20172018学年下学期八年级数学模拟检测3

合集下载

2020—2021年最新湘教版八年级数学下册《四边形》单元检测题及答案解析.docx

2020—2021年最新湘教版八年级数学下册《四边形》单元检测题及答案解析.docx

湘教版2017—2018学年八年级数学下学期《四边形》单元检测与解析一.选择题(共8小题)1.若一个多边形的内角和是900°,则这个多边形的边数是()A.5 B.6 C.7 D.82.一个多边形除一个内角外其余内角的和为1510°,则这个多边形对角线的条数是()A.27 B.35 C.44 D.543.在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A.∠ADE=20° B.∠ADE=30° C.∠ADE=12∠ADC D.∠ADE=13∠ADC4.如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需()个五边形.A.6 B.7 C.8 D.95.如图所示,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()A.180°B.270°C.360°D.540°6.如图,▱ABCD中,AC.BD为对角线,BC=3,BC边上的高为2,则阴影部分的面积为()A.3 B.6 C.12 D.247.如图,在平行四边形ABCD中,点P是对角线BD上的一个动点(点P与点B、点D不重合),过点P作EF∥BC,GH∥AB,则图中面积始终相等的平行四边形有()A.1对B.2对C.3对D.4对8.如图,△ABC纸片中,AB=BC>AC,点D是AB边的中点,点E在边AC上,将纸片沿DE折叠,使点A落在BC边上的点F处.则下列结论成立的个数有()①△BDF是等腰直角三角形;②∠DFE=∠CFE;③DE是△ABC的中位线;④BF+CE=DF+DE.A.1个B.2个C.3个D.4个二.填空题(共8小题)9.若一个平行四边形一个内角的平分线把一条边分为2cm和3cm的两条线段,则该平行四边形的周长是.10.已知:如图所示,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S△ABC=4cm2,则阴影部分的面积为cm2.11.如图,在△ABC中,M是BC边的中点,AP平分∠A,BP⊥AP于点P、若AB=12,AC=22,则MP的长为.12.如图,在△ABC中,AB=7,AC=11,点M是BC的中点,AD是∠BAC 的平分线,MF∥AD,则FC的长为.13.如图,在▱ABCD中,AC,BD相交于点O,AB=10cm,AD=8cm,AC⊥BC,则OB= cm.14.如图,在四边形ABCD中,AD∥BC,AD=15cm,BC=10cm,P、Q分别从A、C同时出发,P以3cm/s的速度由A向D运动,Q以2cm/s的速度由C出发向B运动,运动秒时四边形PQCD恰好是平行四边形.15.如图,△ABC与△A1B1C1关于点O成中心对称,下列说法:①∠BAC=∠B1A1C1;②AC=A1C1;③OA=OA1;④△ABC与△A1B1C1的面积相等,其中正确的有个。

【全国市级联考】四川省自贡市2017-2018学年下学期八年级期末统一考试数学试题(解析版)

【全国市级联考】四川省自贡市2017-2018学年下学期八年级期末统一考试数学试题(解析版)

