八年级数学上册 能得到直角三角形吗教案 北师大版【精品教案】

合集下载

北师大版八年级数学上册:1.2 《一定是直角三角形吗》教案

北师大版八年级数学上册:1.2 《一定是直角三角形吗》教案

北师大版八年级数学上册:1.2 《一定是直角三角形吗》教案一. 教材分析《一定是直角三角形吗》这一节的内容主要让学生了解直角三角形的定义和性质,通过实例让学生判断一个三角形是否为直角三角形。

学生通过这一节课的学习,可以加深对三角形分类的理解,为后续学习其他类型的三角形打下基础。

二. 学情分析八年级的学生已经学习了三角形的分类,对三角形的性质有了一定的了解。

但学生在判断一个三角形是否为直角三角形时,可能会只关注是否有直角,而忽视了其他性质。

因此,在教学过程中,教师需要引导学生从多个角度去判断一个三角形是否为直角三角形。

三. 教学目标1.让学生理解直角三角形的定义和性质。

2.培养学生运用所学知识解决实际问题的能力。

3.引导学生通过观察、操作、思考、交流等活动,体验探究解决问题的过程。

四. 教学重难点1.重点:直角三角形的定义和性质。

2.难点:如何判断一个三角形是否为直角三角形。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,引导学生主动探究,培养学生的动手操作能力和团队协作能力。

六. 教学准备1.准备一些三角形模型,以便在课堂上进行展示和操作。

2.准备一些关于直角三角形的案例,以便进行分析和讨论。

3.准备黑板和粉笔,以便进行板书。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾已学的三角形分类知识,为新课的学习做好铺垫。

2.呈现(10分钟)教师展示一些三角形模型,让学生观察并说出它们的类型。

然后教师提出问题:“如何判断一个三角形是否为直角三角形?”让学生思考并回答。

3.操练(10分钟)教师引导学生进行小组合作学习,让学生通过观察、操作、思考、交流等活动,探索判断直角三角形的方法。

教师在课堂上进行巡回指导,帮助学生解决问题。

4.巩固(5分钟)教师提出一些关于直角三角形的问题,让学生独立解答。

然后教师选取一些学生的答案进行讲解和分析。

5.拓展(5分钟)教师展示一些生活中的直角三角形实例,让学生判断并解释。

北师大版八年级数学上册:1.2《一定是直角三角形吗》说课稿

北师大版八年级数学上册:1.2《一定是直角三角形吗》说课稿

北师大版八年级数学上册:1.2《一定是直角三角形吗》说课稿一. 教材分析《一定是直角三角形吗》这一节的内容位于北师大版八年级数学上册第一章《三角形的认识》的第二节。

在这一节课中,学生将学习如何通过判定一个三角形的三个角是否为90度来确定一个三角形是否为直角三角形。

这一节的内容是学生在学习了三角形的分类和性质之后,进一步深化对三角形认识的重要一环。

通过对直角三角形的探究,学生能够更好地理解三角形的性质,为后续学习勾股定理和三角形的相关应用打下坚实的基础。

二. 学情分析在进入这一节的学习之前,学生已经学习了三角形的分类,对等腰三角形和等边三角形有了初步的认识。

同时,学生也学习了三角形的内角和定理,对三角形三个角的和为180度有了深入的理解。

然而,对于直角三角形的定义和性质,学生可能还不是很清晰。

因此,在这一节课中,我需要引导学生通过实践活动,加深对直角三角形的认识,从而能够独立判断一个三角形是否为直角三角形。

三. 说教学目标1.知识与技能:学生能够理解直角三角形的定义,掌握判断一个三角形是否为直角三角形的方法。

2.过程与方法:通过观察、操作、交流等活动,学生能够自主探索直角三角形的性质,培养空间想象能力和逻辑思维能力。

3.情感态度与价值观:学生能够体验到数学与生活的紧密联系,增强对数学的兴趣和信心。

四. 说教学重难点1.重点:直角三角形的定义和性质。

2.难点:如何引导学生自主探索并发现直角三角形的性质,以及如何判断一个三角形是否为直角三角形。

五. 说教学方法与手段在这一节课中,我将采用问题驱动的教学方法,引导学生通过自主探索、合作交流的方式来学习直角三角形的性质。

同时,我会利用多媒体课件和实物模型等教学手段,帮助学生更好地理解和掌握直角三角形的性质。

六. 说教学过程1.导入:通过复习三角形的分类,引导学生回顾等腰三角形和等边三角形的性质,为新课的学习做好铺垫。

2.自主探索:学生分组讨论,每组尝试找出一种方法来判断一个三角形是否为直角三角形。

北师大版八年级数学上册:1.2《一定是直角三角形吗》教案

北师大版八年级数学上册:1.2《一定是直角三角形吗》教案

北师大版八年级数学上册:1.2《一定是直角三角形吗》教案一. 教材分析《一定是直角三角形吗》这一节内容,主要让学生了解直角三角形的性质,能够通过实例判断一个三角形是否为直角三角形。

