表示甲、乙离开学校的路程y(m)与甲行走的时间x(min)之间的函数图象(1)求线段AC所在直线的函数表达式;(2)设d(m)表示甲、乙两人之间的路程,在图2中补全d关于x的函数图象;(标注必要的数据)(3)当x在什么范围时,甲、乙两人之间的路程至少为180m.2018-2019学年浙江省嘉兴市八年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)在直角坐标系中,点(2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】应先判断出所求的点的横纵坐标的符号,进而判断点所在的象限.【解答】解:因为点P(2,1)的横坐标是正数,纵坐标也是正数,所以点在平面直角坐标系的第一象限.故选:A.【点评】解决本题的关键是牢记平面直角坐标系中四个象限的点的坐标的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.2.(3分)下列选项中可以用来说明命题“若x2>1,则x>1”是假命题的反例是()A.x=1B.x=﹣1C.x=2D.x=﹣2【分析】根据有理数的乘方法则、假命题的概念解答.【解答】解:(﹣2)2=4>1,﹣2<1,∴当x=﹣2时,说明命题“若x2>1,则x>1”是假命题,故选:D.【点评】本题考查的是命题的真假判断,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.3.(3分)若a>b,则下列不等式成立的是()A.a+1<b+1B.a﹣5<b﹣5C.﹣3a>﹣3b D.>【分析】直接利用不等式的基本性质分别判断得出答案.【解答】解:A、∵a>b,∴a+1>b+1,故此选项错误;B、∵a>b,∴a﹣5>b﹣5,故此选项错误;C、∵a>b,∴﹣3a<﹣3b,故此选项错误;D、∵a>b,∴>,故此选项正确;故选:D.【点评】此题主要考查了不等式的性质,正确应用不等式基本性质是解题关键.4.(3分)一副三角板,按如图所示叠放在一起,则图中∠α的度数是()A.75°B.105°C.110°D.120°【分析】根据图形求出∠1,根据三角形的外角性质计算,得到答案.【解答】解:如图,∠1=90°﹣45°=45°,则∠α=60°+45°=105°,故选:B.【点评】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.5.(3分)已知点(﹣1,y1),(﹣0.5,y2),(1.5,y3)是直线y=﹣2x+1上的三个点,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y3>y1>y2【分析】根据一次函数图象的增减性,结合横坐标的大小,可判断纵坐标的大小关系,即可得到答案.【解答】解:∵一次函数y=﹣2x+1的图象y随着x的增大而较小,又∵﹣1<﹣0.5<1.5,∴y1>y2>y3,故选:B.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.6.(3分)如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=36°,则∠DCB的度数为()A.54°B.64°C.72°D.75°【分析】根据直角三角形斜边上中线定理得出CD=AD,求出∠DCA=∠A,根据两角互余求出∠DCB的度数即可.【解答】解:∵∠ACB=90°,CD是斜边AB上的中线,∴BD=CD=AD,∴∠A=∠DCA=36°,∴∠DCB=90°﹣∠DCA=54°.故选:A.【点评】本题考查了直角三角形斜边上的中线性质,等腰三角形性质等知识点的理解和运用,能求出BD=CD=AD和∠DCA的度数是解此题的关键.7.(3分)对于一次函数y=mx﹣m(m>0),下列说法正确的是()A.函数图象经过第一、二、三象限B.函数图象y随x的增大而减小C.函数图象一定交于y轴的负半轴D.函数图象一定经过点(﹣1,0)【分析】根据一次函数图象的性质进行逐一分析解答即可.