第一学期期末考试试卷初三数学 附答案
九年级数学上册期末考试试卷附答案

九年级数学上册期末考试试卷附答案一、选择题(每小题3分,共36分)1.(3分)一元二次方程:x²-6x-6-0| 配方后化为( )A. (x-3)²-15B. (x-3)²-3C. (x+3)²-15D. (x+3)²-32.(3分) 抛物线y=2(x-3)²+4 顶点坐标是( )A.(3,4)B. (-3, 4)C. (3, -4)D. (2, 4)3.(3分) 如图,⊙O的直径AB=8,点C 在⊙O上, ∠ABC=30°,则 AC 的长是( )A. 2B.2√2C,2√3D.44.(3分) 在 Rt△ABC中,∠C -90°, AB -4, AC-1,则cosB 的值为( )A.√154B.14C.√1515D.4√1717 5.(3分) 下列命题为真命题的是( )A.三点确定一个圆B.度数相等的弧是等弧C.直径是圆中最长的弦D.相等的圆心角所对的弧相等,所对的弦也相等6.(3分)如图所示,为测量出一垂直水平地面的某建筑物AB 的高度, 一测量人员在该建筑物附近C 处,测得建筑物顶端A 处的仰角大小为45°,随后沿直线BC 向前走了 100米后到达 D 处,在D 处测得A 处的仰角大小为30°,则建筑物AB 的高度约为( )米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据: √2≈1.41,√3≈1.73)A. 136B. 137C. 138D. 1397.(3分) 反比例函数 y −图象上三个点的坐标为(x ₁,y ₁).(x ₂,y ₂).(x ₂,y ₃).若 x ₁<0<x ₂<x ₃.则 y ₁,y ₂,y ₂的大小关系是( )A. y ₁<y ₂<y ₂B. y ₂<y ₁<y ₂C. y ₂<y ₂<y ₁D. y ₁<y ₂<y ₂8. (3分) 函数 y=ax²+bx+c 的图象如图所示, 那么关于x 的方程ax²+bx+c -3-0| 的根的情况是( )A.有两个不相等的实数根B. 有两个异号实数根C.有两个相等实数根D.无实数根9.(3分) 过三点A (2,2), B(6,2), C (4,5)的圆的圆心坐标为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形A.y −3xB.y −4xC.y −5xD.y −6x 12.(3分) 如图所示, 抛物线 y=ax²+bx+c|的顶点为B(-1,3),与x 轴的交点A 在点(-3,0)和(-2,0)之间, 以下结论:①b²-4ac-0: ②a+b+c>0: ③2a -b-0: ④c -a-3A.(4,176)B. (4. 3)C.(5,176)D. (5. 3) 10.(3分)在△ABC中,若 cosA =√22,tanB =√3,则这个三角形一定是( )11.(3分)如图,正方形ABCD 的边长为5.点A 的坐标为(-4.0),点B 在y 轴上,若反比例函数y= k x(k ≠0)的图象过点C ,则该反比例函数的表达式为( )其中正确的有( )个.A. 1B. 2C. 3D. 4二、填空题(每小题4分,共24分)13.(4分)若抛物线y=x²-6x+m 与x轴没有交点,则m的取值范围是 .14.(4分)如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m,此时小球距离地面的高度为 m.15.(4分)如图,O 是坐标原点,菱形OABC的顶点A 的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=k(x<x0)的图象经过顶点B,则k的值为 .16.(4分) 将如图所示的抛物线先向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是 .17.(4分)如图,点A、B、C是圆 O上的三点,且四边形ABCO 是平行四边形,OF⊥OC 交圆O于点F.则∠BAF= .(1)分别求该化工厂治污期间及改造工程顺利完工后y与x之间对应的函数关系式.(2)治污改造工程顺利完工后经过几个月,该厂利润才能达到200万元?(3)当月利润少于100万元时为该厂资金紧张期,间该厂资金紧张期共有几个月?25.(10分)如图,已知抛物线的顶点为A (1,4),抛物线与y轴交于点B(0,3),与x轴交于C、 D两点,点P是x轴上的一个动点.(1)求此抛物线的解析式:(2)求C、D两点坐标及△BCD的面积:(3)若点P在x轴上方的抛物线上,满足求点P的坐标。
2022-2023学年人教版九年级数学第一学期期末测试卷含答案

第1页,共4页 第2页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号2022-2023学年第一学期期末质量监测试卷九年级 数学学科(考试时间:120分钟 考试分值:150分)一、选择题(每题5分,共45分)1.(5分)下列新冠疫情防控标识图案中,中心对称图形是( )A.B.C.D.2.(5分)下列为一元二次方程的是( )A.02=+-c bx axB.0232=-+x x C.01322=+-x x D.0222=+y x3.(5分)已知关于x 的一元二次方程x m x 442=-有两个不相等的实数根,则m 的取值范围是( )A.1->mB.2<mC.0≥mD.0<m4.(5分)方程0)3)(2(=+-x x 的解是( )A.2=xB.3-=xC.3,221==x xD.3,221-==x x 5.(5分)如图,AB 是☉O 的弦,点C 在圆上,已知∠AOB=100°,则∠C=( )A.40°B.50°C.60°D.80°6.(5分)抛物线2)4(32++=x y 的顶点坐标是( ) A.(2,4) B.(2,-4) C.(4,2) D.(-4,-2)7.(5分)目前我国已建立了比较完善的经济困难学生资助体系.某校前年发放给每个经济困难学生389元,今年发放了438元.设每年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( )A.438)13892=+x (B.389)14382=+x (C.438)21389=+x (D.389)21438=+x (8.(5分)对于二次函数2)1(2+-=x y 的图像,下列说法正确的是( ) A.开口向下B.对称轴是直线1-=xC.顶点坐标是(1,2)D.当1>x 时,y 随x 的增大而减小9.(5分)当0>ab 时,2ax y =与b ax y +=的图象大致是( )A. B. C. D.二、 填空题 (每题 5 分 ,共30分 )10.(5分)点A(-2,3)关于原点对称的点的坐标是________.11.(5分)已知关于x 的方程0322=++k x x 的一个根是-1,则k=________. 12.(5分)如图,四边形ABCD 为☉O 的内接四边形,已知∠BOD=100°,则∠BCD 的度数为____.13.(5分)一个不透明袋子中装有10个球,其中有5个红球,3个白球,2个黑球,这些球除颜色外无其它差别,从袋子中随机取出个球,则它是白球的概率是________.14.(5分)若562)1(--+=m m x m y 是二次函数,则m=________.第3页,共14页第4页,共14页装订线内不许答题15.(5分)如图,抛物线与x 轴交于点A(-1,0),顶点坐标(1,n),与y 轴的交点在(0,3),(0,4)之间(包含端点),则下列结论正确的有________.(填编号)①03<b a +;②134-≤≤-a ;③对于任意实数m ,bm am b a +≥+2恒成立;④关于x 的方程12+=++n c bx ax 有两个相等的实数根.三、 解答题 (本题共计 8 小题 ,共计75分 )16. (8分) 解方程:(1)033(=-+-x x x ); (2)0142=--x x . 17. (7分) 关于x 的方程0232=+-m x x 的一个根为-1,求方程的另一个根及m 的值.18. (8分) 如图所示,每个小正方形的边长为1个单位长度,作出△ABC 关于原点对称的图形△A 1B 1C 1,并写出A 1,B 1,C 1的坐标.19. (10分) 如图,某小区规划在一个长为40米、宽为26米的矩形场地ABCD 上修建三条同样宽度的马路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若使每一块草坪的面积都是144m 2,求马路的宽.第5页,共4页 第6页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号20.(10分) 为了解长垣市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题: (1)此次调查中接受调查的人数为________人; (2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为________度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.21.(10分) 如图,在△ABC 中,点O 是AB 边上一点,OB=OC,∠B=30°,过点A 的 ☉O 切BC 于点D ,CO 平分∠ACB .(1)求证:AC 是☉O 的切线; (2)若BC=12,求☉O 的半径长;(3)在(2)的条件下,求阴影部分的面积.22. (10分) 某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件.现采用提高售出价,减少进货量的办法增加利润,已知这种商品每涨价0.1元,其销售量就要减少1件,问涨价多少元时,才能使每天所赚的利润达到360元?23.(12分) 如图,在平面直角坐标系中,抛物线422++=ax ax y 与x 轴交于点 A(-4,0),B(2,0),与y 轴交于点C .经过点B 的直线b kx y +=与y 轴交于点D(0,2),与抛物线交于点E .(1)求抛物线的解析式及点C 的坐标;(2)若点P 为抛物线的对称轴上的动点,当△AEP 的周长最小时,求点P 的坐标; (3)若点M 是直线BE 上的动点,过M 作MN ∥y 轴交抛物线于点N ,判断是否存在点M ,使以点M 、N ,C ,D 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.第7页,共14页 第8页,共14页装订线内不许答题2022-2023学年第一学期期末质量监测试卷答案九年级 数学学科一、选择题(每题5分,共45分)1.A2.C3.A4.D5.B6.D7.A8.C9.D二、 填空题 (每题 5 分 ,共30分 )10.(2,-3) 11.2± 12.130° 13.10314. 7 15.①②③三、 解答题 (本题共计 8 小题 ,共计75分 )16.解:(1)0)3()3(=-+-x x x分解因式得:0)1)(3=+-x x (————————2分 可得03=-x 或01=+x解得:1,321-==x x ————————4分 (2)5142=--x x移项得:642=-x x ————————1分配方法得:10442=+-x x 即10)22=-x (————————2分 开方得:102±=-x解得:10210221-=+=x x , ————————4分 17.解:把 代入方程,得,解得,————————3分设方程的另一个根为,则,————————5分所以,即方程的另一个根为.————————7分18.解:关于原点的对称图形如图,————————5分根据图形可知:,,.