北师大版八年级数学下册全套教案(精华版)
北师大版八年级下册数学全册教案设计(1)

北师大版八年级下册数学全册教案设计一、教学内容1. 第十一章:数据处理与概率11.1 数据的收集与整理11.2 频数与频率11.3 条形统计图和折线统计图11.4 饼图11.5 概率初步2. 第十二章:几何证明12.1 证明的概念与基本步骤12.2 对顶角、同位角、内错角12.3 平行线的性质12.4 三角形的内角和12.5 线段的垂直平分线二、教学目标1. 让学生掌握数据处理的基本方法和概率初步知识。
2. 培养学生运用几何证明方法解决问题的能力。
3. 培养学生的空间想象能力和逻辑思维能力。
三、教学难点与重点1. 教学难点:数据的处理与统计图的理解、几何证明的方法。
2. 教学重点:概率的计算、平行线的性质、三角形的内角和。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、几何模型。
2. 学具:直尺、圆规、量角器、计算器。
五、教学过程1. 实践情景引入通过生活中的实例,让学生了解数据处理与概率在实际生活中的应用。
引导学生通过观察、思考,发现几何图形中的规律。
2. 例题讲解详细讲解数据处理、统计图、概率计算的方法。
通过实际例题,让学生学会运用几何证明的方法解决问题。
3. 随堂练习设计具有代表性的练习题,巩固所学知识。
及时反馈,针对学生的错误进行讲解。
4. 课堂小结引导学生学会运用所学知识解决实际问题。
六、板书设计1. 数据处理与概率部分:板书展示数据的收集、整理、统计图、概率计算方法。
2. 几何证明部分:板书展示证明步骤、性质、定理。
七、作业设计1. 作业题目:第十一章:完成课后练习题1、2、3。
第十二章:完成课后练习题4、5、6。
2. 答案:见教材课后练习题答案。
八、课后反思及拓展延伸2. 拓展延伸:鼓励学生参加数学竞赛,提高解题能力。
布置研究性学习任务,让学生深入了解数据处理与概率在实际生活中的应用。
引导学生探索几何图形的奥秘,培养空间想象能力和逻辑思维能力。
重点和难点解析1. 教学内容的针对性与深度2. 教学目标的具体化与可测量性3. 教学难点与重点的识别与处理4. 教学过程中的实践情景引入与例题讲解5. 板书设计的条理清晰与信息量6. 作业设计的针对性与答案的准确性7. 课后反思的深度与拓展延伸的广度详细补充和说明:一、教学内容的针对性与深度教学内容的选择应紧密围绕教学目标,突出重点,兼顾难点。
八年级下册数学教案

八年级下册数学教案北师大版八年级下册数学教案作为一名辛苦耕耘的教育工作者,往往需要进行教案编写工作,教案是备课向课堂教学转化的关节点。
快来参考教案是怎么写的吧!以下是店铺为大家整理的北师大版八年级下册数学教案,仅供参考,希望能够帮助到大家。
北师大版八年级下册数学教案1一、指导思想在教学中努力推进九年义务教育,落实新课改,体现新理念,培养创新精神。
通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。
优生不多,思想不够活跃,有少数学生不上进,思维跟不上。
要在本期获得理想成绩,老师和学生都要付出努力,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
三、本学期教学内容分析本学期教学内容共计六章。
第一章《三角形的证明》本章将证明与等腰三角形和直角三角形的性质及判定有关的一些结论,证明线段垂直平分线和角平分线的有关性质,将研究直角三角形全等的判定,进一步体会证明的必要性。
第二章《一元一次不等式和一元一次不等式组》本章通过具体实例建立不等式,探索不等式的基本性质,了解一般不等式的解、解集、解集在数轴上的表示,一元一次不等式的解法及应用;通过具体实例渗透一元一次不等式、一元一次方程和一次函数的内在联系.最后研究一元一次不等式组的解集和应。
第三章《图形的平移与旋转》本章将在小学学习的基础上进一步认识平面图形的平移与旋转,探索平移,旋转的性质,认识并欣赏平移,中心对称在自然界和现实生活中的应用。