【解答】解:A、∵m>0,∴﹣m<0,∴一次函数y=mx﹣m(m>0)的图象在一、三、四象限,故本选项错误;B、∵m>0,∴一次函数y=mx﹣m(m>0)的图象y随x的增大而增大,故本选项错误;C、∵x=0时,y=﹣m<0,∴函数图象一定交于y轴的负半轴,故本选项正确;D、∵x=﹣1时,y=﹣m﹣m=﹣2m<0,∴函数图象不经过点(﹣1,0),故本选项错误.故选:C.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的图象与性质,一次函数图象与系数的关系,都是基础知识,需熟练掌握.8.(3分)如图,在钝角三角形ABC中,∠ABC为钝角,以点B为圆心,AB长为半径面弧;再以点C为圆心,AC长为半径画弧;两弧交于点D,连结AD,CB的延长线交AD 于点E.下列结论错误的是()A.CE垂直平分AD B.CE平分∠ACDC.△ABD是等腰三角形D.△ACD是等边三角形【分析】依据作图可得CA=CD,BA=BD,即可得到CB是AD的垂直平分线,依据线段垂直平分线的性质以及三角形内角和定理,即可得到结论.【解答】解:由题可得,CA=CD,BA=BD,∴CB是AD的垂直平分线,即CE垂直平分AD,故A选项正确;∴∠CAD=∠CDA,∠CEA=∠CED,∴∠ACE=∠DCE,即CE平分∠ACD,故B选项正确;∵DB=AB,∴△ABD是等腰三角形,故C选项正确;∵AD与AC不一定相等,∴△ACD不一定是等边三角形,故D选项错误;故选:D.【点评】本题主要考查了线段垂直平分线的性质以及等腰三角形的判定,解题时注意:垂直平分线上任意一点,到线段两端点的距离相等.9.(3分)某商店将定价为3元的商品,按下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小聪有27元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品x件,则根据题意,可列不等式为()A.3×5+3×0.8x≤27B.3×5+3×0.8x≥27C.3×5+3×0.8(x﹣5)≤27D.3×5+3×0.8(x﹣5)≥27【分析】设小聪可以购买该种商品x件,根据总价=3×5+3×0.8×超出5件的部分结合总价不超过27元,即可得出关于x的一元一次不等式,此题得解.【解答】解:设小聪可以购买该种商品x件,根据题意得:3×5+3×0.8(x﹣5)≤27.故选:C.【点评】本题考查了由实际问题抽象出一元一次不等式,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.10.(3分)如图,在Rt△ABC中,∠ACB=90°,分别以AB、AC为腰向外作等腰直角三角形△ABD和△ACE,连结DE,CA的延长线交DE于点F,则与线段AF相等的是()A.B.C.BC D.AB【分析】如图,作DH⊥CF交CF的延长线于H,连接EH.想办法证明△BCA≌△AHD (AAS),四边形ADHE是平行四边形,即可解决问题.【解答】解:如图,作DH⊥CF交CF的延长线于H,连接EH.∵∠ACB=∠BAD=∠DHA=90°,∴∠BAC+∠DAH=90°,∠DAH+∠ADH=90°,∴∠BAC=∠ADH,∵AB=AD,∴△BCA≌△AHD(AAS),∴AC=DH,BC=AH,∵∠DHA=∠EAH=90°,AC=AE,∴DH∥AE,DH=AE,∴四边形ADHE是平行四边形,∴AF=FH,∴AF=AH=BC,故选:C.【点评】本题考查全等三角形的判定和性质,等腰直角三角形的性质,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.二、填空题(共10小题,每小题3分,满分30分)11.(3分)平面直角坐标系中,点A(1,﹣2)到x轴的距离是2.【分析】根据点到x轴的距离等于纵坐标的长度解答.【解答】解:点A(1,﹣2)到x轴的距离是|﹣2|=2,故答案为:2.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度是解题的关键.12.(3分)如图是不等式组的解在数轴上的表示,则此不等式组的整数解是﹣1,0,1.【分析】首先确定不等式组的解集,找出不等式组解集内的整数就可以.