自贡市2017-2018学年下学期八年级期末统考数学试题一、选择题(本题有8个小题,每小题3分,满分24分,每小题只有一个选项符合题意)1. 与可以合并的二次根式是()A. B. C. D.【答案】C【解析】分析:将各选项中的二次根式化简,被开方数是5的根式即为正确答案.详解:A.与不是同类二次根式,不可以合并,故本选项错误;B.与不是同类二次根式,不可以合并,故本选项错误;C.=2,故与是同类二次根式,故本选项正确;D.=5,故与不是同类二次根式,故本选项错误.故选:C.点睛:本题考查了同类二次根式的定义,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.2. 直线不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】试题分析:一次函数的性质:当时,图象经过第一、二、三象限;当时,图象经过第一、三、四象限;当时,图象经过第一、二、四象限;当时,图象经过第二、三、四象限.∵∴直线经过第一、三、四象限,不经过第二象限故选B.考点:一次函数的性质点评:本题属于基础应用题,只需学生熟练掌握一次函数的性质,即可完成.3. 若代数式在实数范围内有意义,则的取值范围是()A. B. C. D. 且【答案】D【解析】分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.详解:由题意得,x+1≥0且x≠0,解得x≥-1且x≠0.故选:D.4. 下列曲线中不能表示是的函数的是()A. (A)B. (B)C. (C)D. (D)【答案】B【解析】分析:函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量.由此即可判断.详解:当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.选项B中的曲线,不满足对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即单对应.故B 中曲线不能表示y是x的函数.故选:B.点睛:考查了函数的概念,理解函数的定义,是解决本题的关键.5. 已知直角三角形的两直角边分别是12和5,则斜边的中线长是()A. 34B. 26C. 8.5D. 6.5【答案】D【解析】由勾股定理得,斜边==13,所以,斜边上的中线长=×13=6.5.故选:D.6. 为了解某班学生双休日户外活动情况,对部分学生参加户外活动的时间进行抽样调查,结果如下表:则关于“户外活动时间”这组数据的众数、中位数、平均数分别是()A. B.C. D.【答案】A【解析】分析:根据中位数、平均数和众数的概念求解即可.详解:∵共10人,∴中位数为第5和第6人的平均数,∴中位数=(3+3)÷3=5;平均数=(1×2+2×2+3×4+6×2)÷10=3;众数是一组数据中出现次数最多的数据,所以众数为3.故选:A.点睛:本题考查平均数、中位数和众数的概念.一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数;在一组数据中出现次数最多的数叫做这组数据的众数;将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.7. 实数在数轴上对应点如图所示,则化简的结果是()A. B. C. D.【答案】B【解析】分析:先根据数轴确定a,b的范围,再根据二次根式的性质进行化简,即可解答.详解:由数轴可得:a<0<b,a- b<0,∴=|b|+| a-b|-| a|,=b-(a-b)+a,=b-a+b+a,=2b.故选:B.点睛:本题考查了实数与数轴,解决本题的关键是根据数轴确定a,b的范围.8. 如图,长方形的高为,底面长为,宽为,蚂蚁沿长方体表面,从点到(点见图中黑圆点)的最短距离是()A. B. C. D.【答案】D【解析】分析:要求蚂蚁爬行的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.详解:根据题意可能的...最短路线有6条,重复的不算,可以通过三条来计算比较.(见图示)根据他们相应的展开图分别计算比较:图①:;图②:;图③:.∵.故应选D.点睛:考查了轴对称-最短路线问题,本题是一道趣味题,将长方体展开,根据两点之间线段最短,运用勾股定理解答即可.二、填空题(本题有6个小题,每小题3分,共计18分)9. 一组数据,则这组数据的方差是__________ .【答案】2【解析】分析:先求出这5个数的平均数,然后利用方差公式求解即可.详解:平均数为=(1+2+3+4+5)÷5=3,S2=[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2.故答案为:2.点睛:本题考查了方差的知识,牢记方差的计算公式是解答本题的关键,难度不大.10. 命题“直角三角形斜边上的中线等于斜边的一半”的逆命题是___________________ .它是________命题(填“真”或“假”).【答案】(1). 如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形(2). 真【解析】分析:把一个命题的条件和结论互换就得到它的逆命题.命题“直角三角形斜边上的中线等于斜边的一半”的条件是直角三角形,结论是斜边上的中线等于斜边的一半,故其逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.详解:定理“直角三角形斜边上的中线等于斜边的一半”的逆命题:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.它是真命题.故答案为:如果一个三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;真.点睛:本题考查了互逆命题的知识及命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.11. 已知函数,当= _______时,直线过原点;为_______数时,函数随的增大而增大 .【答案】(1). (2). m>0【解析】分析:(1)根据正比例函数的性质可得出m的值;(2)根据一次函数的性质列出关于m的不等式,求出m的取值范围即可.详解:直线过原点,则;即,解得:;函数随的增大而增大,说明,即,解得:;故分别应填:;m>0 .点睛:本题考查的是一次函数的图象与系数的关系,熟知一次函数的定义及增减性是解答此题的关键.12. 观察分析下列数据:,则第17个数据是_______ .【答案】【解析】分析:将原数变形为:1×,2×,3×,4×…,根据规律可以得到答案.详解:将原数变形为:1×,2×,3×,4×…,所以第17个数据是:17×=51.故答案为:51.点睛:本题考查了算术平方根,解题的关键是将所得二次根式变形,找到规律解答.13. 如图,四边形是矩形,是延长线上的一点,是上一点,;若,则= ________ .【答案】【解析】分析:由矩形的性质得出∠BCD=90°,AB∥CD,AD∥BC,证出∠FEA=∠ECD,∠DAC=∠ACB=21°,由三角形的外角性质得出∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∠ACD=3x,由互余两角关系得出方程,解方程即可.详解:∵四边形ABCD是矩形,∴∠BCD=90°,AB∥CD,AD∥BC,∴∠FEA=∠ECD,∠DAC=∠ACB=21°,∵∠ACF=∠AFC,∠FAE=∠FEA,∴∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∴∠ACD=3x,∴3x+21°=90°,解得:x=23°.故答案为:23°.点睛:本题考查了矩形的性质、平行线的性质、直角三角形的性质、三角形的外角性质;熟练掌握矩形的性质和平行线的性质是解决问题的关键.14. 如图,正方形中,,点在边上,且;将沿对折至,延长交边于点,连结,下列结论:①.;②.;③. .其中,正确的结论有__________________.(填上你认为正确的序号)【答案】①②③【解析】分析:根据折叠的相知和正方形的性质可以证明⊿≌⊿;根据勾股定理可以证得;先证得,由平行线的判定可证得;由于⊿和⊿等高的 .故由⊿:⊿求得面积比较即解得.详解:∵,,∴⊿≌⊿(),∴,故①正确的.∵,∴,,设,则,,在⊿中,根据勾股定理有:,即,解得即,则,∴,∴,∵且满足,∴,∴故②正确的.∵,且⊿和⊿等高的 .