实验四 单相交直交变频电路的性能研究
单相交直交变频电路设计

附件1:学号:0121011350327基础强化训练题目单相交直交变频电路性能研究学院自动化学院专业班级姓名指导教师2012年7月10日1 总体原理图 (4)1.1方框图 (4)1.2电路原理图 (4)1.2.1 主回路电路原理图 (4)1.2.2 整流电路 (4)1.2.3 滤波电路 (5)1.2.4 逆变电路 (6)2 电路组成 (8)2.1控制电路 (8)2.2驱动电路 (9)2.3主电路 (10)3 仿真结果 (11)3.1仿真环境 (11)3.2仿真模型使用模块提取的路径及其单数设置 (11)3.3具体仿真结果 (14)3.3.1仿真电路图 (14)3.3.2整流滤波输出电压计算与仿真 (15)3.3.3逆变输出电压计算与仿真 (16)4 小结心得 (18)5 参考文献 (19)基础强化训练任务书学生姓名:专业班级:指导教师:工作单位:题目: 单相交直交变频电路性能研究初始条件:输入为单相交流电源,有效值220V。
要求完成的主要任务:(1)掌握单相交直交变频电路的原理;(2)设计出系统结构图,并采用matlab对单相交流调压电路进行仿真;(3)采用protel设计出单相交直交变频电路主电路、驱动电路、控制电路时间安排:2012年7月9日至2012年7月13日,历时一周,具体进度安排见下表参考文献:[1]王兆安,刘进军.《电力电子技术》第5版.北京:机械工业出版社,2011指导教师签名:年月日系主任(或责任教师)签名:年月日1 总体原理图1.1 方框图图1 总体方框图1.2 电路原理图1.2.1 主回路电路原理图图2 主回路原理图如图所示,交直流变换电路为不可控整流电路,输入的交流电通过变压器和桥式整流电路转化为直流电,滤波电路用电感和电容滤波,逆变部分采用四只IGBT 管组成单项桥式逆变电路,采用双极性调制方式,输出经LC 低通滤波器滤波,滤除高次谐波,得到频率可调的交流电输出。
1.2.2 整流电路整流电路的功能是把交流电源转换成直流电源。
单相交流电路实验报告

单相交流电路实验报告实验目的,通过实验,掌握单相交流电路的基本原理和性能参数的测量方法,加深对交流电路的理解。
实验仪器和设备,示波器、交流电压表、直流电压表、交流电压表、电阻箱、电感箱、电容箱、电源、开关、电阻、电感、电容等元件。
实验原理:单相交流电路由交流电源、电阻、电感、电容等元件组成。
在交流电路中,电压和电流的大小和方向都会随时间而变化,因此需要引入一些新的概念和方法来描述电路的性能。
实验步骤:1. 将电路连接好,接通电源。
2. 调节示波器,观察电压波形。
3. 测量电路中的电压、电流和功率等参数。
4. 记录实验数据,进行数据分析和处理。
实验结果与分析:通过实验测量和记录,得到了电路中电压、电流和功率的波形图和参数数据。
根据实验数据,可以计算出电路中的阻抗、相位差等参数,进而分析电路的性能和特点。
实验结论:通过本次实验,我们深入了解了单相交流电路的基本原理和性能参数的测量方法,掌握了实验中所用仪器的使用方法,提高了对交流电路的理解和应用能力。
实验中遇到的问题及解决方法:在实验过程中,我们遇到了一些问题,如电路连接不正确、仪器操作不熟练等,但通过仔细检查和及时调整,最终顺利完成了实验。
实验中的收获和体会:通过本次实验,我们不仅学到了理论知识,还提高了动手实验的能力,培养了团队合作精神和解决问题的能力,对电路实验有了更深入的认识和理解。
总结:本次实验使我们对单相交流电路有了更深入的了解,增强了对交流电路理论知识的掌握和实验操作技能,为今后的学习和科研打下了坚实的基础。
实验中的不足和改进意见:在实验中,我们发现了一些不足之处,如实验数据的记录不够详细、数据处理方法不够科学等,希望在今后的实验中能够加以改进,提高实验数据的准确性和可靠性。
通过本次实验,我们不仅学到了理论知识,还提高了动手实验的能力,培养了团队合作精神和解决问题的能力,对电路实验有了更深入的认识和理解。
以上就是本次单相交流电路实验的实验报告,谢谢阅读。
实验四-单相交直交变频电路的性能研究