————————8分19.解:设马路的宽为米 ————————1分依题意可列方程————————4分整理得 ————————6分 解得,(舍去) ————————9分答:马路的宽为2米.————————10分第9页,共4页第10页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号20.(1)∵非常满意的有18人,占,∴此次调查中接受调查的人数:(人).故答案为:50 ————————2分 (2)此次调查中结果为满意的人数为:(人)补全条形统计图如下:————————4分(3)144 ————————6分 (4)画树状图:∵共有12种等可能的结果,选择回访市民为“一男一女”的有8种情况,∴选择回访的市民为“一男一女”的概率为:. ————————10分21.(1)证明:∵∴又∵ 平分∴ ∴∴∴是的切线. ————————3分(2)解:如图,连接,设交于点,设半径为r .∵ 切于点, ∴.又∵,, ∴AC=6,,由勾股定理得AB=36∴ 在直角三角形OCD 中,由勾股定理得 r 2+62=(36-r)2解得 r=32 ————————6分 (3)解:∵, ∴————————10分第11页,共14页 第12页,共14页装订线内不许答题22.解:设涨价元时,才能使每天所赚的利润达到元. ————————1分————————4分 ,, ————————7分 解得. ————————9分答:涨价元时,才能使每天所赚的利润达到元. ————————10分23.解:(1),点的坐标为————————4分(2)如图,由,可得对称轴为.∵ 的边是定长,∴ 当的值最小时,的周长最小.点关于的对称点为点,∴ 当点是与直线的交点时,的 值最小. ∵ 直线经过点∴ ’解得∴ 直线:令,得,∴ 当的周长最小时,点的坐标为————————8分(3)存在.点的坐标为或————————12分第13页,共4页 第14页,共4页…………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………点场号名座位号。
九年级数学上册第一学期期末考试试卷-含答案-人教版试卷

20XX –20XX 学年度九年级(上)期末水平测试数学试题(含答案)一、单项选择题(每小题3分,满分15分)1、已知两圆的半径分别为2和3,圆心距为5,则这两圆的位置关系是 ( ) A. 外离 B. 外切 C. 相交 D. 内切2、单词NAME 的四个字母中,是中心对称图形的是 ()A. NB. AC.M D. E3、下列根式中,不是..最简二次根式的是 ( ) A.7B. 3C.21D. 24、下列事件中必然事件是 ( )A. 掷一枚硬币,着地时正面向上B. 明天会下雨C. 买一张福利彩票,开奖后会中奖D. 在标准大气压下,水加热到100℃会沸腾5、如图,⊙O 是△ABC 的外接圆,已知∠ABO =30º,则∠ACB 的大小为 ( )A. 60ºB. 30ºC. 45ºD. 50º二、填空题(每小题4分,满分20分) 6、计算:)13)(13(-+= . 7、方程0232=+-x x 的根是 _____ .8、已知关于x 的方程062=--kx x 的一个根为3=x ,则实数k 的值为 .9、△ABC 中,AB =10cm ,AC =8cm ,BC =6cm ,以点B 为圆心,6cm 为半径作⊙B ,则边AC所在的直线与⊙B 的位置关系是_________.10、已知圆锥的底面半径长为5,侧面展开后所得的扇形的圆心角为120º,则该圆锥的母线长等于 __ .三、解答题(共5个小题,每小题6分,满分30分) 11、(6分)计算:123127-+12、(6分)计算:6)273482(÷-13、(6分)解方程:0)3(2)3(2=-+-x x x14、(6分)解方程组⎩⎨⎧=++-=9322y x x y① ②15、(6分)如图,点O 、A 、B 的坐标分别为(0,0)、(3,0)、(3,-2),将△OAB 绕点O 按逆时针方向旋转90º得到△OA ' B '. (1)画出旋转后的△OA 'B ',并求点B '的坐标;(2)求旋转过程中点A 所经过的路径⌒AA' 的长度.(结果保留π)四、解答题(共4个小题,每小题7分,满分28分)16、(7分)如图,每个小方格都是边长为1的正方形,ABC △的顶点坐标均为整数,点P 的坐标为(-1,0),请按要求画图与作答:(1)把ABC △绕点P 旋转180º得C B A '''△; (2)把ABC △向右平移7个单位得C B A ''''''△;(3)C B A '''△与C B A ''''''△是否成中心对称,若是,画出对称中心P ',并写出其坐标.17、(7分)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30º,⊙O 的半径为3cm , 求弦CD 的长.18、(7分)一个不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有数字1,2,3,4. 小林先从布袋中随机抽取一个乒乓球(不放回去),再从剩下的3个球中随机抽取第二个乒乓球. (1)请你列出所有可能的结果;(2)求两次取得乒乓球的数字之积为奇数的概率.B19、(7分)关于x 的方程04)2(2=+++kx k kx 有两个不相等的实数根. (1)求实数k 的取值范围.(2)是否存在实数k ,使方程的两个实数根之和等于两实数根之积的算术平方根?若存在,求出k 的值;若不存在,说明理由.五、解答题(共3个小题,每小题9分,满分27分) 20、(9分)市种子培育基地用A 、B 、C 三种型号的甜玉米种子共1500粒进行发芽试验,从中选出发芽率高的种子进行推广,通过试验知道,C 型号种子的发芽率为80%.根据试验数据绘制了下面两个不完整的统计图(图8、图9):(1)求C 型号种子的发芽数;(2)通过计算说明,应选哪种型号的种子进行推广?(3)如果将所有已发芽的种子放到一起,从中随机取出一粒,求取到C 型号发芽种子 的概率.图1 三种型号种子数百分比种子型号 图2 三种型号种子发芽数21、(9分)(1)用长120米的篱笆围成一个面积为500平方米的长方形花圃,求长方形的长和宽,(2)能不能用120米的篱笆围成一个面积为901平方米的长方形花圃?说明你的理由.22、(9分)如图所示,AB 是⊙O 的直径,OD ⊥弦BC 于点F ,且交⊙O 于点E ,若∠AEC =∠ODB .(1)判断直线BD 和⊙O 的位置关系,并给出证明; (2)当AB =10,BC =8时,求BD 的长.DBOAC E F九年级数学参考答案及评分建议一、1、B 2、A 3、C 4、D 5、A 二、6、2 7、1,2 8、1 9、 相切 10、15三、11、解:原式=12、解:原式=13、解:0)23)(3(=+--x x x 0)33)(3(=--x x 03=-x 或033=-x 即31=x 或12=x14、解:将①代入②化简得2260x x -=,解得1203x x ==,,分别将1203x x ==,代入①,得1230y y ==,∴原方程组的解为1103x y =⎧⎨=⎩ 2230x y =⎧⎨=⎩15、解:(1)如图OA B ''△为所示,……2分点B '的坐标为(23),;……3分(2)OAB △绕点O 逆时针旋转90°后得OA B ''△, 点A 所经过的路径⌒AA' 是圆心角为90°,半径为3 的扇形OAA '的弧长,所以13(2π3)π42l =⨯⨯=. 即点A 所经过的路径⌒AA' 的长度为3π2.……6分四、16、解:(1)略……2分 (2)略……2分(3)成中心对称,对称中心坐标为(2.50)P ',……3分 17、解:因为30CDB ∠=,所以60COB ∠=,………1分Rt CEO中,OE =,………3分32CE,………6分所以3CD=…………7分18、解:(1)根据题意列表如下:1 2 3 41 (1,2)(1,3)(1,4)2 (2,1)(2,3)(2,4)3 (3,1)(3,2)(3,4)4 (4,1)(4,2)(4,3)由以上表格可知:有12种可能结果…………4分(2)在(1)中的12种可能结果中,两个数字之积为奇数的只有2种,所以,P(两个数字之积是奇数)21126==.…………7分19、解:(1)由2(2)404kk k∆=+->·得:1k>-………… 2分又0k≠∴k的取值范围是1k>-且0k≠.………… 3分(2)设方程2(2)04kkx k x+++=的两根分别为1x,2x,由根与系数的关系有:1212214kx xkx x+⎧+=-⎪⎪⎨⎪=⎪⎩………… 4分则212kk+-=,43k∴=-………… 6分由(1)知,43k=-时0∆<,原方程无实数根,因此不存在符合条件的实数k.......7分五、20、解:(1)C型号种子数为:1 500×40%=600,发芽数=600×80%=480. (2)分(2)A型号种子数为:1 500×30%=450,发芽率=450420×100%≈93%. (4)分B型号种子数为:1 500×30%=450,发芽率=450370×100%≈82%. (6)分C型号种子发芽率是80%.∴选A型号种子进行推广.……7分(3)取到C型号发芽种子的概率=480370420480++=12748.……9分21、解:(1)设长为x,则宽为60-x,……1分依题意(60)500x x-=,……2分化简得2605000x x-+=,解方程得10x=,或50x=,………4分所以长方形长为50米,宽为10米.………5分(2)设长为x ,则宽为60-x ,依题意(60)901x x -=,………6分 化简得:2609010x x -+=………7分因为2(60)490140∆=--⨯=-<,方程无实数根,………8分所以不能用120米的篱笆围成一个面积为901平方米的长方形花圃 ………9分22、(1)直线BD 和O ⊙相切. …………1分证明:∵AEC ODB ∠=∠,AEC ABC ∠=∠,∴ABC ODB ∠=∠. …………2分 ∵OD ⊥BC ,∴90DBC ODB ∠+∠=°. …………3分 ∴90DBC ABC ∠+∠=°.即90DBO ∠=°. ∴直线BD 和O ⊙相切.………4分 (2)连接AC . …………5分∵AB 是直径, ∴90ACB ∠=°. 在Rt ABC △中,108AB BC ==,,∴6AC ==.…………6分∵直径10AB =, ∴5OB =.由(1),BD 和O ⊙相切, ∴90OBD ∠=°.∴90ACB OBD ∠=∠=°. 由(1)得ABC ODB ∠=∠, ∴ABC ODB △∽△. …………7分∴AC BCOB BD=. ∴685BD =,解得203BD =.DB O AC E F。
陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)