第四章《分解因式》本章通过具体实例分析分解因式与整式的乘法之间的关系揭示分解因式的实质,最后学习分解因式的几种基本方法。
第五章《分式与分式方程》本章通过分数的有关性质的回顾建立了分式的概念、性质和运算法则,并在此基础上学习分式的化简求值、解分式方程及列分式方程解应用题,能解决简单的实际应用问题。
八年级数学下册(北师大版)配套教学教案(全册)

八年级数学下册(北师大版)配套教学教案(全册)全新修订版教学设计(教案全)八年级数学下册老师的必备资料家长的帮教助手学生的课堂再现北师大版目录1 证明1.1等腰三角形 (6)第1课时三角形的全等和等腰三角形的性质 (6)第2课时等边三角形的性质 (10)第3课时等腰三角形的判定与反证法 (13)第4课时等边三角形的判定及含30°角的直角三角形的性质 (17) 1.2 直角三角形 (21)第1课时勾股定理及其逆定理 (21)第2课时直角三角形全等的判定 (26)1.3 线段的垂直平分线 (30)第1课时线段的垂直平分线 (30)第2课时三角形三边的垂直平分线及作图 (33)1.4 角平分线 (36)第1课时角平分线 (36)第2课时三角形三条内角的平分线 (40)2 一元一次不等式与一元一次不等式组2.1不等关系 (42)2.2 不等式的基本性质 (44)2.3 不等式的解集 (47)2.4 一元一次不等式 (49)第1课时一元一次不等式的解法 (49)第2课时一元一次不等式的应用 (52)2.5 一元一次不等式与一次函数 (56)第1课时一元一次不等式与一次函数的关系 (56)第2课时一元一次不等式与一次函数的综合应用 (59) 2.6 一元一次不等式组 (62)第1课时一元一次不等式组的解法 (62)第2课时一元一次不等式组的解法及应用 (64)3 图形的平移与旋转3.1图形的平移 (67)第1课时平移的认识 (67)第2课时坐标系中的点沿x轴、y轴的平移 (70) 3.2 图形的旋转 (74)第1课时旋转的定义和性质 (74)第2课时旋转作图 (77)3.3 中心对称 (79)3.4 简单的图案设计 (82)4 因式分解4.1 因式分解 (85)4.2 提公因式法 (86)第1课时直接提公因式因式分解 (86)4.2 提公因式法 (89)第1课时直接提公因式因式分解 (89)第2课时变形后提公因式因式分解 (91)4.3 公式法 (93)第1课时平方差公式 (93)第2课时完全平方公式 (96)5 分式5.1认识分式 (99)第1课时分式的有关概念 (99)第2课时分式的基本性质 (102)5.2 分式的乘除法 (105)5.3 分式的加减法 (109)第1课时同分母分式的加减 (109)第2课时异分母分式的加减 (111)5.4 分式方程 (116)第1课时分式方程的概念及列分式方程 (116)第2课时分式方程的解法 (118)第3课时分式方程的应用 (121)6 平行四边形6.1平行四边形的性质 (125)第1课时平行四边形边和角的性质 (125)第2课时平行四边形对角线的性质 (128)6.2 平行四边形的判定 (130)第1课时利用四边形边的关系判定平行四边形 (130)第2课时平行四边形的判定定理3与两平行线间的距离 (132) 6.3 三角形的中位线 (135)6.4 多边形的内角和与外角和 (138)。
北师大版八年级下册数学全册教案设计

北师大版八年级下册数学全册教案设计一、教学内容1. 第五章:三角形的证明详细内容:三角形的性质、全等三角形的判定、三角形的角平分线、中线、高线、三角形全等的性质及判定方法。
2. 第六章:不等式与不等式组详细内容:一元一次不等式、一元一次不等式组、不等式的性质、不等式的解法及应用。
二、教学目标1. 理解并掌握三角形的性质、全等三角形的判定方法以及三角形的角平分线、中线、高线的性质。
2. 学会解一元一次不等式及不等式组,掌握不等式的性质及解法。
3. 能够运用所学知识解决实际问题,提高逻辑思维能力和解决问题的能力。
三、教学难点与重点1. 教学难点:全等三角形的判定方法、一元一次不等式的解法。
2. 教学重点:三角形性质的应用、不等式的性质及解法。