实验四-单相交直交变频电路的性能研究————————————————————————————————作者:————————————————————————————————日期:北京信息科技大学电力电子技术实验报告实验项目:单相交直交变频电路的性能研究学院:自动化专业:自动化(信息与控制系统)姓名/学号:贾鑫玉/2012010541班级:自控1205班指导老师:白雪峰学期:2014-2015学年第一学期实验四单相交直交变频电路的性能研究一.实验目的熟悉单相交直交变频电路的组成,重点熟悉其中的单相桥式PWM 逆变电路中元器件的作用,工作原理,对单相交直交变频电路在电阻负载、电阻电感负载时的工作情况及其波形作全面分析,并研究工作频率对电路工作波形的影响。
二.实验内容1.测量SPWM 波形产生过程中的各点波形。
2.观察变频电路输出在不同的负载下的波形。
三.实验设备及仪器1.电力电子及电气传动主控制屏。
2.NMCL-16组件。
3.电阻、电感元件(NMEL-03、700mH 电感)。
4.双踪示波器。
5.万用表。
四.实验原理单相交直交变频电路的主电路如图2—8所示。
本实验中主电路中间直流电压u d 由交流电整流而得,而逆变部分别采用单相桥式PWM 逆变电路。
逆变电路中功率器件采用600V8A 的IGBT 单管(含反向二极管,型号为ITH08C06),IGBT 的驱动电路采用美国国际整流器公司生产的大规模MOSFET 和IGBT 专用驱动集成电路1R2110,控制电路如图2—9所示,以单片集成函数发生器ICL8038为核心组成,生成两路PWM 信号,分别用于控制VT 1、VT 4和VT 2、VT 3两对IGBT 。
ICL8038仅需很小的外部元件就可以正常工作,用于发生正弦波、三角波、方波等,频率范围0.001到500kHz 。
五.实验方法45L1G3VT33E3VT4CG4E2图2—8 单相交直交变频电路G11E1G22VT1VT21.SPWM 波形的观察(1)观察正弦波发生电路输出的正弦信号Ur 波形(“2”端与“地”端),改变正弦波频率调节电位器,测试其频率可调范围。
电力电子技术实验内容

电力电子技术实验内容实验一:单相桥式全控整流电路实验一、实验目的1.了解单相桥式全控整流电路的工作原理。
2.研究单相桥式全控整流电路在电阻负载、电阻—电感性负载及反电势负载时的工作。
3.熟悉NMCL—05锯齿波触发电路的工作。
二、实验线路及原理参见图4-7。
三、实验内容1.单相桥式全控整流电路供电给电阻负载。
2.单相桥式全控整流电路供电给电阻—电感性负载。
3.单相桥式全控整流电路供电给反电势负载。
四、实验设备及仪器1.NMCL系列教学实验台主控制屏。
2.NMCL—18组件(适合NMCL—Ⅱ)或NMCL—31组件(适合NMCL—Ⅲ)。
3.NMCL—33组件或NMCL—53组件(适合NMCL—Ⅱ、Ⅲ、Ⅴ)4.NMCL—05组件或NMCL—05A组件5.NMEL—03三相可调电阻器或自配滑线变阻器。
6.NMCL-35三相变压器。
7.双踪示波器 (自备)8.万用表 (自备)五、注意事项1.本实验中触发可控硅的脉冲来自NMCL-05挂箱,故NMCL-33(或NMCL-53,以下同)的内部脉冲需断X1插座相连的扁平带需拆除,以免造成误触发。
2.电阻RP的调节需注意。
若电阻过小,会出现电流过大造成过流保护动作(熔断丝烧断,或仪表告警);若电阻过大,则可能流过可控硅的电流小于其维持电流,造成可控硅时断时续。
3.电感的值可根据需要选择,需防止过大的电感造成可控硅不能导通。
4.NMCL-05面板的锯齿波触发脉冲需导线连到NMCL-33面板,应注意连线不可接错,否则易造成损坏可控硅。
同时,需要注意同步电压的相位,若出现可控硅移相范围太小(正常范围约30°~180°),可尝试改变同步电压极性。
5.逆变变压器采用NMCL-35三相变压器,原边为220V,低压绕组为110V。
6.示波器的两根地线由于同外壳相连,必须注意需接等电位,否则易造成短路事故。
7.带反电势负载时,需要注意直流电动机必须先加励磁。
六、实验方法1.将NMCL—05(或NMCL—05A,以下均同)面板左上角的同步电压输入接NMCL—18的U、V输出端(如您选购的产品为NMCL—Ⅲ、Ⅴ,则同步电压输入直接与主控制屏的U、V输出端相连), “触发电路选择”拨向“锯齿波”。
电力电子技术实验指导书(12课时)

电力电子技术实验指导书兰勇青岛大学自动化工程学院电气工程系实验室2012.9实验一三相半波可控整流电路的研究实验一.实验目的了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻—电感性负载时的工作。
二.实验线路及原理三相半波可控整流电路用三只晶闸管,与单相电路比较,输出电压脉动小,输出功率大,三相负载平衡。