A .B . . . 2.我们常常在建筑中看到四边形的元素.如图,墙面上砌出的菱形窗户的边长为框宽度忽略不计),其中较小的内角为A .4B .3.一元二次方程的根的情况为(A .有两个不相等的实数根D .无法确定3223210x x --=A .25.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为A .B .13A .10.点在二次函数A .最大值二.填空题(本大题共14.如图,在矩形段上移动,并与意一点,连接90︒(),A m n 4-ABCD EF EF ,AN CM三.解答题(本大题共1115.计算:(1);(2)18.已知:如图,点为对角线点,.求证:.19.为贯彻落实党的二十大精神,全面建设社会主义现代化国家、兴,某校团委举办以“无悔青春献祖国,接力奋斗新时代赛,九年级(2)班的王伟和孙莉两人文采相当,且都想代表班级参赛,于是班长制作了()0π3128-+--2cos30tan60sin45cos45︒-︒+︒O ABCD Y E F DE BF =21.西安丰庆公园是现代生态景观与历史文化景观融为一体的皇家园林,园内的最高建筑.某数学活动小组想测量怡心阁的高度心阁的高度:小明沿后退到F 恰好看到标杆顶端22.类比一次函数的研究思路,九年级“励志”行探究.下面是他们的探究过程,请补充完整:(1)列表:下表是与的几组对应值,则的值为01654210BD x y m x ⋅⋅⋅5-4-3-2-1-y ⋅⋅⋅m(3)函数的图象和直线的交点坐标是______.23.如图,四边形是的内接四边形,为直径,点为弧的中点,延长交于点,为的切线.(1)求证:;(2)若,求的长.24.如图,在平面直角坐标系中,点的坐标为,连接,将线段绕着点逆时针旋转,点的对应点为点.(1)求经过三点的抛物线的表达式;(2)将抛物线沿着轴平移到抛物线,在抛物线上是否存在点,使得以为顶点的四边形为正方形,若存在,求平移的方式.若不存在,说明理由.|1|y x =-2y =ABCD O e BD D AC AD BC 、E DF O e CDF EDF ∠=∠2DF EF ==AD A ()4,2OA OA O 90︒A B ,,B O A L L x L 'L 'D ,,,B O A D图2图3【详解】解:观察图形可得,其主视图是3.A【分析】本题考查了根的判别式,根据题意算出根的判别式即可得;掌握根的判别式即可得.【详解】解:,23210x x --=在Rt ACD中,tan C故选B.【点睛】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.7.C【分析】根据二次函数的性质判断出【详解】解:∵抛物线开口向下,∴a<0,9.B【分析】本题主要考查了同弧所对的圆周角相等,∠的圆周角相等得到ADC=【点睛】本题主要考查了等边三角形的性质,每个内角都相等.13.48【分析】本题考查了反比例函数与几何的综合.1求得相似比为,利用相似比求得∵平行于轴,∴轴,∴,∵,∴,AC x BAC ∠BD x ⊥BAC BDO ∽△△2OC BC =13BC BA BO BD ==18.详见解析【分析】根据平行四边形的性质得出,再证明线段的差得出,即可得出结论.【详解】证明:∵四边形是平行四边形,OEA OFC ∠=∠AOE ≌△△AD AE BC CF -=-ABCD依题意,∴,∵,∴,∴,设,2, 1.5,EM FD MD EF MN ====3 1.5 1.5CM CD MD =-=-=CM AN ∥CME ANE V V ∽CM EM AN EN=AN x =;(3)解:把代入中得:,解得:或,∴函数的图象和直线的交点坐标是:23.(1)见详解(2)【分析】(1)由“直径所对的圆周角等于”和圆周角定理可得2y =|1|y x =-|1|2x -==1x -3x =|1|y x =-2y =390︒设与交于点,∵是等腰直角三角形,AB OD M (),D m n BOA △(2)如图所示,连接AC、(3)如图所示,过点D作DH⊥。
第一学期九年级期末考试数学试卷及答案(一)

第一学期九年级期末考试数学试卷(一)(时间:120分钟)一、填空题(每小题3分,共18分)1.如图∠DAB=∠CAE ,请补充一个条件:__________,使△ABC ≌△ADE .2.如图,AM 、AN 分别切⊙O 于M 、N 两点,点B 在⊙O 上,且∠MBN=70°,则∠A=________.3.如图,张华同学在学校某建筑物的C 点处测得旗杆顶部A 点的仰角为30°,旗杆底部8点的俯角为45°.若旗杆底部B 点到建筑物的水平距离BE=9米,旗杆台阶高l 米,则旗杆顶点A 离地面的高度为___________米(结果保留根号).4.若抛物线22--=x x y 经过点A (3,a )和点B (b ,0),连接AB ,那么线段AB 的长为___________.5.某服装厂制造某种产品,原来每件产品的成本是256元,由于不断改进生产设备,提高生产技术,连续两次降低成本,两次降低后的成本是196元,则平均每次降低成本的百分率是______________.6.已知二次函数c bx ax y ++=2的图象开口向上,图像经过点(-l ,2)和(1,0)且与y 轴交于负半轴.(从以下(1)、(2)两问中选答一问,若两问都答,则只以第(2)问计分) 第(1)问:给出四个结论:①0>a ;②0>b ;③0>c ; ④0=++c b a ,其中正确结论的序号是______________.第(2)问:给出四个结论:①0<abc ②02>+b a ;③1=+c a ;④1>a ,其中正确结论的序号是___________________.二、选择题:下列每小题的四个答案中有且只有一个是正确的,请将正确答案的字母代号填在题后括号内(每小题3分,共36分)7.生活处处皆学问,如图,眼镜镜片所在的两圆的位置关系是( ).A .外离B .外切C .内含D .内切8.关于x 的方程022=-+-k kx x 的根的情况是( ). A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .无法确定9.二次函数342++=x x y 的图像可以由二次函数2x y =的图像平移而得到,下列平移正确的是( ).A .先向左平移2个单位,再向上平移1个单位B .先向左平移2个单位,再向下平移1个单位C .先向右平移2个单位,再向上平移1个单位D .先向右平移2个单位,再向下平移1个单位10.如图,已知直角三角形ABC 中,斜边AB 的长为m ,∠B=40°,则直角边BC 的长是( ).A .msin40°B .mcos40°C .mtan40°D .︒40tan m11.已知实数x 满足01122=+++x x xx ,那么x x 1+的值是( ) A .1或-2B .-l 或2C .-2D .112.下列说法正确的有( ).(1)如图(a ),可以利用刻度尺和三角板测量圆形工件的直径;(2)如图(b ),可以利用直角曲尺检查工件是否为半圆形;(3)如图(c ),两次使用丁字尺(CD 所在直线垂直平分线段AB )可以找到圆形工件的圆心;(4)如图(d ),测倾器零刻度线和铅垂线的夹角,就是从P 点看A 点时仰角的度数.A .1个B .2个C .3个D .4个13.如图,在△ABC 中,DE ∥BC ,S △ADE =S 梯形DBCE ,下列关系正确的是( ).A .AD :DB=(2+1):1B .DE :BC=1:2C .AD :DB=2:1D .AD :DB=(2-l ):114.已知二次函数k x y +-=2)1(3的图象上有A (2,1y ),B (2,2y ),C (-5,3y )三个点,则1y 、2y 、3y 的大小关系是( ).A .1y >2y >3yB .2y >1y >3yC .3y >1y >2yD .3y >2y >1y 15.如图,已知AB 是⊙O 的直径,CD 是弦且CD ⊥AB ,BC=6,AC=8,则sin ∠ABD 的值是( ).A .34B .43C .53D .54 16.如图,在Rt △ABC 中,∠C=90°,∠A=30°,E 为AB 上一点,且AE :EB=4:1,EF ⊥AC 于F ,连结FB ,则tan ∠CFB 的值等于( ).A .33B .332 C .335D .3517.在正方形网格中,△ABC 的位置如图所示,则tan ∠BAC 等于( ).A .21B .31C .41 D .33 18.如图,⊙O 的半径OA=6,以A 为圆心,OA 为半径的弧交⊙O 于B 、C 点,则BC=( )A .63B .62C .33D .32三、解答题(本题共6小题,共64分。
第一学期初三期末考试数学试卷及答案

A第一学期初三期末考试数学试卷一、选择题(共8道小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个..是符合题意的.用铅笔把“答题卡”上 对应题目答案的相应字母处涂黑. 1. 已知:2:3,a b = 那么下列等式中成立的是A .32a b =B .23a b =C .52a b b += D .13a b b -= 2.如图,点A 、B 、C 都在O ⊙上,若∠AOB =72°,则∠ACB 的度数为 A .18°B .30°C .36°D .72°3. 已知⊙O 的半径为5,点P 到圆心O 的距离为8,那么点P 与⊙O 的位置关系是A .点P 在⊙O 上B .点P 在⊙O 内C .点P 在⊙O 外D .无法确定4. 如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD =6,BD =2,AE =9,则EC 的长是A .8B .6C .4D .35. 如图,AB 是⊙O 的直径,C 、D 是⊙O 上的两点,若∠BAC =20°, AD DC=,则∠DAC 的度数是 A .30° B .35° C .45° D .70°6. 桌面上放有6张卡片(卡片除正面的颜色不同外,其余均相同),其中卡片正面的颜色3张是绿色,2张是红色,1张是黑色.现将这6张卡片洗匀后正面向下放在桌面上,从中随机抽取一张,抽出的卡片正面颜色是绿色的概率是 A .12 B .13 C .14 D . 167. 将抛物线23y x =先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则AB DE新抛物线的解析式是A .23(2)1y x =++ B .23(2)1y x =+- C .23(2)1y x =-+ D .23(2)1y x =-- 8. 如图,在矩形ABCD 中,AB =4,BC =3,点P 在CD 边上运动,联结AP ,过点B 作BE ⊥AP ,垂足为E ,设AP =x , BE =y ,则能反映y 与x 之间函数关系的图象大致是A .B .C .D .二、填空题(共4道小题,每题4分,共16分)9. 如果两个相似三角形的相似比是1:2,那么这两个相似三角形的周长比是 . 10. 如图,在Rt △ABC 中,∠C =90°,AB = 5,AC = 4,则cos A = .11. 已知抛物线22y x x m =-+与x 轴有两个交点,则m 的取值范围是 . 12. 如图,把直角三角形ABC 的斜边AB 放在定直线l 上,按顺时针方向在l 上转动两次,使它转到△A B C ˝˝˝的 位置.若BC =1,AC =3,则顶点A 运动到点A ˝的 位置时,点A 经过的路线的长是 .三、解答题(共4 道小题,共20分)13. (本小题满分5分)计算: tan 60sin30tan 45cos60.︒-︒⨯︒+︒14. (本小题满分5分)已知:如图,在ABC △中,D 是AC 上一点,联结BD ,且∠ABD =∠ACB .A BCA BCDP E(1)求证:△ABD ∽△ACB ;(2)若AD =5,AB = 7,求AC 的长.15. (本小题满分5分)已知二次函数245y x x =-+.(1)将245y x x =-+化成y =a (x -h ) 2 + k 的形式; (2)指出该二次函数图象的对称轴和顶点坐标; (3)当x 取何值时,y 随x 的增大而增大?16.(本小题满分5分)已知:如图,AB 是⊙O 的直径,CD 是⊙O 的弦, 且AB ⊥CD ,垂足为E ,联结OC ,OC =5.(1)若CD =8,求BE 的长;(2)若∠AOC =150°, 求扇形OAC 的面积.