四、教具与学具准备1. 教具:三角板、直尺、圆规、多媒体设备。
2. 学具:练习本、草稿纸、笔。
五、教学过程1. 实践情景引入:通过展示实际生活中全等三角形和不等式的应用,激发学生的学习兴趣。
2. 例题讲解:(1)讲解全等三角形的判定方法,通过例题使学生掌握SSS、SAS、ASA、AAS、HL定理。
(2)讲解一元一次不等式的解法,通过例题使学生掌握不等式的性质及解法。
3. 随堂练习:(1)让学生运用全等三角形的判定方法解决实际问题。
(2)让学生解一元一次不等式及不等式组。
4. 课堂小结:六、板书设计1. 三角形性质、全等三角形的判定方法、三角形的角平分线、中线、高线。
2. 一元一次不等式及不等式组的解法。
七、作业设计1. 作业题目:(1)已知三角形ABC中,AB=AC,求证:角平分线AD垂直于BC。
(2)解不等式组:2x3>1,x+4≤5。
2. 答案:(1)证明:因为AB=AC,所以角平分线AD垂直于BC。
(2)解:不等式组的解为x>2,x≤1,所以x=2。
八、课后反思及拓展延伸1. 反思:通过本节课的教学,了解学生在全等三角形判定和不等式解法方面的掌握情况,及时调整教学方法,提高教学效果。
北师大版八年级数学下册全套教案

§5.3 相似三角形教学目的:1.使学生理解相似三角形的定义,掌握定义中的两个条件,理解相似比的意义.2.使学生理解并掌握定理“平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.)3.通过相似三角形概念的引入过程,培养学生联系实际的意识,增进数学应用的眼光.教学重点:.使学生理解并掌握定理“平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.)教学难点:准确找出相似三角形的对应边和对应角度。
教学方法:学情分析:教学过程:一、讨论相似三角形的定义请同学们都拿出文具盒中的三角板,观察它们之间的关系,再与教师手中的木制三角板比较,观察这些三角形的关系,这是有全等的关系也有相似的关系.从全等与相似的类比,不难得到相似三角形的定义.二、给出定义1.从∠A=∠A,∠B=∠B,∠C=∠C,AB:A’B’=BC:B’C’=AC:A’C’可知△ABC∽△A’B’C’2.板书定义.叫学生写在笔记本上.3.什么叫相似比,说明相似比的意义.注意:(在记两个三角形相似的时候,和记三角形全等一样,通常把表示对应顶点的字母写在对应的位置上,这样可以比较容易找出相似的对应的角和边)△ABC和△A’B’C’的比与△A’B’C’和△ABC的比不一定相等,而是成倒数的关系.三、导出定理1.讨论为什么“平行于三角形一边的直线和其它两边的相交,所构成的三角形与原三角形相似?”如图:如果DE∥BC,∠ADE =∠B∠AED=∠C;AD:AB=DE D E:BC=AE:ACB C2、平行于三角形的一边,且和其他两边相交的直线,所截得的三角形与原三角形的三边对应成比例.(成比例的线段不都在一个角的两边上,而分别是截得的三角形与原三角形的三条边)四、学生练习1、讨论224页练习1(1)所有的等腰三角形相似吗?等边三角形呢?为什么?(2)所有的直角三角形相似吗?等腰直角三角形呢?为什么?演示课件2、课堂练习224页2(目的,找对应边对应角)3、练习:找出哪些对三角形是相似的.找出对应角、对应边,列出比例式.五、课堂小结:1、相似三角形的定义;2、会准确找出两三角形的对应边和对应角;六、课外作业:P235 N1(1)、(2),N 2。
北师大版八年级下册数学全册精品教案设计

北师大版八年级下册数学全册精品教案设计一、教学内容1. 第十三章:数据的收集与整理13.1 数据的收集13.2 数据的整理13.3 数据的表示2. 第十四章:概率初步14.1 随机事件14.2 概率的计算14.3 概率的应用二、教学目标1. 让学生掌握数据的收集、整理和表示方法,能够运用这些方法解决实际问题。
2. 使学生了解随机事件的性质,掌握概率的计算方法,并能运用概率知识解决简单问题。
3. 培养学生的数据分析、逻辑思维和解决问题的能力。