不足之处是晶闸管电流即变压器的二次电流在一个周期内只有1/3时间有电流流过,变压器利用率低。
实验线路见图1-1。
图1-1 三相半波可控整流实验电路三.实验内容1.研究三相半波可控整流电路供电给电阻性负载时的工作。
2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作。
四.实验设备及仪表1.MCL系列教学实验台主控制屏。
2.MCL—51组件3.MCL—52组件4.MCL—53组件5.MCL—54组件6.双踪示波器。
7.万用电表。
五.注意事项1.整流电路与三相电源连接时,一定要注意相序。
2.整流电路的负载电阻不宜过小,应使Id不超过0.8A,同时负载电阻不宜过大,保证Id超过0.1A,避免晶闸管时断时续。
3.正确使用示波器,避免示波器的两根地线接在非等电位的端点上,造成短路事故。
六.实验方法1.研究三相半波可控整流电路供电给电阻性负载时的工作接上电阻性负载,合上主电源:(a)改变控制电压Uct,观察在不同触发移相角α时,可控整流电路的输出电压Ud=f(t)与输出电流波形id=f(t),并记录相应的Ud、Id、Uct值。
(b)记录不同α时的Ud=f(t)及id =f(t)的波形图。
2.研究三相半波可控整流电路供电给电阻—电感性负载时的工作接入MCL—54的电抗器L=700mH,,可把原负载电阻Rd调小,监视电流,不宜超过0.8A观察不同移相角α时的输出Ud=f(t)、id=f(t),并记录相应的Ud、Id值,记录不同α时的Ud=f(t)、id=f(t),Uvt=f(t)波形图。
七.实验报告1.画出三相半波可控整流电路的主电路原理图。
一种用于单相交流电机的新型SVPWM变频控制方案的实验研究

究
基本内容
摘要:
本次演示介绍了一种新型的SVPWM(Space Vector Pulse Width Modulation)变频控制方案,用于单相交流电机的控制。实验研究旨在验证这种 控制方案的有效性和优越性。实验结果表明,新型SVPWM变频控制方案相比传统 方法具有更高的电压利用效率和更低的谐波含量,同时有效提高了电机的扭矩输 出。
1、低速转矩波动的抑制:在实验中,我们发现电机在低速时会出现转矩波 动的问题。这可能会影响调速的稳定性和精度,因此需要研究新的控制策略或算 法以解决这一问题。
2、能量回馈技术的优化:能量回馈技术是变频调速中重要的研究方向之一。 如何高效、安全地实现能量回馈,提高系统的能量利用效率,是需要进一步探讨 的重要问题。
2、探索智能控制策略:结合人工智能、机器学习等技术,研究智能控制策 略在单相交流电机控制中的应用,以提高电机的自适应能力和运行效率。
3、结合状态监测技术:将状态监测技术应用于单相交流电机的运行过程中, 实现对电机运行状态的实时监控和故障诊断,以提高电机的可靠性和使用寿命。
4、拓展应用领域:将新型SVPWM变频控制方案应用于更广泛的领域,如机器 人、自动化装备、新能源等,以充分发挥其优势和潜力。
实验结果与分析
通过实验,我们得到了以下结论:首先,矢量控制算法可以有效实现单相异 步电机的变频调速,且调速范围广、精度高。其次,通过优化算法参数,可以提 高电机的响应速度和稳定性。但是,实验中也发现了一些问题,如电机在低速时 可能会出现转矩波动,这需要通过进一步的研究加以解决。
结论与展望
通过本研究,我们验证了基于矢量控制的单相异步电机变频调速控制策略的 可行性和有效性。在未来,我们建议进一步以下研究方向:
100W单相交-直-交变频电路要点

辽宁工业大学电力电子技术课程设计(论文)题目:100W单相交-直-交变频实验装置院(系):电气工程学院专业班级:电气105班学号:100303145学生姓名:王林指导教师:(签字)起止时间:2012-12-31至2013-1-11课程设计(论文)任务及评语院(系):电气工程学院教研室:电气Array注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算摘要单相交-直-交变频电路在工业生产,生活娱乐,仪器运行等很多方面都有着广泛的应用,其中目前应用最广泛的应属于电网互联。
单相交-直-交变频电路可分为主电路和控制电路,其主电路包括整流电路、滤波电路和逆变电路,而控制电路包括控制电路、驱动电路和保护电路。