【解答】解:因为是整数,且在﹣1处和2处分别是实心和空心,所以整数有﹣1,0,1,故答案为:﹣1,0,1.【点评】此题主要考查不等式组的解法及在数轴上表示不等式组的解集.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.13.(3分)命题“对顶角相等”的逆命题是相等的角为对顶角.【分析】交换原命题的题设与结论即可得到其逆命题.【解答】解:命题“对顶角相等”的逆命题是“相等的角为对顶角”.故答案为相等的角为对顶角.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.14.(3分)如图,已知点A、D、C、F在同一条直线上,AB∥DE,AD=CF,要使△ABC ≌△DEF,还需要添加一个条件是AB=DE或∠B=∠E或∠ACB=∠F.(只需添加一个即可)【分析】利用全等三角形的判定定理,AAS定理,ASA定理,SAS定理可得结果.【解答】解:①添加AB=DE,∵AB∥DE,∴∠A=∠EDF,∵AD=CF,∴AD+DC=CF+DC,∴AC=DF,在△ABC与△DEF中,,∴△ABC≌△DEF(SAS);②添加∠B=∠E,,∴△ABC≌△DEF(AAS);③添加∠ACF=∠F,,△ABC≌△DEF(ASA),故答案为:AB=DE或∠B=∠E或∠ACB=∠F.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS,注意AAA、SSA不能判定两个三角形全等是解答此题的关键.15.(3分)小明从A处出发沿北偏东40°的方向走了30米到达B处:小军也从A处出发,沿南偏东α°(0<α<90)的方向走了40米到达C处,若B、C两处的距离为50米,则α=50.【分析】根据勾股定理的逆定理得到∠BAC=90°,根据角的和差即可得到结论.【解答】解:∵AB=30,AC=40,BC=50,∴AB2+AC2=BC2,∴∠BAC=90°,∴α°=90°﹣40°=50°,∴α=50,故答案为:50.【点评】本题考查了勾股定理的逆定理的应用,熟练掌握勾股定理的逆定理是解题的关键.16.(3分)已知等腰三角形的周长为20,腰长为x,x的取值范围是5<x<10.【分析】利用三角形的三边关系解决问题即可.【解答】解:根据三角形的三边关系,x+x>20﹣2x,解得x>5,又∵x+x<20,∴x<10,所以,5<x<10.故答案为:5<x<10.【点评】本题考查了等腰三角形的性质,利用三角形的三边关系得到关于x的不等式是解题的关键.17.(3分)小明爸爸开车带小明去杭州游玩,一路上匀速前行,小明记下了如下数据从9点开始,记汽车行驶的时间为t(min),汽车离抗州的距离为s(km),则s关于t的函数表达式为=﹣t.【分析】由汽车每6min行驶10km知汽车的速度为=(km/min),根据距离=90﹣行驶的路程可得函数解析式.【解答】解:由表知,汽车每6min行驶10km,∴汽车的速度为=(km/min),则s=90﹣t,故答案为:s=90﹣t.【点评】本题主要考查函数关系式,解题的关键是根据表格得出汽车的速度及关于距离的相等关系.18.(3分)如图,在Rt△ABC中,∠C=90°,DE垂直平分AB,连结AD,若AC=6,BC=8,则CD的长为.【分析】先根据线段的垂直平分线的性质得DA=DB,设AD=x,则DB=x,CD=BC ﹣BD=8﹣x,则在Rt△ACD中利用勾股定理得到62+(8﹣x)2=x2,解得x的值即可得到CD的长.【解答】解:∵DE是AB的中垂线,∴DA=DB,设AD=x,则DB=x,CD=BC﹣BD=8﹣x,在Rt△ACD中,∵AC2+CD2=AD2,∴62+(8﹣x)2=x2,解得x=,∴CD=8﹣x=,故答案为:.【点评】本题考查了勾股定理以及线段垂直平分线的性质,依据勾股定理列方程是解决问题的关键.19.(3分)如图,一次函数y=kx+b的图象经过点(﹣2,0),则关于x的不等式k(x﹣3)+b>0的解集为x>1.【分析】观察函数图象得到即可.【解答】解:由图象可得:当x>﹣2时,kx+b>0,所以关于x的不等式kx+b>0的解集是x>﹣2,所以关于x的不等式k(x﹣3)+b>0的解集为x﹣3>﹣2,即:x>1,故答案为:x>1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.20.