本节课内容是学生在学习了三角形的分类、三角形的性质等知识的基础上进行学习的,对于学生掌握三角形的相关知识,培养学生的空间想象能力、逻辑思维能力具有重要意义。

二. 学情分析学生在八年级上学期已经学习了三角形的分类、三角形的性质等知识,对于三角形的基本概念、性质有一定的了解。

但学生的知识水平、学习习惯、动手操作能力等方面存在差异,因此在教学过程中要关注学生的个体差异,引导每个学生都能积极参与到课堂活动中来。

三. 教学目标1.知识与技能目标:让学生了解直角三角形的性质,能够通过实例判断一个三角形是否为直角三角形。

2.过程与方法目标:通过观察、操作、交流等活动,培养学生的空间想象能力、逻辑思维能力。

3.情感态度与价值观目标:让学生体验到数学与生活的紧密联系,增强学生对数学的兴趣。

四. 教学重难点1.重点:直角三角形的性质。

2.难点:如何判断一个三角形是否为直角三角形。

五. 教学方法采用问题驱动法、启发式教学法、小组合作学习法等,引导学生观察、操作、思考,培养学生的空间想象能力、逻辑思维能力。

六. 教学准备1.准备一些直角三角形、锐角三角形、钝角三角形的图片。

2.准备一些三角板,让学生进行操作。

七. 教学过程导入(5分钟)1.向学生提出问题:“你们知道什么是直角三角形吗?”2.让学生举例说明生活中见到的直角三角形。

呈现(10分钟)1.向学生呈现一些直角三角形、锐角三角形、钝角三角形的图片,让学生进行观察。

2.引导学生发现直角三角形的特征。

操练(10分钟)1.让学生拿出三角板,进行操作,尝试找出直角三角形。

2.让学生小组内交流,分享找直角三角形的方法。

巩固(10分钟)1.让学生尝试判断一些给定的三角形是否为直角三角形。

2.教师进行点评,纠正学生的错误。

新版北师大版八年级上册数学全册教案教学设计(最新精编版)

新版北师大版八年级上册数学全册教案教学设计(最新精编版)

北师大版八年级上册教学案同庆初中教学设计(导学模式)学科:;任课班级:;任课教师:;年月日第一章勾股定理§1.1 探索勾股定理(一)教学目标:1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。

2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。

重点难点:重点:了解勾股定理的由来,并能用它来解决一些简单的问题。

难点:勾股定理的发现教学过程一、创设问题的情境,激发学生的学习热情,导入课题出示投影1 (章前的图文 p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。

出示投影2 (书中的P2 图1—2)并回答:1、观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。

正方形B中有_______个小方格,即A的面积为______个单位。

正方形C中有_______个小方格,即A的面积为______个单位。

2、你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:3、图1—2中,A,B,C 之间的面积之间有什么关系?学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A.B,C 的关系呢?二、做一做出示投影3(书中P3图1—4)提问:1、图1—3中,A,B,C 之间有什么关系?2、图1—4中,A,B,C 之间有什么关系?3、从图1—1,1—2,1—3,1|—4中你发现什么?学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。

三、议一议1、图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?2、你能发现直角三角形三边长度之间的关系吗?在同学的交流基础上,老师板书:直角三角形边的两直角边的平方和等于斜边的平方。