∴⊿:⊿=,∵⊿= ,∴⊿=⊿= ,故③正确的.故答案为:①②③ .点睛:本题是一道综合性较强的几何题,其中勾股定理与方程思想的结合起来为破解②③提供了有力的支撑,技巧性比较强,也是本题的难点所在,对于大多数同学来说具有一定的挑战性.三、解答题(本题有5个小题,每小题5分,共计25分)15. 计算:.【答案】19【解析】分析:先化简括号里面的,再合并,最后计算相乘,即可得到结果.详解:原式= = =.点睛:本题主要考查二次根式的化简,二次根式的乘法法则,合并同类二次根式,关键在于熟练运用相关的运算法则,正确认真的进行计算.16. 在甲地到乙地有一块山地正在开发,现有一处需要爆破,已知点与公路上的停靠站的距离为300米,与公路上另一停靠站的距离为400米,且 .如图,为了安全起见,爆破点周围半径250米范围内不得进入,问在进行爆破时,公路段是否有危险,是否需要暂时封锁?请通过计算进行说明.【答案】公路段有一定的危险,需要暂时封锁,证明见解析.【解析】分析:如图,本题需要判断点C到AB的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C作CD⊥AB于D,然后根据勾股定理在直角三角形ABC中即可求出AB的长度,然后利用三角形的公式即可求出CD,然后和250米比较大小即可判断需要暂时封锁.详解:如图,过C作CD⊥AB于D,∵BC=400米,AC=300米,∠ACB=90°,∴根据勾股定理得AB=500米,∵AB•CD=BC•AC,∴CD=240米.∵240米<250米,故有危险,因此AB段公路需要暂时封锁.点睛:本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.17. 如图,将四边形的四边中点依次连接起来,得四边形到是平行四边形吗?请说明理由.【答案】四边形到是平行四边形.理由见解析.【解析】分析:连接一条对角线把转化成三角形的中位线来进行推理说明.详解:四边形到是平行四边形.理由如下:连接.∵点是四边形的四边中点∴∥,∥∴∴四边形到是平行四边形点睛:本题考查了平行四边形的判断及三角形的中位线定理的应用,三角形的中位线平行于第三边,并且等于第三边的一半.18. 在同一坐标系中,画出函数与的图像,观察图像写出当时,的取值范围.【答案】画图见解析,当时,的取值范围为 .【解析】分析:(1)利用两点法作出一次函数的图象,根据图象直接确定自变量的取值范围即可.详解:建立平面直角坐标系过画该直线(如图)过画该直线.(如图)∵解得∴两直线的交点为(如图)根据图象当时,的取值范围为.点睛:本题考查了一次函数的图象,作一次函数的图象时,可以利用两点法作图.19. 在四个互不相等的正整数中,最大的数是8,中位数是4,求这四个数(按从小到大的顺序排列)【答案】这四个数为或或.【解析】分析:根据中位数的定义得出第二个数和第三个数的和是8,再根据这四个数是不相等的正整数,得出这两个数是3、5或2、6,再根据这些数都是正整数得出第一个数是2或1,再把这四个数相加即可得出答案.详解:∵中位数是4,最大的数是8,∴第二个数和第三个数的和是8,∵这四个数是不相等的正整数,∴这两个数是3、5或2、6,∴这四个数是1,3,5,8或2,3,5,8或1,2,6,8,故答案为:1, 2, 6, 8或1, 3, 5, 8 或2, 3, 5, 8.点睛:此题考查了中位数,掌握中位数的概念是本题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.20. 国家规定:“中小学每天在校体育锻炼时间应不小于1小时”.某地区就“每天在校体育锻炼时间”的问题随机调查了若干名中学生,根据调查结果制作如下统计图(不完整).其中分组情况:A组:时间小于0.5小时;B组:时间大于等于0.5小时且小于1小时;C组:时间大于等于1小时且小于1.5小时;D组:时间大于等于1.5小时.根据以上信息,回答下列问题:(1)A组的人数是,并补全条形统计图;(2)本次调查的中位数落在组;(3)根据统计图估计该地区2.5万名中学生中,达到国家规定的每天在校体育锻炼时间的约有多少人?【答案】(1)250,50;补全条形图见解析;(2)时间的平均数落在组;(3)2.5万名学生中“体育锻炼时间应不小于1小时” 人数为14000人......................试题解析:()由统计图可得,组人数为:,因此,本题正确答案是:,补全的条形统计图如图所示.()由补全的条形统计图可得,中位数落在组,因此,本题正确答案是:.()根据题意可得,该地区名中学生中,达到国家规定的每天在校体育锻炼时间的人数约有:(人),因此,本题正确答案是:.21. 如图,⊿是直角三角形,且,四边形是平行四边形,为的中点,平分,点在上,且.求证:【答案】证明见解析.【解析】分析:延长DE交AB于点G,连接AD.构建全等三角形△AED≌△DFB(SAS),则由该全等三角形的对应边相等证得结论.详解:证明:延长DE交AB于点G,连接AD.∵四边形BCDE是平行四边形,∴ED∥BC,ED=BC.∵点E是AC的中点,∠ABC=90°,∴AG=BG,DG⊥AB.∴AD=BD,∴∠BAD=∠ABD.∵BD平分∠ABC,∴∠ABD=∠BAD=45°,即∠BDE=∠ADE=45°.又BF=BC,∴BF=DE.∴在△AED与△DFB中,,∴△AED≌△DFB(SAS),∴AE=DF,即DF=AE.点睛:本题考查了平行四边形的性质,全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.22. 已知一次函数与正比例函数都经过点,的图像与轴交于点,且.(1)求与的解析式;(2)求⊿的面积.【答案】(1)或;⊿的面积为15个平方单位.【解析】分析:本题的⑴求正比例函数解析式可通过来解决.而要求的解析式则还需要一个点的坐标,这个通过来解决;⑵问通过结合⑴问的坐标来确定⊿解底边长和高长,利用三角形的面积公式求解.详解:⑴.∵正比例函数过点;∴解得:∴根据勾股定理可求设点的坐标为.又∵,则解得或∴点的坐标为或又∵一次函数同时也过点∴或;分别解得或∴或⑵.根据⑴的解答画出示意图,过作轴∵,的坐标为或∴∴⊿=⊿=∴综上所解,⊿的面积为15个平方单位.点睛:本题要注意两点:其一.所需线段的长度可以由坐标直接求出,也可能借助于勾股定理计算;其二.要注意根据绝对值的意义进行分类讨论,也就是可能有多解.23. 如图,直线与轴、轴分别交于,点的坐标为,是直线在第一象限内的一个动点(1)求⊿的面积与的函数解析式,并写出自变量的取值范围?(2)过点作轴于点, 作轴于点,连接,是否存在一点使得的长最小,若存在,求出的最小值;若不存在,请说明理由?【答案】(1),;(2)的最小值为【解析】分析:本题的⑴问直接根据坐标来表示⊿的底边和底边上的高,利用三角形的面积公式得出函数解析式;本题的⑵抓住四边形是矩形,矩形的对角线相等即,从而把转化到上来解决,当的端点运动到时最短,以此为切入点,问题可获得解决.详解:⑴.∵的坐标为,是直线在第一象限的一个动点,且轴.∴,∴整理得:自变量的取值范围是:⑵. 存在一点使得的长最小.求出直线与轴交点的坐标为, 与轴交点的坐标为∴∴根据勾股定理计算: .∵轴, 轴,轴轴∴∴四边形是矩形∴当的端点运动到(实际上点恰好是的中点)时的最短(垂线段最短)(见示意图)又∵∴点为线段中点(三线合一)∴(注:也可以用面积方法求解)∴即的最小值为点睛:本题的⑴问直接利用三角形的面积公式并结合点的坐标可以求解析式;本题的⑵问要打破平时求最小值的思路,把问题进行转化,通过求的最小值来得到的最小值,构思巧妙!24. 如图,在正方形内任取一点,连接,在⊿外分别以为边作正方形和.⑴.按题意,在图中补全符合条件的图形;⑵.连接,求证:⊿≌⊿;⑶.在补全的图形中,求证:∥.【答案】(1)补全图形见解析;(2)证明见解析;(3)证明见解析.【解析】分析:⑴问要注意“在⊿外”作正方形;本题的⑵问根据正方形的性质得出的结论为三角形全等提供条件,比较简单;本题额⑶问可以连接正方形的对角线后,然后利用“内错角相等,两直线平行.”来证明.详解:⑴.如图1,在⊿外.分别以为边作正方形和.(要注意是在“⊿外.”作正方形,见图1)⑵.在图1的基础上连接.∵四边形、和都是正方形∴∴∴∴⊿≌⊿()⑶. 继续在图1的基础上连接.(见图2)∵四边形是正方形,且已证∴∴∵⊿≌⊿∴∴∴即∴∥.点睛:本题的⑴问要注意的是在“在⊿外”作正方形,所以不要作在三角形内部;本题的⑵问主要是利用正方形提供的条件来证明两个三角形全等,比较简单,常规证法;本题的⑶问巧妙利用与正方形的对角线构成的内错角来提供平行的条件,需正方形和全等三角形来综合提供.。