(3分)如图,在一张直角三角形纸片ABC中,∠ACB=90°,BC=1,AC=,P 是边AB上的一动点,将△ACP沿着CP折叠至△A1CP,当△A1CP与△ABC的重叠部分为等腰三角形时,则∠ACP的度数为40°或70°.【分析】分两种情形画出图形分别求解即可.【解答】解:如图1中,当PC=CE时,设∠ACP=x.∵CP=CE,∴∠CPE=∠CEP,∵∠CPE=∠ACP+∠A=x+30,∴x+x+30+x+30=180°,∴x=40°.如图2中,当CP=CE时,设∠ACP=x.则∠CPE=∠CEP=2x﹣90°+30°=2x﹣60°,在△CPE中,90°﹣x+2(2x﹣60°)=180°,解得x=70°,PE=PC不成立(因为∠CPE=x+30°>x,此时求得x=50°,点E应该在AB延长线上).综上所述,∠ACP的度数为40°或70°,故答案为40°或70°.【点评】本题考查翻折变换,等腰三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.三、解答题(第21~24题,每题6分,第25、26题,每题8分,共40分21.(6分)解不等式:5x﹣2≤3x,并在数轴上表示解集.【分析】移项,合并同类项,系数化成1即可.【解答】解:5x﹣2≤3x,移项,得5x﹣3x≤2,合并同类项,得2x≤2,系数化成1,x≤1,在数轴上表示为:.【点评】本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,注意:解一元一次不等式的步骤是:去分母,去括号,移项,合并同类项,系数化成1.22.(6分)如图,已知AB∥CF,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=7,CF=4,求BD长.【分析】(1)根据AAS证明△ADE≌△CFE即可;(2)利用全等三角形的性质即可解决问题;【解答】(1)证明:∵AB∥CF,∴∠A=∠FCE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS).(2)解:∵△ADE≌△CFE,∴AD=CF=4,∴BD=AB﹣AD=7﹣4=3.【点评】本题考查全等三角形的判定和性质,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.(6分)已知直线y=x+b分别交x轴于点A、交y轴于点B(0,2)(1)求该直线的函数表达式;(2)求线段AB的长.【分析】(1)把B点坐标代入y=x+b中求出b即可;(2)先利用一次函数解析式确定A点坐标,然后利用勾股定理计算出AB的长.【解答】解:(1)把B(0,2)代入y=x+b得b=2,所以该直线的函数表达式为y=x+2;(2)当x=0时,x+2=0,解得x=﹣2,则A(﹣2,0),所以AB的长==2.【点评】本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.24.(6分)如图,△ABC的三个顶点分别是A(﹣4,1),B(﹣2,1),C(﹣1,3),以x轴为对称轴,将△ABC作轴对称变换得到△A1B1C1,然后将△A1B1C1向右平移6个单位后得到△A2B2C2.(1)请在图中作出△A1B1C1;(2)直接写出经过上述两次变换后,对应点A2的坐标.【分析】(1)根据轴对称的性质分别作出点A,B,C关于x轴的对称点,再顺次连接可得.(2)根据平移变换的定义和性质分别作出三顶点向右平移6个单位后所得对应点,据此可得答案.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)由图知,对应点A2的坐标为(2,﹣1).【点评】本题主要考查作图﹣轴对称变换和平移变换,解题的关键是掌握轴对称变换和平移变换的定义与性质,并据此得出变换后的对应点.25.(8分)如图,在正△ABC的AC,BC上各取一点D,E,使AD=CE,AE,BD相交于点M.(1)如图1,求∠BME的度数;(2)如图2,过点B作直线AE的垂线BH,垂足为H.