四、解答题(共2道小题,共12分)17. (本小题满分6分)已知反比例函数ky x=的图象经过点A (1,3). (1)试确定此反比例函数的解析式; (2)当x =2时, 求y 的值;(3)当自变量x 从5增大到8时,函数值y 是怎样变化的?18.(本小题满分6分)已知二次函数2y x bx c =++的图象如图所示,它与x 轴的一个交点的坐标为(-1,0),与y 轴的交点坐标为(0,-3). (1)求此二次函数的解析式;(2)求此二次函数的图象与x 轴的另一个交点的坐标;(3)根据图象回答:当x 取何值时,y <0?五、解答题(共2道小题,共10分) 19. (本小题满分5分)已知:如图,在△ABC 中,∠A =30°, tan B =34,AC =18,求BC 、AB 的长.20. (本小题满分5分)如图,某同学在测量建筑物AB 的高度时,在地面的C 处测得点A 的仰角为30°,向前走60米到达D 处,在D 处测得点A 的仰角为45°,求建筑物AB 的高度.六、解答题(共2道小题,共8分)21.(本小题满分4分)甲口袋中装有2个小球,它们分别标有数字1、2,乙口袋中装有3个小球,它们分别标有数字3、4、5.现分别从甲、乙两个口袋中随机地各取出1个小球,请你用列举法(画树状图或列表的方法)求取出的两个小球上的数字之和为5的概率.22.(本小题满分4分)如图,已知每个小方格都是边长为1的正方形,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形. 图中的△ABC 是一个格点三角形.(1)请你在第一象限内画出格点△AB 1C 1, 使得△AB 1C 1∽△ABC ,且△AB 1C 1与△ABC的相似比为3:1; (2)写出B 1、C 1两点的坐标.CBA A BCD45°30°PA BDCx七、解答题(本题满分7分)23. 如图,在△ABC 中,∠C =60°,BC =4,AC =P 在BC 边上运动,PD ∥AB ,交AC 于D . 设BP 的长为x ,△APD 的面积为y . (1)求AD 的长(用含x 的代数式表示);(2)求y 与x 之间的函数关系式,并回答当x 取何值时,y 的值最大?最大值是多少? (3)点P 是否存在这样的位置,使得△ADP 的面积是△ABP 面积的23?若存在,请求出BP 的长;若不存在,请说明理由.八、解答题(本题满分7分)24. 在平面直角坐标系xOy 中,反比例函数4y x=的图象与抛物线2(94)1y x m x m =+++-交于点A (3, n ).(1)求n 的值及抛物线的解析式;(2) 过点A 作直线BC ,交x 轴于点B ,交反比例函数4y x=(0x >)的图象于点C ,且AC =2AB ,求B 、C 两点的坐标;(3)在(2)的条件下,若点P 是抛物线对称轴上的一点,且点P 到x 轴和直线BC的距离相等,求点P 的坐标.x九、解答题(本题满分8分)25. 在平面直角坐标系xOy 中,已知抛物线2y ax bx c =++的对称轴是1x =,并且经过(-2,-5)和(5,-12)两点. (1)求此抛物线的解析式;(2)设此抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C 点,D是线段BC 上一点(不与点B 、C 重合),若以B 、O 、D 为顶点的三角形与△BAC 相似,求点D 的坐标;(3)点P 在y 轴上,点M 在此抛物线上,若要使以点P 、M 、A 、B 为顶点的四边形是平行四边形,请你直接写出点M 的坐标.一、选择题(共8道小题,共32分)1. A2. C3. C4. D5. B6. A7. B8. D二、填空题(共4道小题,共16分)9. 1:2 10. 4511. m<112. 43π⎛+⎝⎭三、解答题(共4道小题,共20分)13. (本小题满分5分)解:tan60°-sin30°×tan45°+cos 60°11122=⨯+…………………………………………………………………4分=……………………………………………………………………5分14. (本小题满分5分)(1)证明:∵∠A=∠A,∠ABD =∠ACB, ………1分∴△ABD∽△ACB.…………………2分(2)解: ∵△ABD∽△ACB,∴AB ADAC AB=. ……………………………3分∴757AC=. ………………………………4分∴495AC=. ……………………………5分15. (本小题满分5分)解:(1)24445y x x=-+-+………………………………………………1分2(2)1x=-+. ………………………………………………………2分(2)对称轴为2=x,………………………………………………………3分顶点坐标为(2,1). ……………………………………………4分(3)当x>2时,y随x的增大而增大. ………………………………5分16. (本小题满分5分)证明:(1)∵AB为直径,AB⊥CD,∴∠AEC=90°,CE=DE. ……………………1分∵CD=8,∴118422CE CD==⨯=. ………………… 2分∵OC=5,∴OE3=. …………3分∴BE=OB-OE=5-3=2. …………………………………………………4分(2)21501255.36012OACSππ=⨯⨯=扇形………………………………………5分四、解答题(共2道小题,共12分)17. (本小题满分6分)解:(1)∵反比例函数kyx=的图象过点A(1,3),ADB31k ∴=. …………………………………………………………………1分 ∴k =3. ……………………………………………………………… 2分 ∴反比例函数的解析式为3y x=. ……………………………… 3分 (2) 当2x =时,32y =. .……………………………………………4分 (3) 在第一象限内,由于k =3 >0,所以y 随x 的增大而减小.当5x =时,35y =;当8x =时,38y =. 所以当自变量x 从5增大到8时,函数值y 从35减小到38.………6分 18.(本小题满分6分)解: (1)由二次函数2y x bx c =++的图象经过(-1,0)和(0,-3)两点,得 10,3.b c c -+=⎧⎨=-⎩ …………………………………………………… 1分解这个方程组,得2,3.b c =-⎧⎨=-⎩……………………………………… 2分∴抛物线的解析式为22 3.y x x =--…………………………………3分 (2)令0y =,得2230x x --=.解这个方程,得13x =,21x =-.∴此二次函数的图象与x 轴的另一个交点的坐标为(3,0). ………5分(3)当13x -<<时,y <0. ………………………………………… 6分五、解答题(共2道小题,共10分) 19. (本小题满分5分)解:过点C 作CD ⊥AB 于D .∴∠ADC =∠BDC =90°. ∵∠A =30°,AC =18,∴CD = 12 AC = 12 ×18=9. ……………………………………………………1分∴AD ===………………………………2分∵3tan ,4CD B BD ==∴39,4BD= ∴BD =12. ………………………………………………………………………3分D A C∴15.BC === …………………………………4分∴AB =AD +BD =9 3 +12. ………………………………………………5分 ∴BC =15, AB =9 3 +12.20. (本小题满分5分)解:设建筑物AB 的高度为x 米.在Rt △ABD 中,∠ADB =45°, ∴AB =DB =x .∴BC =DB +CD = x +60.在Rt △ABC 中,∠ACB =30°,∴tan ∠ACB =ABCB……………………………1分 ∴tan 3060x x ︒=+.………………………… 2分60x x =+. ……………………………3分 ∴x =30+30 3 . ……………………………4分 ∴建筑物AB 的高度为(30+30 3 )米. …5分六、解答题(共2道小题,共8分) 21. (本小题满分4分)解:正确画出树状图或列表 ………………………………………………………3分P (数字之和为5)= 1.3………………………………………………………4分22. (本小题满分4分)解:(1)正确画出△AB 1C 1………………………………………………………… 2分(2)点B 1(4,1), ………………………………………………………… 3分点C 1(7,7). ……………………………………………………… 4分七、解答题(本题满分7分) 23.解:(1)∵PD ∥AB ,∴.AD BPAC BC=…………………………1分 ∵BC =4,AC=BP 的长为x ,.4x = ∴.2AD x =……………………… 2分 (2)过点P 作PE ⊥AC 于E.∵sin ,PEACB PC∠=∠C =60°, ABCD45°30°ED B AP∴)sin 604.2PE PC x =⨯=-……………………………………3分∴21133).2282y AD PE x x x x =⋅⋅=-=-+ (4)分∴当2x =时,y 的值最大,最大值是3.2……………………………5分(3)点P 存在这样的位置. ∵△ADP 与△ABP 等高不等底,∴ΔΔ.ADP ABP S DPS AB= ∵△ADP 的面积是△ABP 面积的23,∴ΔΔ2.3ADP ABP SS =∴2.3DP AB = ∵PD ∥AB ,∴△CDP ∽△CAB . ∴.DP CPAB CB= ∴2.3CP CB = ∴42.43x -= ∴4.3x =∴4.3BP = …………………………………………………………… 7分八、解答题(本题满分7分)24. 解:(1)∵点A (3, n )在反比例函数4y x=的图象上,43n ∴=.……………………………………………………………………1分 ∴A (3,43).∵点A (3,43)在抛物线2(94)1y x m x m =+++-上,49(94)3 1.3m m ∴=++⨯+- ∴23m =- .∴抛物线的解析式为2523y x x =--. …………………………2分(2)分别过点A 、C 作x 轴的垂线,垂足分别为点D 、E ,∴AD ∥CE .∴△ABD ∽△CBE .∴AD ABCE CB=.∵AC=2AB,∴13 ABCB=.由题意,得AD=4 3 ,∴41 33 CE=.∴CE=4.……………………3分即点C的纵坐标为4.当y=4时,x=1,∴C(1,4) …………………4分∵1,3BD ABBE CB==DE=2,∴1.23 BDBD=+∴BD=1.∴B(4,0). ……………………………………………………………5分(3)∵抛物线25 23y x x=--的对称轴是1x=,∴P在直线CE 上.过点P作PF⊥BC于F.由题意,得PF=PE.∵∠PCF =∠BCE, ∠CFP =∠CEB =90°,∴△PCF∽△BCE.∴PF PCBE BC=.由题意,得BE=3,BC=5.①当点P在第一象限内时,设P(1,a) (a>0).则有4.35a a-=解得3.2a=∴点P的坐标为31,2⎛⎫⎪⎝⎭. ……………………………………………6分②当点P在第四象限内时,设P(1,a) (a<0)则有4.35a a--=解得 6.a=-∴点P的坐标为()1,6-.……………………………………………7分∴点P的坐标为31,2⎛⎫⎪⎝⎭或()1,6-.九、解答题(本题满分8分)25.解:(1)由题意,得1,2425,25512.ba abc a b c ⎧-=⎪⎪-+=-⎨⎪++=-⎪⎩解这个方程组,得1,2,3.a b c =-⎧⎪=⎨⎪=⎩…………………………………… 1分∴ 抛物线的解析式为y =-x 2+2x +3. ……………………………2分 (2)令0y =,得2230x x -++=.解这个方程,得1213x x =-=,. (10)(30)A B ∴-,,,. 令0x =,得3y =.(03)C ∴,.4345.AB OB OC OBC ∴===∠=,,BC ∴===过点D 作DE x ⊥轴于点E . ∵45OBC BE DE ∠=∴=,.要使BOD BAC △∽△或BDO BAC △∽△, 已有ABC OBD ∠=∠,则只需BD BO BC BA =或BO BD BC BA=成立. 若BD BOBC BA=成立,则有34BO BC BD BA ⨯⨯==在Rt BDE △22222BE DE BE BD +===∴94BE DE ==.93344OE OB BE ∴=-=-=∴点D 的坐标为3944⎛⎫⎪⎝⎭,. ……………………………………………4分若BO BDBC BA =成立,则有BO BA BD BC ⨯=== 在Rt BDE △中,由勾股定理,得222222BE DE BE BD +===.∴2BE DE ==.321OE OB BE ∴=-=-=.∴点D 的坐标为(12),. ……………………………………………5分 ∴点D 的坐标为3944⎛⎫⎪⎝⎭,或(12),. (3)点M 的坐标为()2,3或(45),-或(421)-,-. ……………………8分。