北师大版八年级数学上册 (一定是直角三角形吗)勾股定理课件教学

北师大版八年级数学上册 (一定是直角三角形吗)勾股定理课件教学
因此,这个零件符合要求
13
C
D 4 5 12
A 3B
变式: 四边形ABCD中已知AB=3,AD=4,BC=12, CD=13,且∠A=900,求这个四边形的面积.
随堂演练
1、如果三条线段a、b、c满a2=b2-c2 那么这三条线段组成的三角形是直角三角形吗?
2、下列哪几组数据能作为直角三角形的三边长?请说明理由. ①9,12,15; ②15,36,39; ③0.3,0.4,0.5 ; ④12,18,22
加减消元
归纳总结
审:弄清题意和题目中的数量关系,找出题目中的等量关系; 设:用字母表示题目中的两个未知数; 列:根据找出的等量关系列出方程组; 解:解方程组,求得未知数的值; 验:检验所得的解是否是方程组的解,并且要检验其是否符 合实际问题的意义,不符合要舍去; 答:写出答案,包括单位名称.
典例精析
.
4.用一根绳子围绕一个大树,若环绕大树3周,则绳子还多4尺;若环绕大树4周,
则绳子又少了3尺。这根绳子有多长?环绕大树一周需要多少尺?
列方程组
.
课堂练习
5.100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉一片瓦, 问有多少匹大马、多少匹小马?
答:有25匹大马,75匹小马。
课堂总结
情境导入
“鸡兔同笼”题为: 今有鸡兔同笼, 上有三十五头, 下有九十四足, 问鸡兔各几何?
“上有三十五头”的意思是什么? “下有九十四足”的意思是什么?
你能算出鸡兔各几只吗?
新知讲解
(1)“上有三十五头”的意思是什么?“下有九十四足”呢?
鸡兔一共有35个头,94只脚.
(2)题中有哪些等量关系?你能列出方程组吗?
应用二元一次方程组——鸡兔同笼