【3套】人教版数学八年级下册第十六章测试(含解析答案)

【3套】人教版数学八年级下册第十六章测试(含解析答案)

人教版数学八年级下册第十六章测试(含解析答案)一、选择题1.下列各式中,属于二次根式的有( )①; ②;③;④;⑤;⑥(a≤0).A.2个B.3个C.4个D.5个2. (2014·聊城模拟)函数y=中自变量x的取值范围是( )A.x>2B.x<2C.x≠2D.x≥23. (2014·广州模拟)已知|a-1|+=0,则a+b=( )A.-8B.-6C.6D.84.若1≤a≤,则+|a-2|的值是( )A.6+aB.-6-aC.-aD.15.化简×+的结果是( )A.5B.6C. D.56.下列根式中不是最简二次根式的是( )A. B. C. D.7.若x-y=-1,xy=,则代数式(x-1)(y+1)的值等于( )A.2+2B.2-2C.2D.28.(2013·昆明)下列运算正确的是( )A.x6+x2=x3B.=2C.(x+2y)2=x2+2xy+4y2D.-=9.(2014·杭州模拟)已知m=×(-2),则有( )A.5<m<6B.4<m<5C.-5<m<-4D.-6<m<-510.计算÷的结果是( )A.-B.C.D.二、填空题11.如图所示,矩形内两相邻正方形的面积分别是3和8,那么矩形内阴影部分的面积是 (结果可用根号表示).12.当x 时,=1-2x.13.计算:-= .14.我们赋予“※”一个实际含义,规定a ※b=·+,则3※5= . 15.(7-5)2 012×(-7-5)2 013= .16.将一组数,2,,2,,…,2按如下方法进行排列:2 2 23 2 22 4 6若3在第2行第3列的位置记为(2,3),2在第3行第2列的位置记为(3,2),则这组数中最大的有理数的位置记为 .三、解答题17.计算下列各题: (1)÷×;(2)(-2)(+2);(3)--+.18.先化简,再求值:÷,其中a=5-,b=-3+.19.若x,y为实数,且y=++,求-的值.20.已知M=-,N=.甲、乙两个同学在y=++18的条件下分别计算了M和N的值.甲说M的值比N 大,乙说N的值比M大.请你判断谁的结论是正确的,并说明理由.21.阅读下列材料,然后回答问题.在进行二次根式运算时,我们有时会碰上形如,,的式子,其实我们还可以将其进一步化简:==;(一)==;(二)===-1.(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====-1.(四)(1)请用不同的方法化简.①参照(三)式得= ;②参照(四)式得= .(2)化简:+++…+.参考答案1.答案:D 解析:属于二次根式的有①②③⑤⑥,共5个.2.答案:A 解析:根据题意得x-2≥0且x-2≠0.解得x>2.3.答案:B 解析:因为|a-1|+=0,所以a-1=0,7+b=0,解得a=1,b=-7,所以a+b=-6.4.答案:D 解析:原式=|a-1|+|a-2|=a-1-(a-2)=1.5.答案:D 解析:×+=+=+=3+2=5.6.答案:C 解析:==2,被开方数中含有开得尽方的因数,因此不是最简二次根式.7.答案:B 解析:(x-1)(y+1)=xy+x-y-1=+-1-1=2-2.8.答案:D解析:A.本选项不能合并,错误;B.=-2,本选项错误;C.(x+2y)2=x2+4xy+4y2,本选项错误;D.-=3-2=,本选项正确.9.答案:A 解析:m=×(×)=×()2×=2,因为25<28<36,所以<2<,即5<2<6.10.答案:A 解析:原式=÷=-÷=-.11.答案:2-3 解析:S阴影=(-)×=2-3.12.答案:≤解析:由题意得1-2x ≥0,解得x≤.13.答案:2 解析:原式=2+-=2.14.答案:解析:3※5=×+=+=.15.答案:-7-5解析:原式=[(7-5)×(-7-5)]2 012×(-7-5)=(50-49)2 012×(-7-5)=-7-5.16.答案:(17,2) 解析:将各个数都还原为带有根号的式子,不难发现,被开方数是连续的偶数.2=,因为204÷2÷6=17,即2是(17,6),所以是最大的有理数,即(17,2).17.解:(1)÷×==;(2)(-2)(+2)=2-12=-10;(3)--+=2-3-+=-.18.解:化简得原式=,因为a=5-,b=-3+,所以原式===1.19.答案: 解:由已知可得x=,y=,化简得原式=2,把x,y的值代入,可得原式=2=.20.解:乙的结论正确.理由:由y=++18,可得x=8,y=18.因此,M=-==-=-=-;N===0.所以M<N,即N的值比M大.21.解:(1)①===-;②====-.(2)原式=+++…+=+++…+=.人教版数学八年级下第16章二次根式单元考试题(有答案)人教版八年级数学下册第十六章二次根式单元检测卷总分:150分,时间:120分钟;姓名:;成绩:;一、选择题(4分×12=48分)1、下列二次根式是最简二次根式的是()C.B.2)A. B.C.3a能够取的值是()A. 0B. 1C. 2D.34有意义的条件是()A.x≥1B.x≤1C.x≠1D.x<15、若135a是整数,则a的最小正整数值是( )A.15 B.45 C.60 D.1356、则实数x的取值范围在数轴上的表示正确的是( )=-)7aA. -B.C. -D.8、已知(5m=n,如果n是整数,则m可能是()A. 5 C.9、下列计算正确的是( )A. 4B. 1C. 3 210、若a 、b 、c )A. 2a -2cB. -2cC. 2bD.2a11、已知a ,b a 、b ,则下列表示正确的是( )A. 0.3abB. 3abC. 0.1abD.0.9ab12、定义:m Δn =(m+n )2,m ※n =mn -2,则[(]Δ)的值是()C. 5二、填空题(4分×6=24分)13= ;14、已知矩形的长为cm cm ,则矩形的面积为 ;15、当a = 时,16、已知a =,b =,则a 2b+ab 2= ;171x =成立的条件是 ;1822510b b +=,则a+b 的平方根是 ;三、22a 10分×2=20分)19、计算(1)21+( (2)2019+(-1)20、计算:(1)220,0)a a b >>(2)2(0,0)aa b m n ÷>>四、解答题(9分×4=36分)21、用四张一样大小的长方形纸片拼成一个正方形ABCD ,如图所示,它的面积是75,AE=22、化简求值:2(2)(2)(2)(43)a b a b a b b a b +-+--+,其中a 1,b ;23、观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式: 121212)12)(12()12(1121-=--=-+-⨯=+ 232323)23)(23()23(1231-=--=-+-⨯=+ 同理可得:32321-=+ 从计算结果中找出规律,并利用这一规律计算.......1)的值24、已知a,b,c在数轴上如图所示,化简:+b c五、解答题(10分+12分=22分)25、现有一组有规律的数:1,-1,2,-2,3,-3,1,-1,2,-2,3,-3,…,其中1,-1,2,-2,3,-3这6个数按此规律重复出现.(1)第50个数是什么数?(2)把从第1个数开始的前2018个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加,如果和为520,那么一共是多少个数的平方相加?26、小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+()2.善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为整数),则有=m2+2n2∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若=()2,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若)2,且a 、m 、n 均为正整数,求a 的值?2019年春人教版数学八年级下第16章二次根式单元考试题答案一、选择题CDBDA CABDA AB二、填空题13、1; 14、2; 15、6; 16、6; 17、x ≥-1;18、±3三、解答题19、计算:(1)5; (2)0;20、(1)12a 3b 2;(2)2221a ab a b -+; 四、解答题21、22、;23、2017;24、-a五、解答题25、(1)第50个数是-1.(2)从第1个数开始的前2018个数的和是0.(3)一共是261个数的平方相加.26、26、(1)223,2m n mn + (2)16,8,2,2(答案不唯一)(3)7或13.人教版(湖北)八年级数学下册:第十六章单元检测题一、选择题(每小题3分,共30分)1.下列式子一定是二次根式的是(C)A.3-xB.-5C.x2+1D.3 42.下列二次根式中,x的取值范围是x≥3的是(C)A.3-xB.6+2xC.2x-6D.1 x-33.下列二次根式中,是最简二次根式的是(A)A.2xy B.ab2 C.0.1 D.x4+x2y24.下列二次根式,不能与12合并的是(B)A.48B.0.3C.113D.-755.下列各式运算正确的是(C) A.2+3= 5 B.2+2=2 2C.3 2-2=2 2 D.18-82=9-4=3-2=16.设5=a,6=b,用含a,b的式子表示 2.7,则下列表示正确的是(A) A.0.3ab B.3ab C.0.1ab2D.0.1a2b7.化简(-4)2+32-(-2 3)2的结果是(A)A.-5 B.18 C.-13 D.118.等式x+1x-1=x+1x-1成立的条件是(A)A.x>1 B.x<-1 C.x≥1 D.x≤-19.已知y<2x-6+6-2x+3,化简(y-3)2+2x-y2-8y+16为(C)A.2y-13 B.13-2y C.5 D.310.已知正整数a,m,n满足a2-42=m-n,则这样的a,m,n的取值(A)A.有一组B.有两组C.多于两组D.不存在二、填空题(每小题3分,共18分)11.化简:18x2y3(x>0,y>0)=.12.比较大小:2 3__<__3 2.13.如果最简二次根式3a-8与17-2a能够合并,那么a的值为__5__.14.若(2a-1)2=1-2a,则a的取值范围为________.15.观察下列式子:1+112+122=112,1+122+132=116,1+132+142=1112……根据此规律,若1+1a2+1b2=1190,则a2+b2=__181__.16.已知a ,b ,c 满足a =2b +2,且ab +32c 2+14=0,则bc a 的值为__0__. 三、解答题(共72分)17.(8分)计算:(1) 27-12+13; (2) (48-75)×113; 【解析】原式=4 33. 【解析】原式=-2.(3) (48+4 6)÷27; (4) (23-5)(23+5)-(5-3)2.【解析】原式=43+432. 【解析】原式=-1+2 15.18.(8分)先化简,再求值:(a -1+2a +1)÷(a 2+1),其中a =2-1. 【解析】原式=1a +1=22.19.(8分)已知a +1a =6,求a -1a ,a 2-1a2的值. 【解析】(a +1a )2=a 2+1a 2+2=6,∴a 2+1a 2=4.∴(a -1a )2=a 2+1a 2-2=2.∴a -1a=±2.∵(a 2+1a 2)2=a 4+1a 4+2=16,∴a 4+1a 4=14.∴(a 2-1a 2)2=a 4+1a 4-2=12,∴a 2-1a 2=±2 3.20.(8分)一个三角形的三边长分别为23 27x ,24 x 12,1x75x 3,其中x >0. (1)求它的周长(要求结果化简);(2)请你给出一个适当的x 的值,使它的周长为整数,并求出此时三角形周长的值.【解析】(1)周长=113x.(2)当x =3时,周长=33.21.(8分)化简求值:(1)已知x =5-12,求x 2+x -1的值; 【解析】原式=0.(2)已知x +y =-4,xy =2,求x y +y x的值. 【解析】原式=(x +y )xy xy=-2 222.(10分)已知长方形的长a =1232,宽b =1318. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.【解析】(1)2(a +b)=2×(1232+1318)=2×(2 2+2)=6 2.故长方形的周长为6 2.(2)4 ab =4 12 32×13 18=4 2 2×2=4×2=8.因为6 2>8,所以长方形的周长大.23.(10分)全球气候变暖导致一些冰川融化并消失,在冰川消失12年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失的时间近似地满足如下的关系式:d =7×t -12(t ≥12).其中d 代表苔藓的直径,单位是厘米;t 代表冰川消失的时间,单位是年.(1)计算冰川消失16年后苔藓的直径;(2)如果测得一些苔藓的直径是35厘米,请问冰川约是多少年前消失的?【解析】(1)d =7×t -12,当t =16时,d =7×16-12=14.即冰川消失16年后苔藓的直径为14厘米.(2)在d =7×t -12中,当d =35时,35=7×t -12,即t -12=5,解得t =37.即苔藓的直径是35厘米时,冰川约是37年前消失的.24.(12分)解答下列各题:(1)已知x =3+23-2,y =3-23+2,求x 3-xy 2x 4y +2x 3y 2+x 2y 3的值; 【解析】x =(3+2)2=5+2 6,y =(3-2)2=5-2 6,∴x -y =4 6,xy =1,x +y =10.∴原式=x -y xy (x +y )=2 65.(2)当x =1-2时,求x x 2+a 2-x x 2+a 2+2x -x 2+a 2x 2-x x 2+a 2+1x 2+a 2的值. 【解析】令m =x 2+a 2,则x 2+a 2=m 2.原式=x m (m -x )+2x -m x (x -m )+1m =(m -x )2mx (m -x )+1m =1x=-1- 2.。

八年级下期末考试数学试卷四套试卷(含答案)

八年级下期末考试数学试卷四套试卷(含答案)