初三上册期末考试数学试卷含答案(新人教版)

人教版九年级(上册)期末考试数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)tan45°的值等于( )A .B .C .D .12.(3分)如图,在Rt △ABC 中,∠C=90°,AB=10,AC=8,则sinA 等于( )A .B .C .D .3.(3分)下列格点,在反比例函数y=图象上的是( )A .(3,﹣2)B .(﹣3,﹣2)C .(2,﹣3)D .(﹣2,3)4.(3分)如图,已知AB ∥CD ∥EF ,那么下列结论正确的是( )A . =B . =C . =D . =5.(3分)在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,下列结论正确的是( )A .b=a•sinAB .b=a•tanAC .c=a•sinAD .a=c•cosB6.(3分)已知反比例函数y=的图象在一、三象限,则一次函数y=kx ﹣k 的图象大致是( )A .B .C .D .7.(3分)菱形OABC在平面直角坐标系中的位置如图所示.∠AOC=45°,OC=,则点B的坐标为()A.(,1)B.(1,)C.(+1,1) D.(1,+1)8.(3分)抛物线y=(x﹣1)2+2的对称轴为()A.直线x=1 B.直线x=﹣1 C.直线x=2 D.直线x=﹣29.(3分)已知抛物线y═ax2+bx+c的图象如图,则下列结论正确的是()A.a>0,b>0,c>0 B.a>0,b>0,c=0 C.a>0,b<0,c=0 D.a<0,b<0,c<0 10.(3分)下列四个命题:①两个角分别相等的两个三角形相似;②两条边对应成比例的两个三角形相似;③相似三角形对应高的比等于相似比;④相似三角形周长的比等于相似比.其中是真命题的共有()A.1个 B.2个 C.3个 D.3个11.(3分)如图,D是△ABC的边AB上的一点,那么下列四个条件不能单独判定△ABC∽△ACD的是()A.∠B=∠ACD B.∠ADC=∠ACB C.D.AC2=AD•AB12.(3分)对于二次函数y=x2﹣2x﹣3,下列四个结论:①图象开口向上;②顶点坐标为(﹣1,﹣4);③当x>1时,y随x的增大而增大;④当﹣1<x<3时,y<0.其中正确的是()A.①③B.②④C.①②④D.①③④二、填空题:(每小题3分,共18分13.(3分)已知线段b是线段a,c的比例中项,若a=1,c=2,则b=.14.(3分)已知A、B两点之间的实际距离为100m,要把它画到比例尺为1:200的图纸上,应画线段AB=cm.15.(3分)抛物线y=x2﹣4x﹣5与x轴有个交点.16.(3分)已知点(﹣2,1)在反比例函数y=的图象上,则k=.17.(3分)比较大小:sin40°cos50°(填“>”、“<”或“=”)18.(3分)如图,▱ABCD中,E是边AB的中点,AC、DE相交于点F,若△AEF的面积为20cm2,则△CDF的面积是cm2.三、解答题:(共66分)19.(6分)计算:sin45°+cos45°.20.(6分)如图,在△ABC中,已知DE∥BC,AD=4,DB=8,DE=3.(1)求的值;(2)求BC的长.21.(6分)今年,我市中小学大力倡导中国传统文化教育,小敬同学积极响应,他计划在寒假里读一本96页的《弟子规》.设他读完这本书所用的天数是y(天),平均每天阅读的页数是x(页)(1)求y与x之间的函数关系式,并写出自变量的取值范围;(2)小敬为了腾出一定的时间复习功课,计划用12天读完,那么他平均每天应读多少页?22.(8分)如图,反比例函数y=的图象与一次函数y=ax+b的图象相交于点A(1,4)和点B(﹣2,n).(1)求反比例函数的解析式;(2)求n的值;(3)求一次函数的解析式.23.(8分)当前,我国的城镇建设稳步推进,高楼大厦不断增加.小敏在她家的房顶A处看一栋新建的高楼,测得这栋高楼顶部的仰角为60°,这栋高楼底部的俯角为30°,已知小敏家的楼房与这栋高楼的水平距离为30m,求这栋高楼的高度BC.(结果保留根号)24.(10分)某商人如果将进货价为8元的商品按每件10元出售,每天可销售100件.现采取提高售价,减少进货量的办法增加利润,已知这种商品每涨价1元,每天的销售量就要减少10件,设该商人将每件售价定为x元,每天获得的总利润为y元,回答下列问题:(1)提价后,销售每件商品可获利元,每天少销售件商品;(2)当每件售价x定为多少元时可使每天所获利润最大?并求出每天的最大利润.25.(10分)已知:如图,在矩形ABCD中,点E、F分别在边AD、DC上,且BE⊥EF(1)求证:△ABE∽△DEF;(2)若AB=6,AE=9,DE=2,求DF的长;(3)在(2)的条件下,连接BF,则tan∠EBF=(直接写出结果).26.(12分)如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C,点A的坐标为(2,0),点C的坐标为(0,4),它的对称轴是直线x=﹣1.(1)求这个二次函数的解析式.(2)连接BC,求线段BC的长.(3)若点P在x轴上,且△PBC为等腰三角形,请直接写出符合条件的所有点P的坐标.参考答案一、选择题1.D.2.A.3.B4.A5.D6.C7.C8.A.9.B10.C11.C12.D 二、填空题13..14.5015.两16.﹣1.17.=18.80.三、解答题:(共66分)19.【解答】解:原式=+=.20.【解答】解:(1)∵AD=4,DB=8∴AB=AD+DB=4+8=12∴=;(2)∵DE∥BC∴△ADE∽△ABC∴∵DE=3∴∴BC=9.21.【解答】解:(1)根据题意知y=(x>0,且x为整数);(2)当y=12时,x==8,答:他平均每天应读8页.22.【解答】解:(1)∵点A(1,4)在反比例函数y=上,∴k=4,∴反比例函数的解析式为y=.(2)∵B(﹣2,n)在y=上,∴n=﹣2.(3)设一次函数的解析式为y=kx+b,则有,解得,∴一次函数的解析式为y=2x+2.23.【解答】解:在Rt△ABD中,∠BDA=90°,∠BAD=60°,AD=30m,∴BD=ADtan60°=30×=30(m).在Rt△ACD中,∠ADC=90°,∠CAD=30°,∴CD=ADtan30°=30×=10(m).∴BC=BD+CD=30+10=40(m)答:这栋高楼的高度BC为40m.24.【解答】解:(1)由题意知提价后,销售每件商品可获利(x﹣8)元,每天少销售100﹣10(x ﹣10)=200﹣10x件商品,故答案为:x﹣8、200﹣10x;(2)y=(x﹣8)[100﹣10(x﹣10)]=﹣10(x﹣14)2+360(10≤a<20),∵a=﹣10<0∴当x=14时,y有最大值360答:他将售出价(x)定为14元时,才能使每天所赚的利润(y)最大,最大利润是360元.25.【解答】解:(1)∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠ABE+∠AEB=90°,∵BE⊥EF∴∠BEF=90°,∴∠AEB+∠DEF=90°,∴∠ABE=∠DEF,∵∠A=∠D,∴△ABE∽△DEF;(2)由(1)知,△ABE∽△DEF,∴,∵AB=6,AE=9,DE=2,∴,∴DF=3,(3)由(2)知,AB=6,AE=9,DE=2,DF=3,在Rt△ABE中,根据勾股定理得,BE==3,在Rt△DEF中,根据勾股定理得,EF==,在Rt△BEF中,tan∠EBF==.故答案为:.26.【解答】解:(1)根据题意得,,解得,,∴二次函数的解析式y=﹣x2﹣x+4;(2)∵点A的坐标为(2,0),对称轴是直线x=﹣1,∴B(﹣4,0),∵C(0,4),∴BC==4;(3)设P(m,0),∵B(﹣4,0),C(0,4),∴BP2=(m+4)2,CP2=m2+16,∵△PBC是等腰三角形,∴①当BP=CP时,∴(m+4)2=m2+16,∴m=0,∴P(0,0)②当BP=BC时,∴(m+4)2=32,∴m=﹣4±4,∴P(﹣4+4,0)或(﹣4﹣4,0)③当CP=BC时,m2+16=32,∴m=4或m=﹣4(舍),∴P(4,0),即:符合条件的所有点P的坐标为P(0,0)或(﹣4+4,0)或(﹣4﹣4,0)或(4,0).。
最新数学九年上册期末考试试卷及答案(共七套)(新人教版)初三上数学 98页

人教版数学九年上册期末考试试卷及答案(一)初三数学第一学期一、精心选一选(将唯一正确答案的代号填在题后的答题卡中36分). B . C . D .. x ≥ B . x ≤﹣ C . x ≥﹣ D . x ≤ 4.(3分)已知⊙O 1、⊙O 2的半径分别是1cm 、4cm ,O 1O 2=cm ,则⊙O 1和⊙O 2的位 A . 外离 B . 外切 C . 内切 D . 相交 .B .C .D . 7.(3分)(2003•新疆)已知:如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,∠ABC=30°,则∠CAD 等于( )8.(3分)某公司今年产值300万元,现计划扩大生产,使今后两年的产值都比前一年增长一个相同的百分数,这样三年(包括今年)的总产值就达到了1400万元.设这个百分数9.(3分)教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为,由此可知铅球推出的距离是()10.(3分)(2010•临沂)如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B 到了点B′,则图中阴影部分的面积是()A.6πB.5πC.4πD.3π11.(3分)(2009•十堰)同时掷两个质地均匀的正方体骰子,骰子的六个面上分别刻有1.B.C.D.12.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=﹣1对称;③当x=﹣2时,函数y的值等于0;④当x=﹣3或x=1时,函数y的值都等于0.其中正确结论的个数是()二、细心填一填(每小题3分,共18分)13.(3分)计算:=_________.14.(3分)白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有_________个飞机场.15.