①求证:2MH+DM=AE;②若BE=2EC=2,求BH的长.【分析】(1)证明△ABD≌△CAE,可得∠ABD=∠CAE,再利用三角形外角的性质可以得出∠BME的度数;(2)①由(1)可得∠MBH=30°,BD=AE,根据BD=BM+DM即可获证;②作AF⊥BC于F,在△ABE中,利用面积法即可得出BH的长.【解答】解:(1)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠C=60°,在△ABD和△CAE中,∴△ABD≌△CAE(SAS),∴∠ABD=∠CAE,∴∠BME=∠ABM+∠MAB=∠CAE+∠MAB=∠BAC=60°,(2)①∵BH⊥AE,∠BMH=60°,∴∠MBH=30°,∴BM=2MH,∵△ABD≌△CAE,∴BD=AE,∴2MH+DM=BM+DM=BD,∴2MH+DM=AE;②如图,作AF⊥BC于F,∵△ABC是等边三角形,BE=2EC=2,∴AB=3,BF=1.5,EF=0.5,∴AF=,AE=,∴△ABE面积=,解得BH=【点评】本题考查了等边三角形性质,全等三角形的性质和判定,三角形外角性质,含30度角的直角三角形性质的应用.涉及高的问题可以考虑面积法.26.(8分)甲、乙两位同学从学校出发沿同一条绿道到相距学校1500m的图书馆去看书,甲步行,乙骑自行车.图1中OD,AC分别表示甲、乙离开学校的路程y(m)与甲行走的时间x(min)之间的函数图象(1)求线段AC所在直线的函数表达式;(2)设d(m)表示甲、乙两人之间的路程,在图2中补全d关于x的函数图象;(标注必要的数据)(3)当x在什么范围时,甲、乙两人之间的路程至少为180m.【分析】(1)根据待定系数法求解;(2)设甲出发x分钟后相遇,列方程,计算相遇时的时间,可补全图象;(3)分相遇前后两种可能列不等式求解.【解答】解:(1)设AC表达式为y=kx+b,把(6,0)、(21,25)代入得解得k=100,b=﹣600,所以AC所在直线的函数表达式y=100x﹣600;(2)设甲出发x分钟后两人相遇,则解得x=15,即甲出发15分钟后两人相遇,此时d=0,21分钟后乙到图书馆,甲距图书馆1500﹣60×21=240米,因此图象如下:(3)设甲出发x分钟甲、乙两人之间的路程至少为180m.①当乙没出发时,60x≥180,解得x≥3;当甲乙相遇前,即x≤15时60x﹣(100x﹣600)≥180解得x≤10.5,即3≤x≤10.5时甲、乙两人之间的路程至少为180m;③当甲乙相遇后,即x>15时100x﹣600﹣60x≥180,解得x≥19.5,即19.5≤x≤21时甲、乙两人之间的路程至少为180m;④乙到达终点后,1500﹣60x≥180,解得≤22;综上当3<x≤10.5或19.5≤x≤22分钟时甲、乙两人之间的路程至少为180m.【点评】本题考查一次函数,方程和不等式应用,确定数量关系或不等量关系是解答关键.。
2021-2022学年浙江省绍兴市嵊州市八年级(上)期末数学试题及答案解析

2021-2022学年浙江省绍兴市嵊州市八年级(上)期末数学试卷一、选择题(本大题共10小题,共20.0分。
在每小题列出的选项中,选出符合题目的一项)1.下列长度的三条线段,首尾相接能构成三角形的是( )A. 1cm,2cm,3cmB. 5cm,5cm,5cmC. 2cm,5cm,8cmD. 1.5cm,1.4cm,2.9cm2.下列交通标志是轴对称图形的是( )A. B. C. D.3.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )A. 三角形的稳定性B. 两点之间线段最短C. 两点确定一条直线D. 垂线段最短4.如果m>n,那么下列结论错误的是( )A. m+2>n+2B. m−2>n−2C. 2m>2nD. −2m>−2n5.如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是( )A. AB=DEB. ∠A=∠DC. AC=DFD. AC//FD6.下列各数中,可以用来说明命题“任何偶数都是8的倍数”是假命题的反例是( )A. 9B. 16C. 8D. 47.