北师大版数学八年级上册《2 一定是直角三角形吗》教案2

北师大版数学八年级上册《2 一定是直角三角形吗》教案2

北师大版数学八年级上册《2 一定是直角三角形吗》教案2一. 教材分析《2 一定是直角三角形吗》这一节的内容,主要让学生了解并掌握直角三角形的定义和性质。

通过这一节的学习,学生能够判断一个三角形是否为直角三角形,并进一步理解直角三角形在几何学中的重要性。

二. 学情分析八年级的学生已经学习过三角形的基本概念和性质,对三角形有一定的认识。

但是,他们对直角三角形的定义和性质的理解可能还不够深入,需要通过本节课的学习来进一步巩固和提高。

三. 教学目标1.让学生了解直角三角形的定义和性质。

2.培养学生判断一个三角形是否为直角三角形的能力。

3.让学生理解直角三角形在几何学中的重要性。

四. 教学重难点1.直角三角形的定义和性质。

2.如何判断一个三角形是否为直角三角形。

五. 教学方法采用讲授法、问答法、案例分析法、小组合作法等教学方法,引导学生主动探究,提高学生的动手能力和思维能力。

六. 教学准备1.准备相关的教学案例和图片。

2.准备直角三角形的模型或纸张,让学生动手操作。

七. 教学过程1.导入(5分钟)利用图片或案例,引导学生回忆三角形的基本概念和性质。

然后,提出问题:“你们知道直角三角形吗?直角三角形有什么特殊的性质吗?”2.呈现(10分钟)展示直角三角形的定义和性质,让学生了解并掌握。

直角三角形定义:有一个角是直角的三角形。

直角三角形性质:直角三角形的两个锐角的和为90度,直角三角形的斜边最长。

3.操练(10分钟)让学生动手操作,判断一些给定的三角形是否为直角三角形。

可以让学生用准备的模型或纸张,自己动手做出直角三角形,并观察其性质。

4.巩固(10分钟)通过一些练习题,让学生巩固直角三角形的定义和性质。

可以设置一些选择题、填空题或解答题,让学生独立完成。

5.拓展(10分钟)引导学生思考直角三角形在实际生活中的应用。

例如,在建筑、工程、测量等方面,直角三角形有哪些实际应用?6.小结(5分钟)对本节课的内容进行小结,让学生回顾并巩固所学知识。

1.2《一定是直角三角形吗》北师大版数学八年级上册教案

1.2《一定是直角三角形吗》北师大版数学八年级上册教案

第一章勾股定理1.2一定是直角三角形吗一、教学目标1.掌握直角三角形的判别条件,并能进行简单的应用;2.经历直角三角形的判别条件的探索过程,发展学生的抽象思维能力和归纳能力;3.体验生活中数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学和用数学的兴趣.二、教学重点及难点重点:会通过边长判断一个三角形是否是直角三角形,准确理解勾股定理逆定理的具体内容.难点:探索三角形是否是直角三角形过程及熟练应用勾股定理逆定理解决生活中的实际问题.三、教学准备多媒体课件,带有13个等距结的绳子四、相关资视频《利用13个打结的绳子作直角》五、教学过程【复习回顾】复习回顾,引如新课教学过程师:直角三角形有哪些性质?(可从边、角两方面分别说明)学生:①有一个内角为直角;②两个锐角互余;③两条直角边的平方和等于斜边的平方设计意图:通过复习,铺垫知识,为新课接受打好基础.师:我们前面学习的内容是已知直角三角形,利用这些性质解决问题,那如果我们想得到一个直角三角形应如何做呢?学生发表见解教师总结:可以利用直角得到一个直角三角形. 引出问题:三角形的三条边满足什么关系就能得到直角三角形.我们通过视频看看古人是如何做的.那么这样做出来的三角形一定是直角三角形吗?这就是我们这节课探究的问题.板书:2.一定是直角三角形吗【新知讲解】探究:利用三边数量关系判定直角三角形活动1:仿照视频演示下面我们一同还原视频中的做法,并画出图形.拿出事先准备好的绳子,上面有13个等距的结,把这根绳子分成等长的12段.让一个同学同时握住绳子的第(1)个和第(13)个结,再让两个同学分别握住绳子的第(4)个结和第(8)个结,(如下图所示)拉紧绳子,大家可以发现什么?学生通过观察,很容易得到一个直角三角形,在第(4)个结处的角是直角.教师进一步进行引导,看在第(1)个结到第(4)个结是3个单位长度即b=3;同理a=4,c=5.因为32+42=52,所以a2+b2=c2.那么是不是三角形的三边满足a2+b2=c2,就可以得到一个直角三角形呢?不妨再找几组数试一试.设计意图:在活动中探索结论,增强学生学习兴趣.活动2:做一做下面四组数分别是一个三角形的三边a,b,c的长:(1)5,12,13;(2)7,24,25;(3)8,15,17;(4)5,6,7.问题:这四组数都满足a2+b2=c2吗?分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?(学生分为4人活动小组,每个小组可以任选其中的一组数.)师生共析:(1)52+122=169=132;(2)72+242=625=252;(3)82+152=289=172;(4)52+62=61≠72.这四组数,前三组满足a2+b2=c2,而最后一组不满足.学生们通过作三角形,测量三角形三个内角发现:前三组数满足a2+b2=c2,作出的三角形都是直角三角形;而最后一组数不满足a2+b2=c2,作出的三角形不是直角三角形.设计意图:通过让学生亲自动手作三角形,并用量角器量出各个内角,然后小组内交流,从而获得一个三角形是直角三角形时三边满足的条件.活动3:归纳总结总结1:判定直角三角形的条件:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.满足的a2+b2=c2三个正整数,称为勾股数.总结2:(1)常见的勾股数有:①3,4,5;②9,40,41;③8,15,17;④7,24,25;⑤5,12,13;⑥9,12,15.(2)勾股数有无数组,一组勾股数中,各数的相同整数倍得到一组新的勾股数.注意:(1)勾股数必须都是正整数;(2)判断一组数是不是勾股数,看较小两个数的平方和是否等于最大数的平方.设计意图:明确结论,总结常见勾股数及注意事项,使学生在解决问题时有明确的解题思路.【典型例题】例1. 一个零件的形状如左下图所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量得这个零件各边尺寸如右下图所示,这个零件符合要求吗?分析:这是一个利用直角三角形的判定条件解决实际问题的例子.解:在△ABD中,AB2+AD2=9+16=25=BD2,所以△ABD是直角三角形,∠A是直角.在△BCD中,BD2+BC2=25+144=169=132=CD2,所以△BCD是直角三角形,∠DBC 是直角.因此这个零件符合要求.设计意图:通过例题,巩固所学知识,并强化训练.例2.下列几组数能否作为直角三角形的三边长?请说说你的理由.(1)9,12,15;(2)15,36,39;(3)12,35,36;(4)12,18,32.解:根据直角三角形的判定条件进行判断.(1)92+122=152;(2)152+362=392,所以(1)(2)两组数可以作为直角三角形的三边;但(3)122+352≠362,(4)122+182≠322,所以(3)(4)两组数不能作为直角三角形的三边.例3.①7,24,25;②8,15,19;③0.6,0.8,1.0;④3n ,4n ,5n (n >1,且为自然数).上面各组数中,勾股数有______组.A .1B .2C .3D .4【答案】B ①√∵72+242=252,且7,24,25都是正整数,∴7,24,25是勾股数.②×∵82+152≠192,∴8,15,19不是勾股数.③×∵0.6,0.8,1.0不是正整数,∴0.6,0.8,1.0不是勾股数.④√∵(3n )2+(4n )2=25n 2=(5n )2(n >1,且为自然数),且它们都是正整数,∴3n ,4n ,5n (n >1,且为自然数)是勾股数.归纳总结:勾股数的判断方法判断勾股数要看两个条件,一看能否满足a 2+b 2=c 2,二看是否都是正整数.这两者缺一不可.例4.(1)下列各组数中,以a ,b ,c为边的三角形不是直角三角形的是( A )A .a =1.5,b =2,c =3B .a =7,b =24,c =25C .a =6,b =8,c =10D .a =3,b =4,c =5(2)如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 的形状为( A )A .直角三角形B . 锐角三角形C .钝角三角形D . 以上答案都不对(3)如图,正方形ABCD 是由9个边长为1的小正方形组成,每个小正方形的顶点都叫格点,连接AE ,AF ,则∠EAF =( B )A .30°B . 45°C . 60°D . 35°【随堂练习】1.如图是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB=DC=8 m,AD=BC=6 m,AC=9 m,请你帮他看一下,挖的地基是否合格?分析:本题是数学问题在生活中的实际应用,所以我们要把实际问题转化成数学问题来解决,运用直角三角形的判定条件,来判断它是否为直角三角形.解:∵AD2+DC2=62+82=100,AC2=92=81,∴AD2+DC2≠AC2.∴△ADC不是直角三角形,∠ADC≠90°.又∵按标准应为长方形,四个角应为直角,∴该农民挖的地基不合格.2.如图,在△ABC中,D为BC边上的点,已知:AB=13,AD=12,AC=15,BD=5,求DC.分析:先用三边数量关系的判定形状,然后用勾股定理求数据.解:∵AD2+BD2=122+52=132=AB2,∴由勾股定理的逆定理知△ADB为直角三角形.∴AD⊥BC.在Rt△ADC中,由勾股定理,得DC2=AC2-AD2=152-122=92.∴DC=9.3.如图,在△ABD中,∠A是直角,AB=3,AD=4,BC=12,DC=13,求四边形ABCD的面积.解:连接BD,在△ABD中,∠A是直角,AB=3,AD=4,∴△BCD中,BC=12,DC=13,DB=5,52+122=132,即BC2+BD2=DC2,∴△BCD是直角三角形,∴S四边形ABCD=S△ABD+S△BDC=AD•AB+BD•BC=×4×3+×5×12=6+30=36.六、课堂小结谈谈本节课的收获:1.判定直角三角形的方法:如果一个三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.勾股数:满足a2+b2=c2的三个正整数,称为勾股数.2. 勾股数扩大相同的正整数倍后,仍为勾股数.七、板书设计。