017-2018学年下学期期末考试八年级数学试题说明:1.考试用时100分钟,满分为120分;2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卷上填写自己的姓名、考试号、座位号等;3.考生必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效;4.考生务必保持答题卷的整洁.考试结束时,将答题卷交回.一、选择题(本大题10小题,每小题3分,共30分;在每小题列出的四个选项中,只有一个是正确的,请将正确答案填写在答题卷相应的位置上).1.有意义,则x 的取值范围是( ). A .3x ≥B .3x >C .3x ≤D .3x <2.下列各式中属于最简二次根式的是( ).A B .12D .5.0 3.一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90.则这五个数据的中位数是( ).A .90B .95C .100D .1054.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ). A .甲B .乙C .丙D .丁5.下列各组数中,不能构成直角三角形的是( ).A .3,4,5B .6,8,10C .4,5,6D .5,12,13 6.点A (1,-2)在正比例函数(0)y kx k =≠的图象上,则k 的值是( ). A .1B .-2C .12D .12-7.一次函数y =3x -2的图象不经过( ).A .第一象限B .第二象限C .第三象限D .第四象限8.如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点, 若BC =6,则DE 等于( ). A .3 B .4 C .5 D .69.如图,□ABCD 中,下列说法一定正确的是( ). A .AC =BD B .AC ⊥BD C .AB =CD D .AB =BC10.如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ). A .210cmB .220cmC .240cmD .280cm第9题图 第10题图二、填空题(本大题6小题,每小题4分,共24分;请将下列各题的正确答案填写在答题卷相应的位置上).11.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,4,9,8,8,则这组数据的众数是.12.若x 、y 为实数,且满足,则x +y 的值是.13.在直角三角形中,两条直角边分别是3cm 和4cm ,则斜边上的中线长是cm . 14.一次函数y =(m -3)x +5的函数值y 随着x 的增大而减小,则m 的取值范围. 15.一次函数y =kx +3的图象如图所示,则方程kx +3=0的解为.16.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为__________.三、解答题(一)(本大题3小题,每小题6分,共18分). 17.01)-+.18.已知,如图在ΔABC 中,AB =BC =AC =2cm ,AD 是边BC 上的高.求AD 的长.第15题图第16题图(1)1B 1C 1D 1A BC D D 2A 2B 2C 2D 1C 1B 1A 1A BC D 第16题图(2)19.如图,□ABCD 中,E 、F 分别是AD 、BC 的中点,求证:BE =DF .四、解答题(二)(本大题3小题,每小题7分,共21分). 20.一次函数y =2x -4的图像与x 轴的交点为A ,与y 轴的交点为B . (1)A ,B 两点的坐标分别为A (,),B (,); (2)在平面直角坐标系中,画出此一次函数的图像.21.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?22.如图,在海上观察所A ,我边防海警发现正北5km 的B 处有一可疑船只正在向东方向12km 的C 处行驶.我边防海警即刻派船前往C 处拦截.若可疑船只的行驶速度为60km/h ,则我边防海警船的速度为多少时,才能恰好在C 处将可疑船只截住?12km CAB 5km五、解答题(三)(本大题3小题,每小题9分,共27分). 23.观察下列各式:312311=+; 413412=+; 514513=+;…… 请你猜想:(1=,=;(2) 计算(请写出推导过程). (3)请你将猜想到的规律用含有自然数n (n ≥1)的代数式表达出来. .24.如图1,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F .(1)求证:BF =DF ;(2)如图2,过点D 作DG ∥BE ,交BC 于点G ,连结FG 交BD 于点O .①求证:四边形BFDG 是菱形; ②若AB =3,AD =4,求FG 的长.25.已知一次函数y =kx +b 的图象过P (1,4),Q (4,1)两点,且与x 轴交于A 点.(1)求此一次函数的解析式; (2)求△POQ 的面积;(3)已知点M 在x 轴上,若使MP +MQ 的值最小, 求点M 的坐标及MP +MQ 的最小值.参考答案1-10、ABBBC BBACA11、912、013、14、m<315、x=316、62517、18、19、证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,DE∥BF,∴四边形DEBF是平行四边形,∴BE=DF.20、解:(1)A(2,0)、B(0,-4).(2)作直线AB,直线AB就是此一次函数的图象.21、(1)乙组第一名、甲组第二名(2)甲组成绩最高22、23、24、(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB=3,AD=4,∴BD=5.25、解:(1)把P(1,4),Q(4,1)代入一次函数解析式,则此一次函数的解析式为y=-x+5;(2)对于一次函数y=-x+5,令y=0,得到x=5,∴A(5,0),(3)如图,作Q点关于x轴的对称点Q′,连接PQ′交x轴于点M,则MP+MQ的值最小.∵Q(4,1),∴Q′(4,-1).设直线PQ′的解析式为y=mx+n.2017-2018八年级(下)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确,请将你认为正确答案的序号填在题后的括号内)1.(3分)要使二次根式有意义,字母的取值范围是()A.x≥B.x≤C.x>D.x<2.(3分)下列计算正确的是()A.+=B.2+=2C.=+D.﹣=03.(3分)下列四组线段中,可以构成直角三角形的是()A.1,, B.2,3,4 C.1,2,3 D.4,5,64.(3分)一次函数y=﹣x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)在中山市举行“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下:则在这次活动中,该班同学捐款金额的众数和中位数分别是()A.20元,30元B.20元,35元C.100元,35元D.100元,30元6.(3分)10名学生的平均成绩是x,如果另外5名学生每人得90分,那么整个组的平均成绩是()A.B.C. D.7.(3分)如图,在平行四边形ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF 等于()A.2 B.3 C.4 D.68.(3分)矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分9.(3分)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB 的长为()A.B.2 C.D.210.(3分)直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分,请将答案直接填写在题中的横线上)11.(3分)计算:=.12.(3分)某茶叶厂用甲,乙,丙三台包装机分装质量为200g的茶叶,从它们各自分装的茶叶中分别随机抽取了20盒,得到它们的实际质量的方差如下表所示:根据表中数据,可以认为三台包装机中,包装茶叶的质量最稳定是.13.(3分)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是.14.(3分)一次函数y=(2m﹣1)x+1,若y随x的增大而增大,则m的取值范围是15.(3分)如图,已知一次函数y=kx+b的图象如图所示,当y≤0时,x的取值范围是.16.(3分)某公司招聘一名人员,应聘者小王参加面试和笔试,成绩(100分制)如表所示:如果面试平均成绩与笔试成绩按6:4的比确定,请计算出小王的最终成绩.17.(3分)如图,E为正方形ABCD对角线BD上一点,且BE=BC,则∠DCE=.18.(3分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC,AD=3,DF=1,四边形DBEC面积是三、解答题(3小题,共32分)19.(20分)计算:(1)+﹣(2)2(3)(+3﹣)(4)(2﹣3)2﹣(4+3)(4﹣3)20.(6分)如图,四边形ABCD中,AB=AD=2,BC=3,CD=1,∠A=90°,请问△BCD是直角三角形吗?请说明你的理由.21.(6分)已知:实数a,b在数轴上的位置如图所示,化简:+2﹣|a﹣b|.四、解答题(2小题,共16分)22.(8分)如图,已知直线l1:y=2x+3,直线l2:y=﹣x+5,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.23.(8分)如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)试判断四边形AEBO的形状,并说明你的理由;(2)求证:EO=DC.五、解答题(2小题,共18分)24.(9分)某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如表所示该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润25.(9分)四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE 于点H.(1)如图1,当点E、F在线段AD上时,求证:∠DAG=∠DCG;(2)如图1,猜想AG与BE的位置关系,并加以证明;(3)如图2,在(2)条件下,连接HO,试说明HO平分∠BHG.2017-2018学年广东省潮州市湘桥区八年级(下)期末数学试卷参考答案一、选择题1.B ;2.D ;3.A ;4.C ;5.A ;6.D ;7.C ;8.C ;9.C ;10.B ; 二、填空题 11.﹣; 12.乙; 13.18; 14.m >; 15.x ≤2;16.89.6分; 17.22.5°; 18.4;三、解答题(3小题,共32分)19.(1)4(2)35 (3)23 (4)49-20.21.;四、解答题(2小题,共16分) 22.23、五、解答题(2小题,共18分)24、25、2017-2018学年下学期期末考试八年级数学试卷一、选择题(本大题共12小题,每小题3分,共36分在每小题给出的A、B、C、D四个选项中,只有一项符合题目要求.)1.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)【专题】常规题型.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.【解答】解:点M(1,2)关于y轴对称点的坐标为(-1,2).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2.如图所示是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项错误.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.关于函数y=﹣x+3,下列结论正确的是()A.它的图象必经过点(1,1)B.它的图象经过第一、二、三象限C.它的图象与y轴的交点坐标为(0,3)D.y随x的增大而增大【专题】函数及其图象.【分析】根据一次函数的性质对各选项进行逐一判断即可.【解答】解:A、∵当x=1时,y=2,∴图象不经过点(1,1),故本选项错误;B、∵k=-1<0,b=3>0,∴图象经过第一、二、四象限,故本选项错误C、∵当x=0时,y=3,∴图象与y轴的交点坐标为(0,3),故本选项正确;D、∵k=-1<0,∴y随x的增大而减小,故本选项错误;故选:C.【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0),当k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降是解答此题的关键.4.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.5【分析】由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,故选:C.【点评】此题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.5.如图所示的是一扇高为2m,宽为1.5m的长方形门框,光头强有一些薄木板要通过门框搬进屋内,在不能破坏门框,也不能锯短木板的情况下,能通过门框的木板最大的宽度为()A.1.5m B.2m C.2.5m D.3m【专题】计算题.【分析】利用勾股定理求出门框对角线的长度,由此即可得出结论.【解答】故选:C.【点评】本题考查了勾股定理的应用,利用勾股定理求出长方形门框对角线的长度是解题的关键.6.