自动控制原理-第三章 线性系统的时域分析法 (2)

合集下载

第三章-线性系统的时域分析法(简)剖析

第三章-线性系统的时域分析法(简)剖析
的时间。
2)峰值时间tp: 响应从零上升到第一个峰值所需时间。
3)调节时间ts: 响应到达并保持在允许误差范围(终值的
±2%或±5%)内所需的时间。
4)最大超调量σ%: 响应的最大峰值与终值之差,并除以终值,
通常用百分数表示:
% c(t p ) c() 100%
c()
动态性能指标定义1
超调量 % h(tp ) - h() 100%
2、稳态性能指标 通常用系统在阶跃、斜坡、加速度函数作用
下的稳态误差来描述稳态性能;
稳态误差用来衡量系统的控制精度或抗扰动 能力;
稳态误差反映系统复现输入信号的最终精度。
ess
lim e(t)
t
3.2 一阶系统的时域分析
可用一阶微分方程描述其动态过程的系统,称为一阶系统
一、一阶系统的数学模型
R
+
例2:
可见: 1)右半平面无根; 2)虚根: 5s2 25 0, s1.2 j 5 3)其余根:
s4,5 1 j2
s3 1
注意:此时系统不为稳定系统,而是临界稳定系统
例 系统结构图如右, (1)确定使系统稳定的参数(K,x) 的范围; (2)当x2时,确定使全部极点均位于s=-1之左的K值范围。
3.5 线性系统的稳定性分析
要点介绍
1、熟悉系统稳定性的定义; 2、熟练掌握判断系统稳定性的方法; 3、熟练掌握根据稳定性要求确定系统参数的方法。
3.5 线性系统的稳定性分析
一、 稳定性的基本概念
1、稳定性的定义
控制系统在外部扰动作用下偏离其原来的 平衡状态,当扰动消失后,系统仍能自动恢复到 原来的初始平衡状态的性能。 注意:
0
K 9.12

自动控制原理第3章

自动控制原理第3章

拉氏变换式
A R(s) s2
当A=1时,称为单位斜坡信号
3、抛物线信号 数学表达式
拉氏变换式
r(t) 1 At2 2
A R(s) s3
r(t) t
1 R(s) s2
当A=1时,称为单位抛物线信号
4
典型的输入信号
单位抛物线信号拉氏变换式
r(t) 1 t 2 2
R(s)
1 s3
4、脉冲信号 数学表达式
y(s) R(s)(s) 1
2 n
s (s2 2ns n2 )
阶跃响应为
y(t) L1y(s) L1R(s)(s)
L1
1 s
(s2
2 n
2 ns
n2
)
二阶系统响应特性取决于阻尼系数 和无阻尼振荡频率 两个参数!
18
二阶系统分析
1、无阻尼 ( =0)的情况
特征根及分布情况: p1,2 jn
1 2
1 2nt
y(t)
ξ=0.3
1
ξ=0.5
20
0
t
二阶系统分析
3、临界阻尼( =1 )
特征根
p1,2 n
阶跃响应:
yt 1 ent 1 nt
y(t)
响应曲线
1
0
t
21
二阶系统分析
4、过阻尼( >1)的情况
特征根及分布情况: 阶跃响应:
p1 2 1 n
p2 2 1 n
11
一阶系统分析
2、单位斜坡响应
t
y(t) (t T ) Te T t 0
y(t)的特点: (1)由动态分量和稳态分量两部分组成。 (2)输入与输出之间存在跟踪误差,且误差 值等于系统时