如图,点A、B、C都在方格纸的格点上,若点A的坐标为(0,2),点B的坐标为(2,0),则点C的坐标是( )A. (2,2)B. (1,2)C. (1,1)D. (2,1)8.已知点A(2,y1)和点B(a,y2)在一次函数y=−3x−b的图象上,且y1>y2,则a的值可能是( )A. 3B. 0C. −1D. −29.如图,在△ABC中,CA=CB,∠ACB=110°,延长BC到D,在∠ACD内作射线CE,使得∠ECD=15°.过点A作AF⊥CE,垂足为F.若AF=√5,则AB的长为( )A. √10B. 2√5C. 4D. 610.如图1,在平面直角坐标系中,长方形ABCD在第一象限,且BC//x轴,直线y=1x−3沿2 x轴负方向平移,在平移过程中,直线被长方形ABCD截得的线段长为l,直线在x轴上平移的距离为m.图2是l与m之间的函数图象,则长方形ABCD的面积为( )A. 2√5B. 6C. 8D. 12二、填空题(本大题共10小题,共30.0分)11.平面直角坐标系中,点(1,−2)在第______象限.12.命题“两个全等三角形面积相等”的逆命题是______命题(填“真”或“假”).13.如图,两根竹竿AB和DB斜靠在墙CE上,量得∠CAB=33°,∠CDB=21°,则∠ABD的度数为______.14. 已知:等腰三角形的两边长分别为6和4,则此等腰三角形的周长是______.15. 如图,由图象得方程组{3x +y =0y =x +4的解为______.16. 如图,在△ABC 中,AD ⊥BC 于点D ,AD 与BE 相交于点F ,且AC =BF ,DF =DC.若∠ABE =15°,则∠DBF 的度数为______.17. 在平面直角坐标系中,A(2,3),B(−2,1),在x 轴上求一点C ,使CA +CB 最小,则点C 的坐标为______ .18. 关于x 的不等式组{3x −a ≥02x −b ≤0只有一个解,则a 与b 的关系是______. 19. 如图,在△ABC 中,∠BAC >90°,分别以点A ,B 为圆心,以大于12AB 长为半径画弧,两弧交于点D ,E.作直线DE ,交BC 于点M.分别以点A ,C 为圆心,以大于12AC 长为半径画弧,两弧交于点F ,G.作直线FG ,交BC 于点N.连接AM ,AN.若∠BAC =α,则∠MAN = ______ .20. 如图,在△ABC 中,∠ACB =90°,AC =8,BC =6,D 是线段AB 的中点,P 为直线BC 上的一动点,连结DP.过点D 作ED ⊥DP ,交直线AC 于点E ,连结EP.若CP =3,则AE 的长为______.三、解答题(本大题共6小题,共50.0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.(3 分)如图,在平面直角坐标系中,以 O 为圆心,适当长为半径画弧,交 x 轴于点 M, 交 y 轴于点 N,再分别以点 M,N 为圆心,大于 MN 的长为半径画弧,两弧在第二象限交于 点 P,若点 P 的坐标为(2a,b+1),则 a 与 b 的数量关系为 .
同理 A2B3=8=23,…,An﹣1Bn=2n,
则 A8B9 的长为 29=512. 故选:D. 二、填空题(本题共有 8 小题,每小题 3 分,共 24 分)
11.(3 分)函数
中,自变量 x 的取值范围是 x≥3 .
【解答】解:根据题意得:x﹣3≥0,
解得:x≥3. 故答案是:x≥3.
C、不是轴对称图形,故本选项不符合题意;
D、是轴对称图形,故本选项符合题意.
故选:D.
2.(3 分)不等式 x+3<5 的解集在数轴上表示为( )
A.
B.
C.
D.
【解答】解:不等式 x+3<5, 解得:x<2,
. 故选:B. 3.(3 分)能说明命题“对于任何实数 a,|a|>﹣a”是假命题的一个反例可以是( )
18.(3 分)沿河岸有 A,B,C 三个港口,甲乙两船同时分别从 AB 港口出发,匀速驶向 C 港,最终到达 C 港.设甲、乙两船行驶 x(h)后,与 B 港的距离分别为 y1、y2(km),y1、y2 与 x 的函数关系如图所示.考察下列结论:
.
.