三、教学难点与重点1. 教学难点:数据的整理和表示,概率的计算。
2. 教学重点:数据的收集方法,随机事件的性质,概率的应用。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备、教学课件。
2. 学具:学生用书、练习本、铅笔、直尺、圆规。
五、教学过程1. 引入:通过实际情景,如调查班级同学的身高、体重等数据,引出数据的收集与整理。
2. 新课导入:讲解数据的收集方法、整理方法和表示方法,结合实例进行分析。
3. 例题讲解:以教材中的例题为载体,详细讲解数据的整理与表示,以及概率的计算方法。
4. 随堂练习:针对教学内容,设计具有代表性的练习题,让学生独立完成,并及时反馈、纠正。
5. 知识拓展:介绍随机事件在实际生活中的应用,激发学生学习兴趣。
六、板书设计1. 数据的收集与整理收集方法:问卷调查、观察、访谈等整理方法:分类、排序、汇总等表示方法:表格、条形图、折线图等2. 概率初步随机事件:不确定事件、必然事件、不可能事件概率的计算:古典概率、频率估计概率概率的应用:生活中的概率问题七、作业设计1. 作业题目:(1)收集本班同学的年龄、性别、爱好等数据,整理成表格,并用适当的图表示出来。
(2)计算一枚硬币正面向上的概率,并解释原因。
2. 答案:(1)略(2)概率为0.5,因为硬币正反两面的出现是等可能的。
八、课后反思及拓展延伸1. 反思:本节课的教学内容是否讲解清楚,学生是否掌握了重点、难点。
新北师大版八年级数学下册教案(5篇)

新北师大版八年级数学下册教案(5篇)新北师大版八年级数学下册教案(精选篇1)教学目标:情意目标:培养学生团结协作的精神,体验探究成功的乐趣。
能力目标:能利用等腰梯形的性质解简单的几何计算证明题;培养学生探究问题自主学习的能力。
认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。
教学重点难点重点:等腰梯形性质的探索;难点:梯形中辅助线的添加。
教学课件:PowerPoint演示文稿教学方法:启发法学习方法:讨论法合作法练习法教学过程:(一)导入1出示图片,说出每辆汽车车窗形状(投影)2板书课题:5梯形3练习:下列图形中哪些图形是梯形?(投影)结梯形概念:只有4总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。
5指出图形中各部位的名称:上底下底腰高对角线。
(投影)6特殊梯形的分类:(投影)(二)等腰梯形性质的探究【探究性质一】思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作讨论作答)如图,等腰梯形ABCD中,AD∥BC,AB=CD。
求证:∠B=∠C想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。
【操练】(1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。
(投影)(2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)【探究性质二】如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作讨论作答)如上图,等腰梯形ABCD中,AD∥BC,AB=CD,ACBD相交于O,求证:AC=BD。
(投影)等腰梯形性质:等腰梯形的两条对角线相等。
【探究性质三】问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作作答)问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)等腰梯形性质:同以底上的两个内角相等,对角线相等(三)质疑反思小结让学生回顾本课教学内容,并提出尚存问题;学生小结,教师视具体情况给予提示:性质(从边角对角线对称性等角度总结)解题方法(化梯形问题为三角形及平行四边形问题)梯形中辅助线的添加方法。
北师大版八年级下册数学全册教案设计