(3分)(2010•红桥区模拟)已知点A的坐标为(a,b),O为坐标原点,连接OA,将线段OA绕点O按逆时针方向旋转90°得OA1,则点A1的坐标为_________.16.(3分)如图,从A地到C地,可供选择的方案是走水路、走陆路、走空中.从A地到B地有2条水路、2条陆路,从B地到C地有3条陆路可供选择,则从A地到C地可供选择的方案有_________种.17.(3分)如图,梯形ABCD中,AD∥BC,∠C=90°,AB=AD=4,BC=6,以点A为圆心在这个梯形内画出一个最大的扇形(图中阴影部分),则由这个扇形围成的圆锥的底面半径是_________.18.(3分)二次函数y=ax2+bx+c(a,b,c是常数,a≠0),下列说法:①若b2﹣4ac=0,则抛物线的顶点一定在x轴上;②若a﹣b+c=0,则抛物线必过点(﹣1,0);③若a>0,且一元二次方程ax2+bx+c=0有两根x1,x2(x1<x2),则ax2+bx+c<0的解集为x1<x<x2;④若,则方程ax2+bx+c=0有一根为3.其中正确的是_________(把正确说法的序号都填上).三、用心做一做(本大题共7小题,满分66分)19.(6分)解下列方程:(1)x2﹣2x﹣1=0(2)(x﹣2)2=2x﹣4.20.(8分)先化简,再求值:,其中,.21.(10分)如图,已知点P是边长为5的正方形ABCD内的一点,连结PA,PB,PC,若PA=2,PB=4,∠APB=135°.(1)将△PAB绕点B顺时针旋转90°,画出△P′CB的位置.(2)①求PC的长;②求△PAB旋转到△P′CB的过程中边PA所扫过区域的面积.22.(10分)(2011•湘潭)九年级某班组织班团活动,班委会准备买一些奖品.班长王倩拿15元钱去商店全部用来购买钢笔和笔记本两种奖品,已知钢笔2元/支,笔记本1元/本,且每样东西至少买一件.(1)有多少种购买方案?请列举所有可能的结果;(2)从上述方案中任选一种方案购买,求买到的钢笔与笔记本数量相等的概率.23.(10分)(2012•瑶海区一模)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)当AB=5,BC=6时,求DE的长.24.(10分)已知关于x的一元二次方程x2﹣4x+1﹣2k=0有两个不等的实根,(1)求k的取值范围;(2)若k取小于1的整数,且此方程的解为整数,则求出此方程的两个整数根;(3)在(2)的条件下,二次函数y=x2﹣4x+1﹣2k与x轴交于A、B两点(A点在B点的左侧),D点在此抛物线的对称轴上,若∠DAB=60°,求D点的坐标.25.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0)、B(4,0)、C(0,4)三点.(1)求此抛物线的解析式;(2)此抛物线有最大值还是最小值?请求出其最大或最小值;(3)若点D(2,m)在此抛物线上,在y轴的正半轴上是否存在点P,使得△BDP是等腰三角形?若存在,请求出所有符合条件的P点的坐标;若不存在,请说明理由.2012-2013学年湖北省孝感市汉川市九年级(上)期末数学试卷参考答案与试题解析一、精心选一选(将唯一正确答案的代号填在题后的答题卡中12×3分=36分). B . C . D .. x ≥ B . x ≤﹣ C . x ≥﹣ D . x ≤ 即可.解答: 解:∵二次根式有意义,∴1+2x ≥0,解得x ≥﹣.故选C .点评: 本题考查的是二次根式有意义的条件及解一元一次不等式,比较简单.4.(3分)已知⊙O1、⊙O2的半径分别是1cm、4cm,O1O2=cm,则⊙O1和⊙O2的位A.外离B.外切C.内切D.相交考点:圆与圆的位置关系.分析:由⊙O1与⊙O2的半径分别为1cm、4cm,且圆心距O1O2=cm,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O1与⊙O2的半径分别为1cm、4cm,且圆心距O1O2=cm,又∵1+4>>4﹣1,∴两圆的位置关系是相交.故选D.点评:此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半.B.C.D.同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:A、是最简二次根式;B、=,可化简;C、==2,可化简;D、==3,可化简;故选A.点评:最简二次根式是本节的一个重要概念,也是中考的常考点.最简二次根式应该是:根7.(3分)(2003•新疆)已知:如图,△ABC内接于⊙O,AD是⊙O的直径,∠ABC=30°,则∠CAD等于()8.(3分)某公司今年产值300万元,现计划扩大生产,使今后两年的产值都比前一年增长一个相同的百分数,这样三年(包括今年)的总产值就达到了1400万元.设这个百分数9.(3分)教练对小明推铅球的录像进行技术分析,发现铅球行进高度y(m)与水平距离x(m)之间的关系为,由此可知铅球推出的距离是()A.10m B.3m C.4m D.2m或10m分析:根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x的值即可.解答:解:令函数式y=﹣(x﹣4)2+3中,y=0,0=﹣(x﹣4)2+3,解得x1=10,x2=﹣2(舍去),即铅球推出的距离是10m.故选:A.点评:本题考查了二次函数的应用中函数式中自变量与函数表达的实际意义,需要结合题10.(3分)(2010•临沂)如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B 到了点B′,则图中阴影部分的面积是()A.6πB.5πC.4πD.3π依扇形的面积公式计算即可.解答:解:阴影部分面积==6π.故选A.点评:本题主要考查了扇形的面积公式.即S=.11.(3分)(2009•十堰)同时掷两个质地均匀的正方体骰子,骰子的六个面上分别刻有1.B.C.D.分析:列举出所有情况,看两个骰子向上的一面的点数和为8的情况占总情况的多少即可.解答:解:列表得:∴两个骰子向上的一面的点数和为8的概率为.故选B.点评:列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法12.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=﹣1对称;③当x=﹣2时,函数y的值等于0;④当x=﹣3或x=1时,函数y的值都等于0.其中正确结论的个数是()A.4B.3C.2D.1二、细心填一填(每小题3分,共18分)13.(3分)计算:=14.分析:首先对二次根式进行化简,然后合并同类二次根式即可求解.解答:解:原式=4﹣2+12=14.故答案是:14.点评:主要考查了实数的运算.无理数的运算法则与有理数的运算法则是一样的.在进行二14.(3分)白云航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有5个飞机场.15.(3分)(2010•红桥区模拟)已知点A的坐标为(a,b),O为坐标原点,连接OA,将线段OA绕点O按逆时针方向旋转90°得OA1,则点A1的坐标为(﹣b,a).∴A1B1=AB=b,OB1=OB=a,因为A1在第二象限,所以A1(﹣b,a),A在其它象限结论也成立.16.(3分)如图,从A地到C地,可供选择的方案是走水路、走陆路、走空中.从A地到B地有2条水路、2条陆路,从B地到C地有3条陆路可供选择,则从A地到C地可供选择的方案有13种.17.(3分)如图,梯形ABCD中,AD∥BC,∠C=90°,AB=AD=4,BC=6,以点A为圆心在这个梯形内画出一个最大的扇形(图中阴影部分),则由这个扇形围成的圆锥的底面半径是.解答:解:过点A作AE⊥BC于点E,∵AD∥BC,∠C=90°,∴四边形ADCE是矩形,∵AB=AD=4,BC=6,∴CE=AD=4,BE=2∴AE=2,∠BAE=30°∴∠BAD=90°+30°=120°设底面半径为r,则2πr=解得:r=故答案为:点评:本题要熟知切线的性质,直角梯形的性质和扇形弧长计算公式.利用切线的性质求得18.(3分)二次函数y=ax2+bx+c(a,b,c是常数,a≠0),下列说法:①若b2﹣4ac=0,则抛物线的顶点一定在x轴上;②若a﹣b+c=0,则抛物线必过点(﹣1,0);③若a>0,且一元二次方程ax2+bx+c=0有两根x1,x2(x1<x2),则ax2+bx+c<0的解集为x1<x<x2;④若,则方程ax2+bx+c=0有一根为3.其中正确的是①②③(把正确说法的序号都填上).次函数图象上点的坐标特征解答.解答:解:①若b2﹣4ac=0,则ax2+bx+c=0有两个相等的实数根,所以,抛物线的顶点一定在x轴上,故本小题正确;②x=﹣1时,a﹣b+c=0,所以,抛物线必过点(﹣1,0),故本小题正确;③a>0,抛物线开口向上,ax2+bx+c<0的解集为x1<x<x2,故本小题正确;④若b=3a+,则9a﹣3b+c=0,所以方程ax2+bx+c=0有一根为﹣3,故本小题错误;综上所述,正确的是①②③.故答案为:①②③.三、用心做一做(本大题共7小题,满分66分)19.(6分)解下列方程:(1)x2﹣2x﹣1=0(2)(x﹣2)2=2x﹣4.乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.解答:解:(1)方程变形得:x2﹣2x=1,配方得:x2﹣2x+1=2,即(x﹣1)2=2,解得:x1=1+,x2=1﹣;(2)方程移项得:(x﹣2)2﹣2(x﹣2)=0,因式分解得:(x﹣2)(x﹣4)=0,解得:x1=2,x2=4.点评:此题考查了解一元二次方程﹣因式分解法与配方法,熟练掌握方程的解法是解本题的20.(8分)先化简,再求值:,其中,.专题:计算题.分析:由于a=3+>0,b=3﹣>0,且有a+b=6,ab=7,再根据二次根式的性质化简得到原式=a+b,然后计算(a+b)2得到7(+1)2,再利用算术平方根求值.解答:解:∵a=3+>0,b=3﹣>0,∴a+b=6,ab=7,∴原式=a+﹣+b=a+b,∵(a+b)2=a2b+2ab+ab2=ab(a+b+2)=7×(6+2)=7×(+1)2,∴原式=(+1)=7+.点评:本题考查了二次根式的化简求值:先根据二次根式的性质和二次根式的运算法则把所21.(10分)如图,已知点P是边长为5的正方形ABCD内的一点,连结PA,PB,PC,若PA=2,PB=4,∠APB=135°.(1)将△PAB绕点B顺时针旋转90°,画出△P′CB的位置.(2)①求PC的长;②求△PAB旋转到△P′CB的过程中边PA所扫过区域的面积.可.解答:解:(1)如图所示:△P′CB即为所求;(2)①连接PP′,∵将△PAB绕点B顺时针旋转90°,∴PB=P′B=4,A,P,P′在一条直线上,∠PP′C=∠BP'C﹣∠BP'P=135°﹣45°=90°,∵∠APB=135°,∴∠BPP′=45°,∴△PBP′是等腰直角三角形,∴PP′=4,∵P′C=PC=2,∴PC==6;②△PAB旋转到△P′CB的过程中边PA所扫过区域的面积为:S扇形ABC+S△BCP′﹣S扇形PBP′﹣S△ABP=S扇形ABC﹣S扇形PBP′==π.22.(10分)(2011•湘潭)九年级某班组织班团活动,班委会准备买一些奖品.班长王倩拿15元钱去商店全部用来购买钢笔和笔记本两种奖品,已知钢笔2元/支,笔记本1元/本,且每样东西至少买一件.(1)有多少种购买方案?请列举所有可能的结果;(2)从上述方案中任选一种方案购买,求买到的钢笔与笔记本数量相等的概率.专题:应用题.