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,解得DE=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键.7.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5 B.4.2 C.5.8 D.7【分析】利用垂线段最短分析AP最小不能小于3;利用含30度角的直角三角形的性质得出AB=6,可知AP最大不能大于6.此题可解.【解答】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选:D.【点评】本题主要考查了垂线段最短的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AB=6.8.如图,四边形ABCD是长方形,AB=3,AD=4.已知A(﹣,﹣1),则点C的坐标是()A.(﹣3,)B.(,﹣3)C.(3,) D.(,3)【分析】由矩形的性质可知AB=CD=3,AD=BC=4,【解答】解:∵四边形ABCD是长方形,∴AB=CD=3,AD=BC=4,故选:D.【点评】本题主要考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.9.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.∠BAD=∠BCD,AB∥CDC.AD∥BC,AD=BC D.AB=CD,AO=CO【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,对每个选项进行筛选可得答案.【解答】解:A、根据对角线互相平分,可得四边形是平行四边形,故此选项可以证明四边形ABCD是平行四边形;B、根据AB∥CD可得:∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又由∠BAD=∠BCD可得:∠ABC=∠ADC,根据两组对角对应相等的四边形是平行四边形可以判定;C、根据一组对边平行且相等的四边形是平行四边形可以证明四边形ABCD是平行四边形;D、AB=CD,AO=CO不能证明四边形ABCD是平行四边形.故选:D.【点评】本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.10.如图,一艘巡逻船由A港沿北偏西60°方向航行5海里至B岛,然后再沿北偏东30°方向航行4海里至C岛,则A、C两港相距()A.4海里B.海里 C.3海里D.5海里【专题】计算题.【分析】连接AC,根据方向角的概念得到∠CBA=90°,根据勾股定理计算即可.【解答】解:连接AC,由题意得,∠CBA=90°,故选:B.【点评】本题考查的是勾股定理的应用和方向角,掌握勾股定理、正确标注方向角是解题的关键.11.如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买5千克这种苹果比分五次购买1千克这种苹果可节省()元.A.4 B.5 C.6 D.7【分析】观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式,再分别求出当x=1和x=5时,y值,用10×5-44即可求出一次购买5千克这种苹果比分五次购买1千克这种苹果节省的钱数.【解答】解:设y关于x的函数关系式为y=kx+b,当0≤x≤2时,将(0,0)、(2,20)代入y=kx+b中,∴y=8x+4(x≥2).当x=1时,y=10x=10;当x=5时,y=44.10×5-44=6(元).故选:C.【点评】本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式是解题的关键.12.已知:如图,在矩形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点F从点B 出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点F的运动时间为y秒,当y的值为()秒时,△ABF和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【分析】分点F在BC上和点F在AD上两种情况进行讨论,根据题意得出BF=2t=2和AF=16-2t=2即可求得.【解答】解:当点F在BC上时,∵在△ABF与△DCE中,∴△ABF≌△DCE,由题意得:BF=2t=2,所以t=1,点F在AD上时,∵在△ABF与△DCE中,∴△ABF≌△DCE,由题意得:AF=16-2t=2,解得t=7.所以,当t的值为1或7秒时.△ABF和△DCE全等.故选:C.【点评】本题考查了全等三角形的判定,关键是根据三角形全等的判定方法有:ASA,SAS,AAS,SSS,HL解答.二、填空题(本大题共6小题,每小题3分,共18分13.将直线y=2x+4向下平移3个单位,则得到的新直线的解析式为.【专题】一次函数及其应用.【分析】根据函数的平移规律,可得答案.【解答】解:将直线y=2x+4向下平移3个单位,得y=2x+4-3,化简,得y=2x+1,故答案为:y=2x+1.【点评】本题考查了一次函数图象与几何变换,利用函数图象的平移规律:上加下减,左加右减是解题关键.14.在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第象限.【专题】平面直角坐标系.【分析】根据各象限内点的坐标特征,可得答案.【解答】解:由点A(x,y)在第三象限,得x<0,y<0,∴x<0,-y>0,点B(x,-y)在第二象限,故答案为:二.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).15.若三角形三边分别为6,8,10,那么它最长边上的中线长是.【专题】计算题.【分析】根据勾股定理的逆定理可得三角形是直角三角形,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【解答】解:∵三角形三边分别为6,8,10,62+82=102∴该三角形为直角三角形.∵最长边即斜边为10,∴斜边上的中线长为:5.故答案为:5.【点评】此题主要考查学生对勾股定理的逆定理及直角三角形斜边上的中线的性质的理解及运用.16.如图,在▱ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.则▱ABCD的周长为,面积为.【分析】根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到BC=13.根据从而求得该平行四边形的周长;根据直角三角形的面积可以求得平行四边形BC边上的高.【解答】解:∵BE、CE分别平分∠ABC、∠BCD,∵AD∥BC,AB∥CD,∴∠2=∠3,∠BCE=∠CED,∠ABC+∠BCD=180°,∴∠1=∠2,∠DCE=∠CED,∠3+∠BCE=90°,∴AB=AE,CD=DE,∠BEC=90°,在直角三角形BCE中,根据勾股定理得:BC=13cm,根据平行四边形的对边相等,得到:AB=CD,AD=BC,∴平行四边形的周长等于:AB+BC+CD+AD=6.5+13+6.5+13=39cm.故答案为:39cm,60cm2.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.17.如图,直线AB的解析式为y=x+4,与y轴交于点A,与x轴交于点B,点P为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,则线段EF的最小值为.【专题】函数及其图象.【分析】由矩形的性质可知EF=OP,可知当OP最小时,则EF有最小值,由垂线段最短可知当OP ⊥AB时,满足条件,由条件可证明△AOB∽△OPB,利用相似三角形的性质可求得OP的长,即可求得EF的最小值.【解答】∴A(0,4),B(-3,0).∵PE⊥y轴于点E,PF⊥x轴于点F,∴四边形PEOF是矩形,且EF=OP,∵O为定点,P在线段上AB运动,∴当OP⊥AB时,OP取得最小值,此时EF最小,∵A(0,4),点B坐标为(-3,0),∴OA=4,O B=3,故答案为125【点评】本题考查的是一次函数图象上点的坐标特点,熟知坐标轴上点的坐标特点是解答此题的关键.18.如图,某小区有一块直角三角形绿地,量得直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一条直角边的直角三角形,则扩充的方案共有种.【专题】分类讨论.【分析】由于扩充所得的等腰三角形腰和底不确定,若设扩充所得的三角形是△ABD,则应分为①AB=AD,②AB=BD,③AD=BD,3种情况进行讨论.【解答】解:如图所示:故答案是:3.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用,关键是正确进行分类讨论.三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)19.(7分)如图,点E、F在线段BD上,AF⊥BD,CE⊥BD,AD=CB,DE=BF,求证:AF=CE.【专题】常规题型.【分析】首先证明BE=DF,然后依据HL可证明Rt△ADF≌Rt△CBE,从而可得到AF=CE.【解答】证明:∵DE=BF,∴DE+EF=BF+EF,即DF=BE.∴Rt△ADF≌Rt△CBE.∴AF=CE.【点评】本题主要考查的是全等三角形的性质和判定,熟练掌握全等三角形的性质和判定定理是解题的关键.20.(8分)直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的表达式.(2)若直线AB上有一动点C,且S△BOC=2,求点C的坐标.【专题】常规题型.【分析】(1)根据待定系数法得出解析式即可;(2)设C点坐标,根据三角形面积公式解答即可.【解答】解:(1)设直线解析式为y=kx+b,∵直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).【点评】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.21.(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,(1)请在所给的网格内画出以线段AB、BC为边的菱形,并写出点D的坐标.(2)线段BC的长为,菱形ABCD的面积等于【专题】作图题;网格型.【分析】(1)菱形要求四边相等,根据AB,BC的位置及长度可确定D点位置及坐标,如图所示;(2)在网格中,运用勾股定理求BC、对角线AC,BD的长度,再计算面积.【解答】(1)解:正确画出图(4分)D(-2,1)(5分)【点评】本题考查了菱形的性质,图形画法,菱形面积的求法及勾股定理的运用,需要形数结合,培养学生动手能力.22.(8分)为了庆祝即将到来的2018年国庆节,某校举行了书法比赛,赛后整理了参赛同学的成绩,并制作了如下两幅不完整的统计图表请根据以上图表提供的信息,解答下列问题:(1)这次共调查了名学生;表中的数m= ,n= .(2)请补全频数直方图;(3)若绘制扇形统计图,则分数段60≤x<70所对应的扇形的圆心角的度数是.【专题】统计的应用.【分析】(2)求出70~80的人数,画出直方图即可;(3)根据圆心角=360°×百分比即可解决问题;【解答】解:(1)30÷0.15=200,m=200×0.45=90,故答案为200,90,0.30.(2)频数直方图如图所示,故答案为54°【点评】本题考查了数据的分析,以及读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(8分)某产品每件的成本为10元,在试销阶段每件产品的日销售价x(元)与产品的日销售量y(件)之间的关系如下表:(1)观察与猜想y与x的函数关系,并说明理由.(2)求日销售价定为30元时每日的销售利润.【专题】常规题型.【分析】(1)设y与x的函数关系式为y=kx+b,任取两对,利用待定系数法求函数解析式;(2)将x=30代入求得y的值,然后依据销售利润=每件的利润×销售件数即可.【解答】解:(1)设经过点(15,25)(20,20)的函数关系式为y=kx+b.∴y=-x+40.∴y与x的函数关系式是y=-x+40;(2)当x=30时,y=-30+40=10,每日的销售利润=(30-10)×10=200元.【点评】本题主要考查待定系数法求一次函数解析式,熟练掌握待定系数法求一次函数解析式的步骤和方法是解题的关键.24.(8分)如图,点B、C分别在直线y=2x和y=kx上,点A、D是x轴上的两点,且四边形ABCD是正方形.(1)若正方形ABCD的边长为2,则点B、C的坐标分别为.(2)若正方形ABCD的边长为a,求k的值.【专题】一次函数及其应用.【分析】(1)根据正方形的边长,运用正方形的性质表示出点B、C的坐标;(2)根据正方形的边长,运用正方形的性质表示出C点的坐标,再将C的坐标代入函数中,从而可求得k的值.【解答】解:(1)∵正方形边长为2,∴AB=2,在直线y=2x中,当y=2时,x=1,∴B(1,2),∵OA=1,OD=1+2=3,∴C(3,2)故答案为:(1,2),(3,2);【点评】本题主要考查正方形的性质与正比例函数的综合运用,灵活运用正方形的性质是解题的关键.25.(9分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.【点评】本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形是等边三角形是解决问题的关键.26.(10分)如图1,在正方形ABCD中,点E是AB上一点,点F是AD延长线上一点,且DF=BE,连接CE、CF.(1)求证:CE=CF.(2)在图1中,若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题,如图2,在四边形ABCD。