北师大版八年级下册数学全册教案设计一、教学内容1. 第五章:平行四边形5.1 平行四边形的性质与判定5.2 矩形、菱形、正方形的性质与判定5.3 梯形的性质2. 第六章:数据的收集与处理6.1 数据的收集与整理6.2 概率初步6.3 统计图表的选择与应用二、教学目标1. 知识与技能:(1)掌握平行四边形及其特殊图形的性质与判定方法;(2)学会数据的收集、整理、分析与处理,掌握概率初步知识;(3)能够运用统计图表进行数据分析。
2. 过程与方法:(1)通过实际操作,提高学生的观察、分析、解决问题的能力;(2)培养学生进行数据收集、整理、分析的实际操作能力;(3)培养学生运用数学知识解决实际问题的能力。
3. 情感态度与价值观:(1)激发学生学习数学的兴趣,增强学生克服困难的信心;(2)培养学生的团队合作精神,提高学生的沟通能力;(3)培养学生严谨、认真的学习态度。
三、教学难点与重点1. 教学难点:(1)平行四边形及其特殊图形的性质与判定方法;(2)数据的收集、整理、分析与处理;(3)概率的计算与应用。
2. 教学重点:(1)掌握平行四边形及其特殊图形的性质与判定方法;(2)数据的收集、整理、分析及统计图表的选择与应用;(3)概率的计算与应用。
四、教具与学具准备1. 教具:多媒体设备、黑板、粉笔、平行四边形模型、统计图表等;2. 学具:直尺、圆规、量角器、剪刀、彩纸等。
五、教学过程1. 实践情景引入:通过展示生活中的平行四边形图形,引导学生观察、分析其性质与判定方法。
2. 例题讲解:(1)平行四边形的性质与判定;(2)矩形、菱形、正方形的性质与判定;(3)梯形的性质;(4)数据的收集、整理、分析与处理;(5)概率的计算与应用。
3. 随堂练习:设计相关习题,巩固所学知识,提高学生的实际操作能力。
4. 小组讨论:(2)讨论数据收集、整理、分析的方法,提高学生的实际操作能力;(3)探讨概率的计算与应用,培养学生的逻辑思维能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 不等关系教学目的和要求:理解不等式的概念,感受生活中存在的不等关系 教学重点和难点: 重点:对不等式概念的理解 难点:怎样建立量与量之间的不等关系。
从问题中来,到问题中去。
1. 如图1-1,用用根长度均为l ㎝的绳子,分别围成一个正方形和圆。
(1)如果要使正方形的面积不大于25㎝2,那么绳长l 应满足怎样的关系式? (2)如果要使圆的面积大于100㎝2,那么绳长l 应满足怎样的关系式? (3)当l =8时,正方形和圆的面积哪个大?l =12呢?(4)改变l 的取值再试一试,在这个过程中你能得到什么启发?分析解答:在上面的问题中,所围成的正方形的面积可以表示为2)4(l ,圆的面积可以表示为22⎪⎭⎫ ⎝⎛ππl 。
(1) 要使正方形的面积不大于25㎝2,就是25)4(2≤l ,即25162≤l 。
(2) 要使圆的面积大于100㎝2,就是22⎪⎭⎫⎝⎛ππl >100, 即 π42l >100(3) 当l =8时,正方形的面积为)(416822cm =,圆的面积为)(1.54822cm ≈π,4<5.1,此时圆的面积大。
当l =12时,正方形的面积为)(9161222cm =,圆的面积为)(5.1141222cm ≈π, 9<11.5,此时还是圆的面积大。
(4) 不论怎样改变l 的取值,通过计算发现:总是圆的面积大,因此,我们可以猜想,用长度增色为l ㎝的两根绳子分别围成一个正方形和圆,无论l 取何值,圆的面积总大于正方形的面积,即π42l >162l 2. (1)通过测量一棵树的树围(树干的周长)可能计算出它的树龄,通常规定以树干离地面1.5m 的地方作为测量部位。
某树栽种时的树围为5㎝,以后树围每年增加约3㎝,这棵树至少要生长多少年其树围才能超过2.4m ?(只列关系式)(2)燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10m 以外的安全区域。
已知导火线的燃烧速度为0.2m/s ,人离开的速度为4m/s ,导火线的长度x (m )应满足怎样的关系式? 答案:(1)设这棵树生长x 年其树围才能超过2.4m ,则5+3x >240。