分析:(1)应设出两种奖品的件数,由钢笔和笔记本两种奖品的价格为15元列出方程,根据整数值来确定购买方案;(2)根据概率公式P(A)=,求解即可.解答:解:(1)设钢笔和笔记本两种奖品各a,b件则a≥1,b≥1,2a+b=15当a=1时,b=13;当a=2时,b=11;当a=3时,b=9;当a=4时,b=7;当a=5时,b=5;当a=6时,b=3;当a=7时,b=1.故有7种购买方案;(2)买到的钢笔与笔记本数量相等的购买方案有1种,共有7种购买方案.∵1÷7=,∴买到的钢笔与笔记本数量相等的概率为.23.(10分)(2012•瑶海区一模)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)当AB=5,BC=6时,求DE的长.DE的长.解答:解:(1)连接OD,…(1分)∵AB=AC,∴∠C=∠OBD,∵OD=OB,∴∠1=∠OBD,…(2分)∴∠1=∠C,∴OD∥AC,∵EF⊥AC,∴EF⊥OD,∴EF是⊙O的切线;…(3分)(2)连接AD,∵AB为⊙O的直径,∴∠ADB=90°,…(4分)又∵AB=AC,且BC=6,∴CD=BD=BC=3,在Rt△ACD中,AC=AB=5,CD=3,根据勾股定理得:,又S△ACD=AC•ED=AD•CD,即×5×ED=×4×3,∴.…(5分)点评:此题考查了等腰三角形的性质,圆周角定理,平行线的性质,勾股定理,三角形面积24.(10分)已知关于x的一元二次方程x2﹣4x+1﹣2k=0有两个不等的实根,(1)求k的取值范围;(2)若k取小于1的整数,且此方程的解为整数,则求出此方程的两个整数根;(3)在(2)的条件下,二次函数y=x2﹣4x+1﹣2k与x轴交于A、B两点(A点在B点的左侧),D点在此抛物线的对称轴上,若∠DAB=60°,求D点的坐标.在AB的上方与下方两种情况讨论得解.解答:解:(1)∵关于x的一元二次方程x2﹣4x+1﹣2k=0有两个不等的实根,∴△=(﹣4)2﹣4×1×(1﹣2k)=12+8k>0,解得,k>﹣;(2)∵k取小于1的整数,∴k=﹣1或0,①当k=﹣1时,方程为x2﹣4x+3=0,即(x﹣2)2=1,∴x﹣2=1或x﹣2=﹣1,解得x1=3,x2=1,②当k=0时,方程为x2﹣4x+1=0,即(x﹣2)2=3,∵方程的解为整数,∴k=0不符合,∴k=﹣1,此时方程的两个整数根是x1=3,x2=1;(3)如图所示,根据(2),二次函数解析式为,y=x2﹣4x+3,∴点A、B的坐标分别为A(1,0),B(3,0),∴对称轴为x=2,∴AC=(3﹣1)=1,∵∠DAB=60°,∴AD=2AC=2,∴CD===,当点D在AB的上方时,坐标为(2,),在AB的下方时,坐标为(2,﹣),∴点D的坐标为(2,)或(2,﹣).点评:本综合考查了根的判别式,一元二次方程的解法以及二次函数的性质,抛物线与x轴25.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0)、B(4,0)、C(0,4)三点.(1)求此抛物线的解析式;(2)此抛物线有最大值还是最小值?请求出其最大或最小值;(3)若点D(2,m)在此抛物线上,在y轴的正半轴上是否存在点P,使得△BDP是等腰三角形?若存在,请求出所有符合条件的P点的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)将A(﹣2,0)、B(4,0)、C(0,4)代入y=ax2+bx+c,运用待定系数法即可求出此抛物线的解析式;(2)由于二次项系数a=﹣<0,所以抛物线有最大值,最大值为,代入计算即可;(3)先将点D(2,m)代入(1)中所求的抛物线的解析式,求出m的值,得到点D的坐标,然后假设在y轴的正半轴上存在点P(0,y)(y>0),使得△BDP是等腰三角形,再分三种情况进行讨论:①PB=PD;②BP=BD;③DP=DB;每一种情况都可以根据两点间的距离公式列出关于y的方程,解方程即可.解答:解:(1)将A(﹣2,0)、B(4,0)、C(0,4)代入y=ax2+bx+c,得,解得.所以此抛物线的解析式为y=﹣x2+x+4;(2)∵y=﹣x2+x+4,a=﹣<0,∴抛物线有最大值,最大值为=;(3)∵点D(2,m)在抛物线y=﹣x2+x+4上,∴m=﹣×22+2+4=4,∴D(2,4),∵B(4,0),∴BD==2.假设在y轴的正半轴上存在点P(0,y)(y>0),使得△BDP是等腰三角形,分三种情况:①如果PB=PD,那么42+y2=22+(y﹣4)2,解得y=,所以P1(0,);②如果BP=BD,那么42+y2=20,解得y=±2(负值舍去),所以P2(0,2);③如果DP=DB,那么22+(y﹣4)2=20,解得y=0或8,y=0不合题意舍去,所以P3(0,8);综上可知,所有符合条件的P点的坐标为P1(0,),P2(0,2),P3(0,8).人教版数学九年上册期末考试试卷及答案(二)初三数学第一学期一、选择题(每小题3分,共15分).B.C.D..B.C.D.4.(3分)75°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是()二、填空题(每小题3分,共15分)6.(3分)(1997•江西)计算:=_________.7.(3分)(2012•天津)袋子中装有5个红球和3个黑球,这些球除了颜色外都相同.从袋子中随机的摸出一个球,则它是红球的概率是_________.8.(3分)(2012•和平区模拟)把图中的五角星图案,绕着它的中心点O进行旋转,那么至少旋转_________度,才能与自身重合.9.(3分)已知1是关于x的一元二次方程x2+mx+n=0的一个根,那么m+n=_________.10.(3分)在直径为10cm的⊙0中,弦AB的长为5cm,则点0到AB的距离是_________.三、解答题(每小题6分,共30分)11.(6分)计算:12.(6分)解方程:x2+2x﹣4=013.(6分)如图,已知△ABC在平面直角坐标系中的位置.(1)点C关于原点中心对称的点的坐标是_________;(2)画出△ABC绕点A按逆时针方向旋转90°后的图形△AB′C′.14.(6分)已知α、β是关于x的一元二次方程3x2﹣1=2x+5的两个实数根,求的值.15.(6分)如图,已知⊙0的半径为5,AB是⊙0的直径,点C、D都在⊙0上,若∠D=30°,求AC的长.四、解答题(每小题8分,共40分)16.(8分)如图是一个可以自由转动的转盘,转盘被分成面积相等的3个扇形,转动转盘后任其自由停止,其中某个扇形会恰好停在指针所指的位置(如果指针恰好停在分割线上,那么重转一次)(1)转盘转动一次,指针所指的颜色不是红色的概率是多少?(2)转盘转动两次,两次指针指向颜色相同的概率是多少?(用列表法或画树状图).17.(8分)已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:方程有两个不相等的实数根;(2)当p=2时,求该方程的根.18.(8分)如图,有一块长方形铁皮,长40cm,宽30cm,在它的四角各切去一个同样的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为600cm2,那么铁皮各角应切去多大的正方形?19.(8分)如图,△ABE和△ACD都是等边三角形,△AEC逆时针旋转一定角度后能与△ABD重合,EC与BD相交于点F.(1)旋转中心是_________,旋转角至少是_________度;(2)求∠DFC的度数.20.(8分)如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.(1)若BC=40cm,AB=50cm,求⊙0的半径;(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.广东省东莞市2012-2013学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共15分).B.C.D..B.C.D.找到被开方数中含有开得尽方的因数的式子即可.解:各选项中只有选项C、=2,不是最简二次根式,故选C.最简二次根式必须满足两个条件:弧长的计算.根据弧长公式L=,将n=75,L=2.5π,代入即可求得半径长.解:∵75°的圆心角所对的弧长是2.5πcm,由L=,∴2.5π=,解得:r=6,故选:A.此题主要考查了弧长公式的应用,熟练掌握弧长公式:L=才能准确的解题.二、填空题(每小题3分,共15分)6.(3分)(1997•江西)计算:=5.根据二次根式相加减运算法则计算即可.解:原式=×3+6×=2+3=5.故答案为:5.二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并7.(3分)(2012•天津)袋子中装有5个红球和3个黑球,这些球除了颜色外都相同.从袋子中随机的摸出一个球,则它是红球的概率是.根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概解;袋中球的总数为:5+3=8,取到红球的概率为:;故答案为:.此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现种结果,那么事件A的概率P(A)=.8.(3分)(2012•和平区模拟)把图中的五角星图案,绕着它的中心点O进行旋转,那么至少旋转72度,才能与自身重合.9.(3分)已知1是关于x的一元二次方程x2+mx+n=0的一个根,那么m+n=﹣1.10.(3分)在直径为10cm的⊙0中,弦AB的长为5cm,则点0到AB的距离是cm.定理求出AD的长,在Rt△OAD中,根据勾股定理即可得出OD的长.解:如图所示:∵⊙O的直径为10cm,∴OA=5cm,过点O作OD⊥AB于点D,∵AB=5cm,∴AD=AB=×5=cm,在Rt△OAD中,∵OA=5cm,AD=cm,∴OD===cm.故答案为:cm.本题考查的是垂径定理及勾股定理.根据题意画出图形,作出辅助线,构造出直角三角形,根据勾股定三、解答题(每小题6分,共30分)11.(6分)计算:先将各二次根式化为最简二次根式,再进行合并即可.解:原式==﹣.本题考查了对二次根式的化简及合并的基本计算.12.(6分)解方程:x2+2x﹣4=0解:移项得x2+2x=4,配方得x2+2x+1=4+1,即(x+1)2=5,开方得x+1=±,∴x1=,x2=﹣.用配方法解一元二次方程的步骤:13.(6分)如图,已知△ABC在平面直角坐标系中的位置.(1)点C关于原点中心对称的点的坐标是(﹣5,﹣1);(2)画出△ABC绕点A按逆时针方向旋转90°后的图形△AB′C′.(2)根据网格结构找出点B、C绕点A逆时针方向旋转90°后的对应点B′、C′的位置,然后顺次连接即解:(1)∵点C的坐标为(5,1),∴点C关于原点中心对称的点的坐标是(﹣5,﹣1);(2)△AB′C′如图所示.本题考查了利用旋转变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.14.(6分)已知α、β是关于x的一元二次方程3x2﹣1=2x+5的两个实数根,求的值.根与系数的关系.根据α、β是关于x的一元二次方程3x2﹣1=2x+5的两个实数根,求出α+β和αβ的值,再把要求的式子形为,最后把α+β和αβ的值代入,计算即可.解:∵α、β是关于x的一元二次方程3x2﹣1=2x+5的两个实数根,而方程3x2﹣1=2x+5即为3x2﹣2x﹣6=0,∴α+β=,αβ=﹣2,∴===﹣.此题考查了一元二次方程根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用15.