北师大版2018-2019学年下学期八年级数学《因式分解》培优检测试题

北师大版2018-2019学年下学期八年级数学《因式分解》培优检测试题

2018-2019学年下学期八年级数学《因式分解》培优检测试题姓名:班级:______________________ 考号:一、单选题(共10题;共30分)1.下列多项式中能用平方差公式分解因式的是( )A. a2+ (-b) 2 ।B. 5m2-20mn 9.-x2-y2 । D. -x2+92.下列多项式能因式分解的是( )A. x2-yB. x2+1C. x2+xy+y2D. x2-4x+43.因式分解2x2-8的结果是( )A. (2x+4) (x-4) FB. (x+2) ( x-2)C. 2 (x+2) ( x-2) 卜D. 2 (x+4) (x-4)4.下列因式分解中正确的是( )-J 1 1 1A.串—8工+16=B.-仃2+口-彳三=三(2仃-1),C. x ( a- b) - y (b - a) = (a- b) ( x - y)D. b" = ।fr > )5.把代数式ab:- 6ab十9n分解因式,下列结果中正确的是A. B. C'-Q T■-「I; .,) C.,屋8 T厂 D.6.下列各式中,不能用完全平方公式分解的个数为( )① x2-10x+25;② 4a2+4a - 1 ;③ x2-2x-1;④-m2+m-;;⑤ 4x4-x2+1 .A. 1个B. 2个C. 3个D. 4个7.若X-+tm-15=,,则mn 的值为()A. 5B. -5C. 10D. -108.若a , b , c是三角形的三边之长,则代数式a; -2ac+c二-b2的值()A.小于0B.大于0C.等于0 "D.以上三种情况均有可能9.下列多项式中能用提公因式法分解的是( )A. x2+y2B. x 2-y2C. x2+2x+1D. x 2+2x10.已知:a=2014x+2015, b=2014x+2016 , c=2014x+2017 ,则a2+b2+c2-ab- ac- bc 的值是( )A. 0B. 1C. 2D. 3二、填空题(共8题;共24分)11.因式分解:一疝一/4忸一〃)=12.已知x- 2y= - 5, xy= — 2,贝U 2x2y - 4xy2= .13.分解因式:a3 - 4a2+4a=.14.若屋_a + l = U,那么屋叫1 一屋飒十型颊二.15.如果x+y=5 , xy=2 ,贝U x2y+xy 2=.16.已知= 而=2,求;门取岫'的值为17.多项式2ax2-12axy中,应提取的公因式是18.若x+y= 1,贝U x4+5x3y+x2y+8x2y2+xy2+5xy 3+y4的值等于。

安徽省六安市裕安中学17—18学年下学期八年级月考(一)数学试题(答案)$862877

安徽省六安市裕安中学17—18学年下学期八年级月考(一)数学试题(答案)$862877

裕安中学2017-2018学年春学期月考一八年级数学学科试卷一、选择题(本题共10小题,每小题4分,满分40分)1、如果是二次根式,那么x应满足的条件是()A.x≠8 B.x<8 C.x≤8 D.x>0且x≠82、在下列方程中,一元二次方程的个数是()①3x2+7=0,②ax2+bx+c=0,③(x+2)(x﹣3)=x2﹣1,④x2﹣x+4=0,⑤x2﹣(+1)x+=0,⑥3x2﹣+6=0A.1个B.2个C.3个D.4个3、下列各式属于最简二次根式的是()A.B.C.D.4、用配方法解方程x2﹣5x=4,应把方程的两边同时()A.加上B.加上C.减去D.减去5、方程x2=x的解是()A.x=1 B.x=0 C.x1=1,x2=0 D.x1=﹣1,x2=06、小明的作业本上有以下四题:②;①;③;④.做错的题是()A.①B.②C.③D.④7、已知(m﹣1)x2+2mx+(m﹣1)=0有两个不相等的实数根,则m的取值范围是()A.m>B.m<且m≠1 C.m>且m≠1 D.<m<18、某县为发展教育事业,加强了对教育经费的投入,2017年投入3000万元,预计2019年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.3000(1+x)2=5000 B.3000x2=5000C.3000(1+x%)2=5000 D.3000(1+x)+3000(1+x)2=50009、已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣10、利用平方根去根号可以构造一个整系数方程.例如:x=+1时,移项得x﹣1=,两边平方得(x﹣1)2=()2,所以x2﹣2x+1=2,即x2﹣2x﹣1=0.仿照上述构造方法,当x=时,可以构造出一个整系数方程是()A.4x2+4x+5=0 B.4x2+4x﹣5=0 C.x2+x+1=0 D.x2+x﹣1=0二、填空题(本题共4小题,每小题5分,满分20分)11、方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则m=12、已知,则a+b=13.若一元二次方程x2+kx+6=0的一个根是3,那么k=,另一个根是.14、已知等腰三角形的一边长为9,另一边长为方程x2﹣8x+15=0的根,则该等腰三角形的周长为.八年级数学学科月考一考试答题卷 时间:120分钟 满分:150分一、选择题(本题有10小题,每小题 4分,共40分)二、填空题(本题有4小题,每小题5分,共20分)11.______________________ 12._________________________ 13. k=_ ___, __________ 14._________________________ 三、解答题(本大题共9小题,共90分)15、计算:(1)818214+-(2)()()20-52-6-π6101⨯+-⎪⎪⎭⎫⎝⎛-16、解方程:(1)2x ²-5x+1=0(用配方法) (2)(x+4)²=2x+817、化简求值:(2x+1)(2x-1)-(x+1)(3x-2),其中x=12-.18、已知a ,b ,c 在数轴上如图所示,化简:.19、已知1x 、2x 是关于x 的一元二次方程x ²-(2k+1)x+k ²+1=0的两个不相等的实数根,且52221=+x x ,求k 的值.20、已知x=13-,y=13+,求下列代数式的值:(1)x ²-xy+y ²;(2)x ²-y ².21、阅读下列材料:)210321(3121⨯⨯-⨯⨯=⨯; )321432(3132⨯⨯-⨯⨯=⨯;)432543(3143⨯⨯-⨯⨯=⨯;由以上三个等式相加,可得.2054331433221=⨯⨯⨯=⨯+⨯+⨯ 读完以上材料,请你计算下列各题:(1)1×2 + 2×3 + 3×4 + …… + 10×11= ; (2)1×2 + 2×3 + 3×4 + …… + n(n+1)(写出过程);(3)1×2×3 + 2×3×4 + 3×4×5 + …… + 7×8×9(写出过程)。