(2)人离开10m 以外的地方需要的时间,应小于导火线燃烧的时间,只有这样才能保证人的安全:410<2.0x 分析巩固练习:用不等式表示:(1) a 的相反数是正数;(2) m 与2的差小于32; (3) x 的31与4的和不是正数; (4) y 的一半与x 的2倍的和不小于3。
解答:(1)a 的相反数是-a ,正数是比零大的数,所以“a 的相反数是正数”就是-a >0;(2)“m 与2的差”就是m-2,“ 差小于32”即是m-2<32; (3)“x 的31”就是31x ,“x 的31与4的和不是正数”就是31x+4≤0;(4)“y 的一半”不是21y,“x 的2倍”就是2x ,“不小于3”即指大于或等于3,故“y 的一半与x 的2倍的和不小于”就是21y+2x ≥3。
3. 下列各数:21,-4,π,0,5.2,3其中使不等式2-x >1,成立是 ( ) A .-4,π,5.2 B .π,5.2,3 C .21,0,3 D .π,5.2 答案:D4. 有理数a ,b 在数轴上的位置如图1-2所示,所ba ba +-的值 ( )A .>0B .<0C .=0D .≥0 答案:B小结提问,快速回答:1. 表示不等式关系的符号有哪些?2. 用适当的符号表示下列关系:(1)x 的5倍与3的差比x 的4倍大; (2)a 的41的相反数是非负数; (3)x 的3倍不小于y 的8倍。
3. 下列不等式中,总能成立的是 ( )A .2a >0 B .02≤-a C .2a >a D .2a >a1.2不等式的基本性质一、教学目标1.经历不等式基本性质的探索过程,初步体会不等式与等式的异同。
2.掌握不等式的基本性质。
二、教学重难点不等式的基本性质的掌握与应用。
三、教学过程设计 1.比较归纳,产生新知我们知道,在等式的两边都加上或都减去同一个数或整式,等式不变。
请问:如果在不等式的两边都加上或都减去同一个整式,那么结果会怎样?请兴几例试一试,并与同伴交流。
类比等式的基本性质得出猜想:不等式的结果不变。
试举几例验证猜想。
如3<7,3+1=4,7+1=8,4<8,所以3+1<7+1;3-5=-2,7-5=2,-2<2,所以 3-5<7-5;3+a<7+a;3<7,3-a<7-a等。
都能说明猜想的正确性。
2.探索交流,概括性质完成下列填空。
2<3,2×5 3×5;2<3,2×(-1)3×(-1);2<3,2×(-5)3×(-5);你发现了什么?请再举几例试试,与同伴交流。
通过计算结果不难发现:前两个空填“<”,后三个空填“>”。
得出不等式的基本性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
(通过自我探索与具体的例子使学生加深对不等式性质的印象)3.练习巩固,促进迁移1.(1)用“>”号或“<”号填空,并简说理由。
①6+2 -3+2;②6×(-2)-3×(-2);③6÷2 -3÷2;④6÷(-2)-3÷(-2)(2)如果a>b,则2.利用不等式的基本性质,填“>”或“<”:(1)若a>b,则2a+1 2b+1;(2)若<10,则y -8;(3)若a<b,且c>0,则ac+c bc+c;(4)若a>0,b<0,c<0,(a-b)c 0。
4.巩固应用,拓展研究.1. 按照下列条件,写出仍能成立的不等式,并说明根据。
(1)a>b两边都加上-4;(2)-3a<b两边都除以-3;(3)a≥3b两边都乘以2;(4)a≤2b两边都加上c;2. 根据不等式的性质,把下列不等式化为x>a或x<a的形式(a为常数):5.课内深化,提升能力比较下列各题两式的大小:6.回顾联系,形成结构想一想:本节课学了哪些知识?有哪些性质?在运用性质时应注意什么?(通过问题的回答,引导学生自主总结,把分散的知识系统化、结构化,形成知识网络,完善学生的认知结构,加深对所学知识的理解.)7.课外作业与拓展1.3不等式的解集一、教学目标1.理解不等式解与解集的意义。
2.了解不等式解集的数轴表示。