①乙船的速度是 25km/h;②从 A 港到 C 港全程为 120km; ③甲船比乙船早 1.5 小时到达终
把 P(1,2)和 Q(0,4)代入得
,
解得
,
故所求的一次函数解析式为 y=﹣2x+4.
故选:B. 5.(3 分)以下命题的逆命题为真命题的是( ) A.对顶角相等 B.同旁内角互补, 两直线平行 C.若 a=b,则 a2=b2D.若 a>0,b>0,则 a2+b2>0 【解答】解:A、对顶角相等逆命题为相等的角为对顶角,此逆命题为假命题,故 A 选项错 误; B、同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补,此逆命题为真命题, 故 B 选项正确; C、若 a=b,则 a2=b2 的逆命题为若 a2=b2,则 a=b,此逆命题为假命题,故 C 选项错误; D、若 a>0,b>0,则 a2+b2>0 的逆命题为若 a2+b2>0,则 a>0,b>0,此逆命题为假命 题,故 D 选 项错误. 故选:B. 6.(3 分)点 M(﹣5,y)向下平移 5 个单位所得的像是关于 x 轴对称,则 y 的值是( )
.
2017-2018 学年浙江省绍兴市八年级(上)期末
数学试卷
一、选择题(本题共有 10 小题,每小题 3 分,共 30 分) 1.(3 分)下列交通标志图案是轴对称图形的是( )
A.
B.
C.
D.
2.(3 分)不等式 x+3<5 的解集在数轴上表示为( )
A.
B.
C.
D.
3.(3 分)能说明命题“对于任何实数 a,|a|>﹣a”是假命题的一个反例可以是( )
21.(6 分)方格纸中小正方形的顶点叫格点.点 A 和点 B 是格点,位置如图. (1)在图 1 中确定格点 C 使△ABC 为直角三角形,画出一个这样的△ABC; (2)在图 2 中确定格点 D 使△ABD 为等腰三角形,画出一个这样的△ABD; (3)在图 2 中满足题(2)条件的格点 D 有 个.
A.64 B.128 C.256 D.512 二、填空题(本题共有 8 小题,每小题 3 分,共 24 分)
11.(3 分)函数
中,自变量 x 的取值范围是 .
12.(3 分)若二次根式
是最简二次根式,则最小的正整数 a= .
.
.
13.(3 分)一次函数 y=(k﹣3)x﹣k+2 的图象经过第一、三、四象限.则 k 的取值范围 是 . 14.(3 分)若线段 AB 平行 y 轴,AB 长为 5,若 A 的坐标为(4,5),则 B 的坐标 为 . 15.(3 分)已知函数 y1=k1x+b1 与函数 y2=k2x+b2 的图象如图所示,则不等式 k1x+b1<k2x+b2 的 解集是 .
A.64 B.128 C.256 D.512 【解答】解:对于直线 y=x+2,令 x =0,求出 y=2,即 A0(0,2),
.
.
∵A0B1∥x 轴,∴B1 的纵坐标为 2, 将 y=2 代入 y=0.5x+1 中得:x=2,即 B1(2,2), ∴A0B1=2=21, ∵A1B1∥y 轴,∴A1 的横坐标为 2, 将 x=2 代入直线 y=x+2 中得:y=4,即 A1(2,4), ∴A1 与 B2 的纵坐标为 4, 将 y=4 代入 y=0.5x+1 中得:x=6,即 B2(4,6), ∴A1B2=4=22,
点;④若设图中两者相遇的交点为 P 点,P 点的坐标为( , );⑤如果两船相距小于
10km 能够相互望见,那么甲、乙两船可以相互望见时,x 的取值范围是 <x<2.其中正确 的结论有 .
三、解答题(本题共有 6 小题,共 46 分)
19.(6 分)计算:(
)•
20.(6 分)解不等式组
,并将其解集表示在数轴上.
故选:B.
8.(3 分)化简: A.2x﹣6 B.0 C.6﹣2x D.2x+6
=( )
【解答】解:由题意可知: 3﹣x>0,
∴原式=
﹣(3﹣x)
=|x﹣3|+(x﹣3)
=﹣(x﹣3)+(x﹣3)
.