(6分)如图,已知⊙0的半径为5,AB是⊙0的直径,点C、D都在⊙0上,若∠D=30°,求AC的长.得AC的长度.解:连接BC.∵AB是⊙0的直径,∴∠ACB=90°,在直角△ABC中,∠A=∠D=30°,AB=2×5=10.∴AC=AB•cosA=10×=5.本题考查了圆周角定理以及三角函数,正确理解圆周角定理是关键.四、解答题(每小题8分,共40分)16.(8分)如图是一个可以自由转动的转盘,转盘被分成面积相等的3个扇形,转动转盘后任其自由停止,其中某个扇形会恰好停在指针所指的位置(如果指针恰好停在分割线上,那么重转一次)(1)转盘转动一次,指针所指的颜色不是红色的概率是多少?(2)转盘转动两次,两次指针指向颜色相同的概率是多少?(用列表法或画树状图).列表法与树状图法.(1)由于颜色为蓝色或黄色转盘面积的三分之二,所以根据概率的定义得到指针所指的颜色不是红色的率=;(2)先化树状图展示所有9种等可能的结果,其中颜色相同占3种,然后根据概率定义求解.解:(1)转盘转动一次,指针所指的颜色不是红色的概率=;(2)画树状图如下:,共有9种等可能的结果,其中颜色相同占3种,所以转盘转动两次,两次指针指向颜色相同的概率==.本题考查了列表法与树状图法:先通过列表法或树状图法展示一个实验发生的所有等可能的结果,再从17.(8分)已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.(1)求证:方程有两个不相等的实数根;(2)当p=2时,求该方程的根.(2)p=2方程变形为x﹣5x+2=0,然后利用求根公式法解方程.(1)证明:方程整理为x2﹣5x+6﹣p2=0,△=(﹣5)2﹣4×1×(6﹣p2)=1+4p2,∵4p2≥0,∴△>0,∴这个方程总有两个不相等的实数根;(2)解:当p=2时,方程变形为x2﹣5x+2=0,△=1+4×4=17,∴x=,∴x1=,x2=.2218.(8分)如图,有一块长方形铁皮,长40cm,宽30cm,在它的四角各切去一个同样的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为600cm2,那么铁皮各角应切去多大的正方形?19.(8分)如图,△ABE和△ACD都是等边三角形,△AEC逆时针旋转一定角度后能与△ABD重合,EC与BD相交于点F.(1)旋转中心是点A,旋转角至少是60度;(2)求∠DFC的度数.20.(8分)如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙0与BC、CA、AB分别切于点D、E、F.(1)若BC=40cm,AB=50cm,求⊙0的半径;(2)若⊙0的半径为r,△ABC的周长为ι,求△ABC的面积.三角形的内切圆与内心.(1)连接OE、OD、OC、OB、OF、OA,由勾股定理求出AC=30cm,由三角形面积公式得出(AC+BC+A R=AC×BC,代入求出即可;(2)连接OE、OD、OC、OB、OF、OA,⊙O半径是r,则OE=OD=OF=r,由三角形面积公式得:S△ABC=S△ACO+S△BCO+S△ABO,代入求出即可.解:(1)连接OE、OD、OC、OB、OF、OA,在△ABC中,∠ACB=90°,BC=40cm,AB=50cm,由勾股定理得:AC=30cm,设⊙O半径是R,则OE=OD=OF=R,∵⊙O是△ACB的内切圆,∴OF⊥AB,OE⊥AC,OD⊥BC,∴由三角形面积公式得:S△ABC=S△ACO+S△BCO+S△ABO=(AC+BC+AB)R=AC×BC,∴(40+30+50)R=30×40,解得R=10cm,即⊙0的半径为10cm;(2)连接OE、OD、OC、OB、OF、OA,⊙O 半径是r ,则OE=OD=OF=r , ∵⊙O 是△ACB 的内切圆,∴OF ⊥AB ,OE ⊥AC ,OD ⊥BC , ∵△ABC 的周长为l , ∴AC+BC+AB=l ,∴由三角形面积公式得:S △ABC =S △ACO +S △BCO +S △ABO =×AC ×r+×BC ×r+×AB ×r=(AC+BC+AB )×r =lr ,即△ABC 的面积是lr .本题考查了三角形的内切圆,三角形的面积,勾股定理的应用,注意:如果R 为三角形ABC 的内切圆的径,则三角形ABC 的面积为(AC+BC+AB )R .人教版数学九年上册期末考试试卷及答案(三)初三数学第一学期 第Ⅰ卷(选择题 共48分)注意事项:1、答第Ⅰ卷前,请考生务必将自己姓名、准考证号、考试科目写在试卷相应的位置上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
B A
第一学期期末考试试卷初三数学
一、选择题(本题共8道小题,每小题4分,共32分)
在每道小题给出的四个备选答案中,只有一个是符合题目要求的,请将所选答案前的字母按规定要求填涂在答题纸第1-8题的相应位置上. 1.如图,在Rt △ABC 中,∠C =90°,BC =3,AC =2, 则tan B 的值是
A .2
3
B .
3
2 C
D
第1题 第2题
2.如图,⊙O 的弦AB =8,OE ⊥AB 于点E ,且OE =3,则⊙O 的半径是
A B . 2 C . 10
D . 5
3.对于反比例函数2
y x
=
,下列说法正确的是 A .图象经过点(2,-1) B .图象位于第二、四象限
C .图象是中心对称图形
D .当x <0时,y 随x 的增大而增大
4.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这
个骰子一次,则向上一面的数字大于4的概率是 A .
2
1 B .
3
1 C .
3
2 D .
6
1 5.在平面直角坐标系中,将二次函数2
2x y =的图象向上平移2个单位,所得图象的解析式为
A .222
+=x y B .222
-=x y C .2
)2(2+=x y D .2
)2(2-=x y 6.如图,在△ABC 中,DE ∥BC ,AD =2,AB =6,AE =3,则CE 的长为 A .9 B .6 C .3 D .4
第6题 第7题
7.如图,若AD 是⊙O 的直径,AB 是⊙O 的弦,∠DAB =50°,点C 在圆上,则 ∠ACB 的度数是
A .100°
B .50°
C .40°
D .20°
8.如图,动点P 从点A 出发,沿线段AB 运动至点B .点P 在运动过程中速度大小不变.则
B
A C
E
D
C
C
B
A
以点A 为圆心,线段AP 长为半径的圆的面积S 与点P 的运动时间t 之间的函数图象大致是
A B C D 二、填空题(本题共4道小题,每小题4分,共16
分)
9.如图,是河堤的横断面,堤高BC =5米,迎水坡AB 的坡比1高度BC 与水平宽度AC 之比),则AC 的长是 米.
10.已知抛物线2y ax bx c =++(a >0)过O (0,0)、A (2,0)、B (3-,1y )、C (4,2y )
四点,则1y 2y (填“>”、“<”或“=”).
11.如图,有一边长为4的等边三角形纸片,要从中剪出三个面积相等的扇形,那么剪下的
其中一个..
扇形ADE (阴影部分)的面积为 ;若用剪下的一个扇形围成一个圆锥,该圆锥的底面圆的半径r 是 .
第9题
12.如图,⊙A 与x 轴交于B (2,0)、C (4,0)两点,OA =3,点P 是y 轴上的一个动点,
PD 切⊙O 于点D ,则PD 的最小值是 . 三、解答题(本题共8道小题,每小题5分,共40分)
13.计算:0
30tan 2345sin 60cos 221
⎪⎪⎭
⎫ ⎝⎛︒-︒+︒+. 14.已知:函数541
3-+=-x mx
y m 是二次函数.
(1)求m 的值;
(2)写出这个二次函数图象的对称轴: ,顶点坐标: ;
(3)求图象与x 轴的交点坐标.
15.如图,在△ABC 中,CD 、BE 分别是AB 、AC 边上的高,∠EBC =45°,BE =6,CD =6
3,
求∠DCB 的度数.
E
D
C
B
A 第8题
16.如图,一次函数3y x =+的图象与x 轴、y 轴分别交于点A 、点B ,与反比例函数
()04
>=
x x
y 的图象交于点C ,CD ⊥x 轴于点D ,求四边形
的面积.
17.如图,在Rt △ABC 中,︒=∠90C ,点O 在BC
上,CD 的直径,
⊙O 切AB 于E
,若178==AB AC ,,求⊙O 的半径.
18.袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号
后,放入袋中搅匀,再从袋中随机取出一球,记下编号.将两次编号作为数字求和. (1)请用树状图或列表的方法表示可能出现的所有结果;
(2)求两次所取球的编号之和是偶数的概率.
19.如图,河两岸a ,b 互相平行,C ,D 是河岸a 上间隔40米的两根电线杆,某人在河岸
b 上的A 处,测得∠DAE =45°,然后沿河岸走了30米到达B 处,测得∠CBE =60°,求河的宽度(结果精确到1米,7.13,4.12≈≈ ).
20.某超市按每袋20元的价格购进某种干果.销售过程中发现,每月销售量y (袋)与销售单价x (元)之间的关系可近似地看作一次函数: 10500y x =-+(2050x <<).
(1)当x=45元时,y= 袋;当y=200袋时,x= 元;
B
θ
A
A '
C
B
B '
30︒
B '
A '
C
B A
(2)设这种干果每月获得的利润为w (元),当销售单价定为多少元时,每月
可获得最大利润?最大利润是多少?
四、解答题(本题共3道小题,每小题6分,共18分) 21.如图,抛物线与x 轴交于A (1,0),B (3-,
0)两点,与y 轴交于点C (0,3). (1)求此抛物线的解析式;
(2)在x 轴上找一点D ,使得以点A 、C 、D 为顶点的三角形是直角三角形,求点D 的坐标.
22.如图,在三角形ABC 中,以AB 为直径作⊙O ,交AC 于点E ,OD ⊥AC 于D ,∠AOD =∠C . (1)求证:BC 为⊙O 的切线;
(2)若3
2
cos 12==C AE ,
,求OD 的长.
23.如图1,在△ABC 中,∠ACB =90°,AC =3,BC =4,将△ABC 绕顶点C 顺时针旋转30°,
得到△A ′B ′C .联结A ′A 、B ′B ,设△ACA ′和△BCB ′的面积分别为S △ACA ′ 和S △BCB ′. (1)直接写出S △ACA ′ ︰S △BCB ′ 的值 ; (2)如图2,当旋转角为θ(0°<θ<180°)时,S △ACA ′ 与S △BCB ′ 的比值是否发生变化,若不变请证明;若改变,写出变化后的比值(可用含θ的代数式表示).
图1 图2
五、解答题(本题共2道小题,每小题7分,共14分) 24.已知函数232
+-=x mx y (m 是常数).
(1)求证:不论m 为何值,该函数的图象都经过y 轴上的一个定点;
(2)若一次函数1+=x y 的图象与该函数的图象恰好只有一个交点,求m 的值 及这
个交点的坐标.
25.如图,矩形'
''O BC A 是矩形ABCO 绕点B 顺时针旋转得到的.其中点C O ,'在x 轴负
半轴上,线段OA 在y 轴正半轴上,B 点的坐标为()3,1-.
(1)如果二次函数()02≠++=a c bx ax y 的图象经过'
O O 、两点且图象顶点M 的纵坐
标为1-.求这个二次函数的解析式; (2)求边'
'A O 所在直线的解析式;
(3)在(1)中求出的二次函数图象上是否存在点P ,使得D CO M
PO S S ''3∆∆=,若存 在,
请求出点P 的坐标,若不存在,请说明理由.。