二、教学重难点重点是区分不等式解与解集的概念,难点是在数轴上表示不等式的解集。
三、教学过程设计1.创设情景,导出问题(课本问题)燃放某中礼花弹时,为了确保安全,人在点燃导火线后要在燃放前10m以外的安全区域。
已知导火线的燃烧速度为0.02m/s,人离开的速度为4m/s,那么导火线的长度应为多少厘米?(在建立不等式之前,先让学生分析清楚问题中量与量之间的关系:为了使人有足够的时间到达安全区域,导火线燃烧的时间应大于人到达安全区域的时间。
)设导火线的长度应为x cm ,根据题意,得即x>52.探索交流,得出概念1.想一想:(1)你能找出几个使不等式x>5成立的x的值吗?(2)x=5,6,8能使不等式x>5成立吗?(字母可以表示任何数,但对于满足x>5中的字母x,它能够取任意数吗?如果不能,它能取哪些数呢?启发学生动手验证、动脑思考,并从中初步体会不等式解的意义及不等式解与方程解的不同之处。
)能使不等式成立得未知数得值,叫做不等式的解。
例如,6是不等式x>5一个解,7,8,9,……也是不等式x>5的解。
一个含有未知数的不等式的所有解,组成这个不等式的解集。
例如不等式x-5≤-1的解集为x≤4;不等式x2>0的解集是所有非零实数。
求不等式解集的过程叫做解不等式。
2.议一议:请你用自己的方式将不等式x>5的解集和x-5≤-1的解集分别表示在数轴上,并与同伴交流。
(引导学生回忆实数与数轴上点的对应关系,认识数轴上的点是有序的,实数是可以比较大小的,让学生用具体实数对应的点加以说明)3.练习巩固,促进迁移1.判断下列说法是否正确:(1)x=2是不等式x+3<4的解;(2)x=2是不等式3x<7的解集;(3)不等式3x<7的解是x=2;(4)x=3是不等式3x≥9的解。
答案:(1)不正确;(2)不正确;(3)不正确;(4)正确。
2.在数轴上表示出下列不等式的解集:(1)x>-1;(2)x≥-1;(3)x<-1;(4)x≤-1答案:(1)数轴上实心与空心的区别在于:空心点表示解集不包括这一点,实心点表示解集包括这一点。
(2)数轴上表示不等式的解集遵循“大于向右走,小于向左走”这一原则。
4.回顾联系,形成结构想一想:本节课学了哪些知识?在运用时应注意什么?(通过问题的回答,引导学生自主总结,把分散的知识系统化、结构化,形成知识网络,完善学生的认知结构,加深对所学知识的理解.) 5.课外作业与拓展课外作业:课本第12页“习题1.3”1.4一元一次不等式(1)教学目的和要求:会用一元一次不等式,并能在数轴上表示其解集。
教学重点和难点:重点:一元一次不等式的解法难点:解决一元一次不等式时等号方向的改变。
教学过程:1. 观察下列不等式:(1)155.22≥-x ; (2)75.8≤x (3)x <4 (4)x 35+>240 这些不等式有哪些共同特点?这些等式的左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,象这样的不等式,叫做一元一次不等式。
2. 先阅读每(1)题的解法,然后仿做第(2)题,最后谈谈自己读题、做题的体会。
(1)解不等式3722xx -≥-,并把它的解集表示在数轴上。
解 去分母,得 )7(2)2(3x x -≥- 去括号,得 x x 21463-≥-移项、合并同类项,得205≥x两边都除以5,得4≥x这个不等式的解集在数轴上表示如下(图1-13)(2)解不等式2235-+≥x x ,并把它的解集表示的数轴上。
答案:320-≤x其解集在数轴上表示如下图1-403. 解不等式)1(2)3(410-≤--x x ,并把它的解集在数轴上表示出来。
解答:去括号,得2212410-≤+-x x , 移项,得x x 4212210+≤++。
合并同类项,得 24x 6≤系数化为1,得x ≤4。
得4≥x 。
在数轴上表示不等式解集如图4. 解不等式612131-≥--+y y y ,并把它的解集在数轴上表示出来。
解答:去分母,得11)(3)1(2-≥--+y y y 答案:3≤y这个不等式的解集数轴上表示如图5. y 取何正整数时,代数式2(y-1)的值不大于10-4(y-3)的值。