本设计对于整流部分采用不可控制整流电路;滤波部分采用LC低通滤波器,得到高频率的正弦波交流输出;逆变部分由四只IGBT管组成单相桥式逆变电路。
控制电路选用以单片集成函数发生器ICL8038为核心组成,生成两路PWM信号,分别用于控制两对IGBT;驱动电路采用了具有电气隔离集成驱动芯片M57962L;保护电路采用双D触发器CD4013。
关键词:整流;滤波;逆变;PWM;IGBT目录第1章绪论 (1)1.1电力电子技术概况 (1)1.2本文设计内容 (1)第2章 100W单相交-直-交变频电路设计 (2)2.1100W单相交-直-交变频电路总体设计方案 (2)2.2具体电路设计 (3)2.2.1 主电路设计 (3)2.2.2 控制电路设计 (5)2.3元器件型号选择 (9)2.4系统调试或仿真、数据分析 (10)第3章课程设计总结 (13)参考文献 (14)附录Ⅰ控制电路原理图 (15)附录Ⅱ驱动和辅助电源原理图 (16)第1章绪论1.1电力电子技术概况集中发电、远距离输电和大电网互联的电力系统是目前电能生产、输送和分配的主要方式。
但是在配电网中,城市居民和商业用户、农村和半城镇区域的负荷具有很大的随机波动性。
单相交直交变频电路的仿真

实验四单相交直交变频电路的仿真一、实验目的(1)了解电压型单相整流逆变电路的工作原理。
(2)了解仿真模型使用的模块及其参数的设置原理。
二、实验原理1.单相整流—逆变电路的仿真模型单相整流—逆变电路的仿真模型如图4-1所示,由图可知,单相50Hz交流电源经单相不控整流环节,进行LC滤波后即为中间直流环节。
再进入PWM逆变,又一次LC滤波后,连接到需要不同于50Hz的交流电单相负载。
万用表检测不控整流桥与逆变桥的电力电子元件的电压与电流,示波器还检测输出负载电压波形。
图4.12仿真模型使用模块提取的路径及其单数设置离散PWM发生器模块Discrete PWM Generator提取路径是:Simulink\SimPowerSystems\Power Electronics\Discrete Control Blocks\Discrete PWM Generator信号终结模块Terminator提取路径是:Simulink\Commonly Used Blocks\Terminator交流电源模块:“Phase”初相角0°,“Frequency”频率50Hz,“Sample time”采样时间0(默认值0表示该交流电源为连续源),“Peak amplitude”当变频输出频率为100Hz时置为600V×2,当变频输出频率为50Hz时置为50V×2。
滤波电感L1:选Series RLC Branch模块,将参数“Inductance(H)”置为80e-3。
滤波电感L2;选Series RLC Branch 模块,将参数“Inductance(H)”置为30e-3。
滤波电容C1:选Series RLC Branch模块,将参数“Capacitance(F)”置为1800e-6。
滤波电容C2:选Series RLC Branch 278模块,将参数“Capacitance(F)”置为320e-6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京信息科技大学
电力电子技术实验报告
实验项目:单相交直交变频电路的性能研究
学院:自动化
专业:自动化(信息与控制系统)
姓名/学号:贾鑫玉/2012010541
班级:自控1205班
指导老师:白雪峰
学期:2014-2015学年第一学期
实验四单相交直交变频电路的性能研究
一.实验目的
熟悉单相交直交变频电路的组成,重点熟悉其中的单相桥式PWM 逆变电路中元器件的作用,工作原理,对单相交直交变频电路在电阻负载、电阻电感负载时的工作情况及其波形作全面分析,并研究工作频率对电路工作波形的影响。
二.实验内容
1.测量SPWM 波形产生过程中的各点波形。
2.观察变频电路输出在不同的负载下的波形。
三.实验设备及仪器
1.电力电子及电气传动主控制屏。
2.NMCL-16组件。
3.电阻、电感元件(NMEL-03、700mH 电感)。
4.双踪示波器。
5.万用表。
四.实验原理
单相交直交变频电路的主电路如图2—8所示。
本实验中主电路中间直流电压u d 由交流电整流而得,而逆变部分别采用单相桥式PWM 逆变电路。
逆变电路中功率器件采用600V8A 的IGBT 单管(含反向二极管,型号为ITH08C06),IGBT 的驱动电路采用美国国际整流器公司生产的大规模MOSFET 和