北师大版八年级数学上册《一定是直角三角形吗》教案及教学反思

北师大版八年级数学上册《一定是直角三角形吗》教案及教学反思

北师大版八年级数学上册《一定是直角三角形吗》教案及教学反思一、教案设计1. 教学目标通过本节课的教学,学生能够正确地理解和应用勾股定理,知道如何应用勾股定理判断一个三角形是否为直角三角形。

2. 教学重点•理解勾股定理的含义和适用范围;•如何应用勾股定理判断一个三角形是否为直角三角形。

3. 教学难点如何应用勾股定理判断一个三角形是否为直角三角形。

4. 教学内容(1)勾股定理的定义首先,我们来回顾一下勾股定理的定义:直角三角形的斜边的平方等于两直角边的平方和。

(2)如何应用勾股定理判断一个三角形是否为直角三角形接下来,我们来讲一讲如何应用勾股定理判断一个三角形是否为直角三角形。

首先,引导学生根据题目给出的条件,确定可能是直角三角形的三角形。

然后,让学生按照勾股定理计算斜边和两直角边的平方和,判断是否相等,若相等,说明这个三角形是直角三角形。

最后,让学生运用所学知识,解决一些实际问题。

5. 教学方法板书、讲解、引导、练习、讨论。

6. 教学过程(1)激发兴趣(3分钟)通过简单的问题导入,激发学生对本节课的兴趣,例如:在什么情况下,两直角边的平方和等于斜边的平方呢?(2)讲解概念(5分钟)通过一些具体的例子,让学生理解勾股定理的定义。