自动控制原理-第3章-时域分析法

自动控制原理-第3章-时域分析法
系统响应达到峰值所需要的时间。
调节时间
系统响应从峰值回到稳态值所需的时间。
振荡频率
系统阻尼振荡的频率,反映系统的动态性能。
系统的阶跃响应与脉冲响应
阶跃响应
系统对阶跃输入信号的响应,反映系 统的动态性能和稳态性能。
脉冲响应
系统对脉冲输入信号的响应,用于衡 量系统的冲激响应能力和动态性能。
03
一阶系统时域分析
01
单位阶跃响应是指系统在单位阶跃函数作为输入时的
输出响应。
计算方法
02 通过将单位阶跃函数作为输入,代入一阶系统的传递
函数中,求出系统的输出。
特点
03
一阶系统的单位阶跃响应是等值振荡的,其最大值为1,
达到最大值的时间为T,且在时间T后逐渐趋于0。
一阶系统的单位脉冲响应
定义
单位脉冲响应是指系统在单 位脉冲函数作为输入时的输
无法揭示系统结构特性
时域分析法主要关注系统的动态行为和响应,难以揭示系统的结构特 性和稳定性。
对初值条件敏感
时域分析法的结果对系统的初值条件较为敏感,初值条件的微小变化 可能导致计算结果的较大偏差。
感谢您的观看
THANKS
计算简便
时域分析法通常采用数值积分方法进 行计算,计算过程相对简单,易于实 现。
时域分析法的缺点
数值稳定性问题
对于某些系统,时域分析法可能存在数值稳定性问题,例如数值积分 方法的误差累积可能导致计算结果失真。
计算量大
对于高阶系统和复杂系统,时域分析法需要进行大量的数值积分计算, 计算量较大,效率较低。
自动控制原理-第3章-时域 分析法
目录
• 时域分析法概述 • 时域分析的基本概念 • 一阶系统时域分析 • 二阶系统时域分析 • 高阶系统时域分析 • 时域分析法的优缺点

自动控制原理课后答案第3章

自动控制原理课后答案第3章

第3章 控制系统的时域分析【基本要求】1. 掌握时域响应的基本概念,正确理解系统时域响应的五种主要性能指标;2. 掌握一阶系统的数学模型和典型时域响应的特点,并能熟练计算其性能指标和结构参数;3. 掌握二阶系统的数学模型和典型时域响应的特点,并能熟练计算其欠阻尼情况下的性能指标和结构参数;4. 掌握稳定性的定义以及线性定常系统稳定的充要条件,熟练应用劳斯判据判定系统稳定性;5. 正确理解稳态误差的定义,并掌握系统稳态误差、扰动稳态误差的计算方法。

微分方程和传递函数是控制系统的常用数学模型,在确定了控制系统的数学模型后,就可以对已知的控制系统进行性能分析,从而得出改进系统性能的方法。

对于线性定常系统,常用的分析方法有时域分析法、根轨迹分析法和频域分析法。

本章研究时域分析方法,包括简单系统的动态性能和稳态性能分析、稳定性分析、稳态误差分析以及高阶系统运动特性的近似分析等。

根轨迹分析法和频域分析法将分别在本书的第四章和第五章进行学习。

这里先引入时域分析法的基本概念。

所谓控制系统时域分析方法,就是给控制系统施加一个特定的输入信号,通过分析控制系统的输出响应对系统的性能进行分析。

由于系统的输出变量一般是时间t 的函数,故称这种响应为时域响应,这种分析方法被称为时域分析法。

当然,不同的方法有不同的特点和适用范围,但比较而言,时域分析法是一种直接在时间域中对系统进行分析的方法,具有直观、准确的优点,并且可以提供系统时间响应的全部信息。

3.1 系统的时域响应及其性能指标为了对控制系统的性能进行评价,需要首先研究系统在典型输入信号作用下的时域响应过程及其性能指标。

下面先介绍常用的典型输入信号。

3.1.1 典型输入信号由于系统的动态响应既取决于系统本身的结构和参数,又与其输入信号的形式和大小有关,而控制系统的实际输入信号往往是未知的。

为了便于对系统进行分析和设计,同时也为了便于对各种控制系统的性能进行评价和比较,需要假定一些基本的输入函数形式,称之为典型输入信号。

自动控制原理-第3章

自动控制原理-第3章

响应曲线如图3-2所示。图中
为输出的稳态值。
第三章 线性系统的时域分析 法
图 3-2 动态性能指标
第三章 线性系统的时域分析 法
动态性能指标通常有以下几种:
延迟时间td: 指响应曲线第一次达到稳态值的一半所需的时间
上升时间tr: 若阶跃响应不超过稳态值, 上升时间指响应曲线从 稳态值的10%上升到90%所需的时间; 对于有振荡的系统, 上升时 间定义为响应从零第一次上升到稳态值所需的时间。上升时间越 短, 响应速度越快。
可由下式确定: (3.8)
振荡次数N: 在0≤t≤ts内, 阶跃响应曲线穿越稳态值c(∞)次 一半称为振荡次数。
上述动态性能指标中, 常用的指标有tr、ts和σp。上升时间tr 价系统的响应速度; σp评价系统的运行平稳性或阻尼程度; ts是同
时反映响应速度和阻尼程度的综合性指标。 应当指出, 除简单的一 、二阶系统外, 要精确给出这些指标的解析表达式是很困难的。
中可以看出, 随着阻尼比ζ的减小, 阶跃响应的振荡程度加剧。 ζ =0时是等幅振荡, ζ≥1时是无振荡的单调上升曲线, 其中临界阻尼 对应的过渡过程时间最短。 在欠阻尼的状态下, 当0.4<ζ<0.8时过
渡过程时间比临界阻尼时更短, 而且振荡也不严重。 因此在 控制工程中, 除了那些不允许产生超调和振荡的情况外, 通常都希
第三章 线性系统的时域分析法 4. 脉冲函数 脉冲函数(见图3-1(d))的时域表达式为
(3.4)
式中,h称为脉冲宽度, 脉冲的面积为1。若对脉冲的宽度取趋于 零的极限, 则有
(3.5) 及
(3.6)
称此函数为理想脉冲函数, 又称δ函数(见图3-1(e))。
第三章 线性系统的时域分析 法