IGBT 专用驱动集成电路1R2110,控制电路如图2—9所示,以单片集成函数发生器ICL8038为核心组成,生成两路PWM 信号,分别用于控制VT 1、VT 4和VT 2、VT 3两对IGBT 。
ICL8038仅需很小的外部元件就可以正常工作,用于发生正弦波、三角波、方波等,频率范围0.001到500kHz 。
五.实验方法
图2—8 单相交直交变频电路
1.SPWM 波形的观察
(1)观察正弦波发生电路输出的正弦信号Ur 波形(“2”端与“地”端),改变正弦波频率调节电位器,测试其频率可调范围。
(2)观察三角形载波Uc 的波形(“1”端与“地”端),测出其频率,并观察Uc 和U 2的对应关系:
(3)观察经过三角
波和正弦波比较后得到的SPWM 波形(“3”端与“地”端),并比较“3”端和“4”端的相位关系。
(4)观察对VT 1、VT 2进行控制的SPWM 信号(“5”端与“地”端)和对VT 3、VT 4进行控制的SPWM 信号(“6”端与“地”端),仔细观察“5”端信号和“6”端防号之间的互锁延迟时间。
2.驱动信号观察
在主电路不接通电源情况下,S 3扭子开关打向“OFF”,分别将“SPWM 波形发生”的G 1、E 1、G 2、E 2、G 3、E 3、G 4和“单相交直交变频电路”的对应端相连。
经检查接线正确后,S3扭子开关打向“ON”,对比VTI 和VT2的驱动信号,VT3和VT4的驱动信号,仔细观察同一相上、下两管驱动信号的波形,幅值以及互锁延迟时间。
3.S 3扭子开关打向“OFF”,分别将“主电源2”的输出端“1”和“单相交直交变频电路”的“1”端相连, “主电源2”的输出端“2”和“单相交直交变频电路”的“2”端相连,将“单相交直交变频电路”的“4”、“5”端分别串联MEL-03电阻箱 (将一组900Ω/0.41A 并联,然后顺时针旋转调至阻值最大约450Ω) 和直流安培表(将量程切换到2A 挡)。
将经检查无误后,S 3扭子开关打向“ON”,合上主电源(调节负载电阻阻值使输出负载电压波形达到最佳值,电阻负载阻值在90Ω~360Ω时波形最好)。
4.当负载为电阻时,观察负载电压的波形,记录其波形、幅值、频率。
在正弦波Ur 的频率可调范围内,改变Ur 的频率多组,记录相应的负载电压、波形、幅值和频率。
5.当负载为电阻电感时,观察负载电压和负载电流的波形。
六.注意事项
1.“输出端”不允许开路,同时最大电流不允许超过“1A”。
2.注意电源要使用“主电源2”的“15V”电压其他同“直流斩波”电路相同。
图2--9 SPWM 波形发生
七、实验报告:
1:画出完整实验原理图 :
2、实验相关波形分析
(1)、正弦波发生电路输出的正弦波信号:最小频率为2.37Hz ,最大为33.3Hz 。
(2)、三角波
分析:
在实验中得到只能改变参考波(正弦信号)的 频率,而无法改变载波(三角波)的频率,因此载波比随着正弦波频率变化而变化。
因此是异步调制。
主电源 正弦波 三角波 脉冲延迟 隔
离
及
驱动 隔离及驱动 负载
(3)、三角波与正弦波对比
合并显示一个完整正弦周期内对比图即为:得到SPWM波为:
(4)、反向后触发脉冲对比
(5)经过互锁延迟后触发脉冲比较:由图得到互锁延迟时间为35微秒左右。
(6)、负载电压波形
(1)幅值为23.5V,频率为31.6Hz (2)幅值为23.5V,频率为15.7HZ
()
(3)幅值为23.5V,频率为2.40Hz
分析:
当电阻负载时,调节输入的正弦波的频率,对
输出正弦波形的电压幅值基本没有影响,只改变其
输出频率。
输出正弦交流电频率随输入正弦信号频
率的增大而增大。
输出交流电波形为一条完整的正弦曲线:
为使输出波形尽可能的接近正弦波,可以通过增大载波比来实现。
3、分析正弦波与三角波之间不同的载波比情况下的负载波形,理解改变载波比对输出功率管和输出波形的影响。
答:载波比越高,负载波形越接近正弦波;当载波的频率不变时,提高调制波频率会提高负载波形的频率;当载波比提高时,功率管耗能增加,而输出波形越接近正弦波。
八、实验体会:
通过本次实验,熟悉了单相交直交变频电路的组成,对于单相桥式PWM逆变电路中元器件的作用,工作原理也有了深入理解。
实验后,通过对单相交直交变频电路在电阻负载、电阻电感负载时的工作情况及其波形作分析,更加加深了对交直交变频电路工作原理以及SPWM波形产生的原理的理解。