(3)引导理解(10分钟)通过一些具体的例题,引导学生理解如何应用勾股定理判断一个三角形是否为直角三角形。

(4)让学生动手练习(20分钟)让学生按照教师刚刚讲解的步骤,解决一些题目,提高学生的应用能力。

(5)讨论(10分钟)学生互相交换解题思路,发表个人看法和建议。

7. 教学评价让学生上台演练、口头答问,以此检查学生的学习效果。

同时,也可以通过课外练习和作业来检查学生在知识掌握和应用方面的能力。

二、教学反思本节课中,采用了讲解、引导、练习、讨论等多种教学方法,让学生在认识和掌握勾股定理的基础上,理解和掌握如何应用勾股定理判断一个三角形是否为直角三角形的方法。

在教学中,进行了简单的问题导入,引起了学生的兴趣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册能得到直角三角形吗教案北师大版
教学目标:
知识与技能:掌握直角三角形的判别条件,并能进行简单应用;
教学思考:进一步发展数感,增加对勾股数的直观体验,培养从实际问题抽象出数学问题的能力,建立数学模型.
解决问题:会通过边长判断一个三角形是否是直角三角形,并会辨析哪些问题应用哪个结论.情感态度与价值观:
敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.
重点难点:
重点:能熟练运用勾股定理逆定理解决实际问题
难点:用面积证勾股定理能熟练运用勾股定理逆定理解决实际问题
1.把握勾股定理的逆定理;
2.用勾股定理的逆定理判定一个三角形是不是直角三角形。

教学过程
一、创设情境,激发学生兴趣、导入课题
展示一根用 13 个等距的结把它分成等长的12 段的绳子,请三个同学上台,按老师的要求操作。

甲:同时握住绳子的第一个结和第十三个结。

乙:握住第四个结。

丙:握住第八个结。

拉紧绳子,让一个同学用量角器,测出这三角形其中的最大角。

问:发现这个角是多少?(直角。


展示投影 1。

(书P9图1—10)
教师道白:这是古埃及人曾经用过这种方法得到直角,这个三角形三边长分别为多少?( 3、4、5 ) ,这三边满足了哪些条件? ( 32+42 = 52),是不是只有三边长为3、4、5的三角形才可以成为直角三角形呢?现在请同学们做一做。

二、做一做
下面的三组数分别是一个三角形的三边a、b、c。

5、12、13 7、24、25 8、15、17
1、这三组数都满足a2+b2 = c2吗?
同学们在运算、交流形成共识后,教师要学生完成。

2、分别用每组数为三边作三角形,用量角器量一量,它们都是直角三角形吗?
同学们在在形成共识后板书:
如果三角形的三边长a、b、c满足a2+b2 = c2,那么这个三角形是直角三角形。

满足a2+b2 = c2的三个正整数,称为勾股数。

大家可以想这样的勾股数是很多的。

今后我们可以利用“三角形三边a、b、c满足a2+b2 = c2时,三角形为直角形”来判断三角形的形状,同时也可以用来判定两条直线是否垂直的方法。

勾股定理的逆定理:如果三角形的三边长a、b、c有下面关系:
a2+b2 = c2,那么这个三角形是直角三角形。

注意:勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理。

1.用勾股定理的逆定理判定一个三角形是否是直角三角形的步骤:
(1)首先求出最大边(如c);
(2)验证a2+b2与c2是否具有相等关系;
若c2=a2+b2,则△ABC是以∠C=90°的直角三角形。

若c2≠a2+b2,则△ABC不是直角三角形。

2.直角三角形的判定方法小结:
(1)三角形中有两个角互余;
(2)勾股定理的逆定理;
3.紧记一些常用的勾股数,将为我们应用勾股定理逆定理带来方便,如3、4、5;5、12、13;6、8、10;12、16、20等。

三、随堂练习:
⒈下列几组数能否作为直角三角形的三边长?说说你的理由.
⑴9,12,15;⑵15,36,39;
⑶12,35,36;⑷12,18,22.
⒉已知∆ABC中BC=41, AC=40, AB=9, 则此三角形为_______三角形, ______是最大角
⒊四边形ABCD中已知AB=3,BC=4,CD=12,DA=13,且∠ABC=900,求这个四边形的面
积.A B
C D
4
3
12
13
四、小结:
1、满足a2 +b2=c2,那么这个三角形是直角三角形.
2、满足a2 +b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.
教学反思:这是勾股定理的逆应用。

大部分的同学只要能正确掌握勾股定理的话,都不难理解。

当然勾股定理的理解掌握是关键。

相关文档
最新文档