.
=0 故选:B. 9.(3 分)如图,在△ABC 中,∠C=90°,AC=2,点 D 在 BC 上,∠ADC=2∠B,AD= ,则 BC 的长为( )
A.a=﹣2 B.a= C.a=1 D.a=
【解答】解:说明命题“对于任何实数 a,|a|>﹣a”是假命题的一个反例可以是 a=﹣2, 故选:A. 4.(3 分)过点 Q(0,4)的一次函数的图象与正比例函数 y=kx 的图象相交于点 P(1,2), 则这个一次函数图象的解析式是( )
.
.
A.y=2x+4 B.y=﹣2x+4 C.y=2x﹣4 D.y=﹣2x﹣4 【解答】解:设一次函数的解析式为 y=kx+b,
A. ﹣1 B. +1 C. ﹣1D. +1
【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD, ∴∠B=∠DAB, ∴DB=DA= , 在 Rt△ADC 中,
DC=
= =1,
∴BC= +1.
故选:D.
10.(3 分)如图,直线 y=x+2 与 y 轴相交于点 A0,过点 A0 作 x 轴的平行线交直线 y=0.5x+1 于点 B1,过点 B1 作 y 轴的平行线交直线 y=x+2 于点 A1,再过点 A1 作 x 轴的平行线交直线 y=0.5x+1 于点 B2,过点 B2 作 y 轴的平行线交直线 y=x+2 于点 A2,…,依此类推,得到直线 y=x+2 上的点 A1,A2,A3,…,与直线 y=0.5x+1 上的点 B1,B2,B3,…,则 A8B9 的长为 ( )#F8
A.﹣5 B.5 C. D. 【解答】解:此题平移规律是(x,y﹣5),因为点 M(﹣5,y)向下平移 5 个单位的像关于 x 轴
..ຫໍສະໝຸດ 对称,所以 y 的值是(y﹣y+5)÷2= . 故选:C. 7.(3 分)如图,将△ABC 沿 DE、HG、EF 翻折,三个顶点均落在点 O 处,且 EA 与 EB 重合 于线段 EO,若∠DOH=78°,则∠FOG 的度数为( )
=( )
9.(3 分)如图,在△ABC 中,∠C=90°,AC=2,点 D 在 BC 上,∠ADC=2∠B,AD= ,则 BC 的长为( )
A. ﹣1 B. +1 C. ﹣1D . +1
10.(3 分)如图,直线 y=x+2 与 y 轴相交于点 A0,过点 A0 作 x 轴的平行线交直线 y=0.5x+1 于点 B1,过点 B1 作 y 轴的平行线交直线 y=x+2 于点 A1,再过点 A1 作 x 轴的平行线交直线 y=0.5x+1 于点 B2,过点 B2 作 y 轴的平行线交直线 y=x+2 于点 A2,…,依此类推,得到直线 y=x+2 上的点 A1,A2,A3,…,与直线 y=0.5x+1 上的点 B1,B2,B3,…,则 A8B9 的长为 ( )#F8
A.a=﹣2 B.a= C.a=1 D.a= 4.(3 分)过点 Q(0,4)的一次函数的图象与正比例函数 y=kx 的图象相交于点 P(1,2), 则这个一次函数图象的解析式是( )
A.y=2x+4 B.y=﹣2x+4 C.y=2x﹣4 D.y=﹣2x﹣4 5.(3 分)以下命题的逆命题为真命题的是( ) A.对顶角相等 B.同旁内角互补,两直线平行 C.若 a=b,则 a2=b2D.若 a>0,b>0,则 a2+b2>0 6.(3 分)点 M(﹣5,y)向下平移 5 个单位所得的像是关于 x 轴对称,则 y 的值是( )
12.(3 分)若二次根式
是最简二次根式,则最小的正整数 a= 2 .
【解答】解:二次根式 故答案为:2.
是最简二次根式,则最小的正整数 a=2,
13.(3 分)一次函数 y=(k﹣3)x﹣k+2 的图象经过第一、三、四象限.则 k 的取值范围是 k>