新课标-精品卷】2017-2018学年广东省深圳市八年级下学期期末数学试卷及答案

新课标-精品卷】2017-2018学年广东省深圳市八年级下学期期末数学试卷及答案

新课标-精品卷】2017-2018学年广东省深圳市八年级下学期期末数学试卷及答案2017-2018学年广东省深圳市八年级(下)期末数学试卷一、选择题(本题有12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.不等式2x+1>x+2的解集是()A。

x>1B。

x<1C。

x≥1D。

x≤12.多项式2x^2-2y^2分解因式的结果是()A。

2(x+y)^2B。

2(x-y)^2C。

2(x+y)(x-y)D。

2(y+x)(y-x)3.下列图案中,不是中心对称图形的是()A。

B。

C。

D。

4.如图,△ABC中,AB的垂直平分线交AC于D,如果AC=5cm,BC=4cm,那么△DBC的周长是()A。

6cmB。

8cmC。

9cmD。

10cm5.要使分式有意义,那么x的取值范围是()A。

x≠3B。

x≠-3C。

x≠3且x≠-3D。

x≠-36.如果关于x的不等式(a+1)x>a+1的解集为x<1,那么a的取值范围是()A。

a<-1B。

a<0C。

a>-1D。

a>07.如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A。

4B。

3C。

2D。

18.将一个有45°角的三角板的直角顶点放在一张宽为3cm 的纸带边沿上。

另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图,则三角板的最大边的长为()A。

3cmB。

6cmC。

2√3cmD。

3√3cm9.如图,在平行四边形ABCD中,XXX于E,AF⊥CD 于F,若AE=4,AF=6,平行四边形ABCD的周长为40,则平行四边形ABCD的面积为()A。

24B。

36C。

40D。

4810.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A。

x<mB。

x<3C。

x>mD。

x>311.已知a^2+b^2=6ab,则的值为()A。

初二数学第一学期第5章第8节三元一次方程组_练习题和答案

初二数学第一学期第5章第8节三元一次方程组_练习题和答案
2.(牡丹江市2018届中考一模)在国家倡导的“阳光体育”活动中,老师给小明30元钱,让他买三样体育用品;大绳,小绳,毽子.其中大绳至多买两条,大绳每条10元,小绳每条3元,毽子每个1元.在把钱都用尽的条件下,买法共有()
A.6种B.7种C.8种D.9种
【答案】D
【考点】三元一次方程组
【考查能力】运算求解能力
A.2种 B.3种 C.4种 D.5种
10.(2016届江苏省无锡惠山区九年级下期模拟)某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按120个工时计算)生产空调、冰箱、彩电共360台,且彩电至少生产60台,已知生产这些家电产品每台所需工时和每台产值如下表:
家电名称
空调
ห้องสมุดไป่ตู้冰箱
彩电
工时
15.(2016届江苏省泰州中)用卖2头牛、5只羊的钱买13头猪,剩1000元钱;用卖3头牛、3头猪的钱买9只羊,钱正好花完;用卖6只羊、8头猪的钱买5头牛,还差600元钱.问:每头牛、每只羊、每头猪的价钱各是多少?
二、较难题
16.(2015甘肃天水卷)解方程组 并求mx+2y-z1994=10中m的值.
(1)如果购买三种商品各 件,那么需要付费多少元?
(2)如果需要购买 件甲商品、 件乙商品和 件丙商品,那么小明至少带多少钱才能保证一定能全部买到?(结果精算到元)
14.(2016届四川省凉山州昭觉中学)一个三位数,十位上的数字是个位上的数字的 ,百位上的数字与十位上的数字的和比个位上的数字多1,将百位上的数字与个位上的数字对换位置,所得的新数比原数大495,求这个三位数.
A. B. C. D.
二、中等题
8.(2016湖北襄阳卷)某瓶中装有1分,2分,5分三种硬币,15枚硬币共3角5分,则有多少种装法( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

20172018学年下学期八年级数学模拟检测3
一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)
1、以下四点:(1,2),(2,3),(0,1),(﹣2,3)在直线y=2x+1上的有()
A、1个
B、2个
C、3个
D、4个
2、学校对全体学生爱吃哪种粽子做调查,以决定最终买哪种口味的粽子.下面的调查数据最值得关注的是()
A、方差
B、平均数
C、中位数
D、众数
3、顺次连结菱形四边中点所得的四边形一定是()
A、平行四边形
B、矩形
C、菱形
D、正方形
4、下列多项式中不能用公式分解的是()
A、a2+a+
B、﹣a2+b2﹣2ab
C、﹣a2+25b2
D、﹣4+b2
5、已知,a=5cm,b=9cm,且三条线段a,b,c首尾相连能围成三角形,则下列线段中c不能取的是( )
A、5
B、9 C 、D、10
6、已知等腰三角形的周长为20cm,底边长为ycm,腰长为xcm,则y与x之间的函数关系式为()
A. y=20﹣2x(0<x<10)B. y=10﹣x(0<x<10)
C. y=20﹣2x(5<x<10)D. y=10﹣x(5<x<10)
7、小明要到距家1500米的学校上学,一天,小明出发10分钟后,小明的爸爸立即去追小明,且在距离学校60米的地方追上了他.已知爸爸比小明的速度快100米/分,求小明的速度.若设小明速度是x米/分,则根据题意所列方程正确的是()
A 、
B 、
C 、
D 、
8、均匀地向一个瓶子注水,最后把瓶子注满.在注水过程中,水面高度h随时间t的变化规律如图所示,则这个瓶子的形状是下列的()
A、
B、
C、
D、
二、填空题(本大题共6个小题,每小题3分,满分18分)
9、分解因式:2m2﹣2= 。

10、若分式无意义,则x的取值范围是。

11、直角三角形中,两直角边分别是12和5,则斜边上的中线长是。

12、菱形的两条对角线长分别为18与24,则此菱形的周长为。

13、如下图,平行四边形ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB
的长为。

14、如上图,在菱形ABCD中,∠B=60°,AB=3,则以AC为边长的正方形ACFE的周长为。

三、解答题(本大题共9个小题,满分70分)
15、(本小题12分)
(1)解分式方程:(2)计算:6÷2+。

﹣=1;
16、(本小题6分)先化简,再求值:(x+1﹣)÷,其中x=2.
17、(本小题6分)如图,已知AB=AE,AC=AF,∠BAF=∠EAC,求证△ABC≌△AEF。

八年级数学试题第1页共4页八年级数学试题第2页共4页
18、(本小题6分)如图,已知平行四边形ABCD中,对角线AC的垂直平分线EF交AD于点F,交BC 于点E,试判断:四边形AECF是什么特殊四边形,并说明理由.
19、(本小题7分)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).
(1)求直线AB的解析式;
(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.
20、(本小题8分)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:
(1)画AD∥BC(D为格点),连接CD;
(2)若E为BC中点,则四边形AECD的周长为。

21、(本小题8分)为了推动阳光体育运动的广泛开展,引导学生走
向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备
购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:
(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;
(Ⅱ)求本次调查获取的样本数据的众数和中位数;
(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?22、(本小题8分)一农民带上若干千克自产的西红柿进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的西红柿千克数x与他手中持有的钱数y(含备用零钱)的关系,如图所示,结合图象回答下列问题.
(1)农民自带的零钱是多少?
(2)求降价前y与x之间的函数关系关系式.
(3)降价后他按每千克3元将剩余西红柿售完,这时他手中的钱(含备用零钱)是200元,试问他一共带了多少千克西红柿?
23、(本小题9分)甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原件为x(x>0)元,让利后的购物金额为y元.
(1)分别就甲、乙两家商场写出y关于x的函数解析式;
(2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.
八年级数学试题第3页共4页八年级数学试题第4页共4页。

相关文档
最新文档