自动控制原理第三章

自动控制原理第三章

A=1,称单位斜坡函数,记为 t· 1(t)
f(t)
1 L[t 1( t )] 2 s
0 t
考查系统对匀速信号的跟踪能力
3. 抛物线函数(等加速度函数)
1 2 At t0 r (t ) 2 t0 0
f(t)
A=1,称单位抛物线函数,记为
1 2 t 1( t ) 2
线性定常系统的重要性质
1.当系统输入信号为原来输入信号的导数时,这时系 统的输出则为原来输出的导数。 C ( s) GB ( s) R( s) dr( t ) C1 ( s ) GB ( s ) L[ ] G B ( s ) sR( s ) sC ( s ) dt dc( t ) c1 (t ) dt 2. 在零初始条件下,当系统输入信号为原来输入信号 时间的积分时,系统的输出则为原来输出对时间的积分, 积分常数由零初始条件决定。 R( s ) 1 C 2 ( s ) GB ( s ) L[ r ( t )dt] GB ( s ) C ( s) s s y2 ( t ) y( t )dt
单位脉冲响应 [R(s)=1] h(t) 1 1/T C ( s) Ts 1 它恰是系统的闭环传函,这 0.368/T 时输出称为脉冲(冲激)响应 0.135/T 0.05/T 函数,以h(t)标志。 t 1 T 0 T 2T 3T h( t ) C脉冲 ( t ) e T 3.2.3
二阶系统有两个结构参数ξ (阻尼比)和n(无阻尼振荡频 率) 。二阶系统的性能分析和描述,都是用这两个参数表示的。
例如: RLC电路 R
L
r ( t)
C
c(t)
微分方程式为: d 2 c( t ) dc( t ) LC RC c( t ) r ( t ) 2 dt dt 2 n C ( s) 1 Φ( s ) 2 零初条件 2 2 2 R( s ) T s 2Ts 1 s 2n s n

自动控制原理第三章

自动控制原理第三章

对方程两边求拉氏变换:

Td Tm Td
s2n(s 0,
)则有Tm:n(s)
n(s)
U
d
(s)
/
Ce
n(s) 1/ Ce
U d (s) 1 Tms
(5)转角的转换环节
设 传动比为 ,电动机转角为m
m , c
c
1
m
又 n dm (t)
dt
n(s) sm (s) c(s) m / 1
1- 2
具体步骤如下:
求阶跃输入下的暂态响应
查表: F (s) s a0
(s a)2 2

f (t) L1[F (s)] 1
(a0 a)2 2
1
2 eat sin( t )
arctg
a0 a

s2
s 2n 2ns n2
s 2n (s n )2 (n
1 )2
2
1.8
1.6
1.4
1.2
1
0.8
0.6 0.4 0.2
0 0
246
nt
8 10 12
⒊ 当 1时,特征方程有一对相等的负实根,称为临界阻尼
系统,系统的阶跃响应为非振荡过程。
➢当 1 时,
阶跃响应曲线为:
xc
(s)
1 s
s2
n2 2n s
n2
n2 s(s n )2
1 1 n s s n (s n )2
1 )( s
T1
1 T2
)
式中
T1
1 a
n (
1
2
1)
T2
1 b
n (
1
2
1)

自动控制原理-胡寿松-第三章-线性系统时域分析法

自动控制原理-胡寿松-第三章-线性系统时域分析法
impulse(G) 简单介绍一下m文件的用法 Simulink 用法
课前提问
3-3 二阶系统的时域分析(非常重点、难点)
二阶系统定义:能够用二阶微分方程描述的系统称为二阶系统。 本节内容
0. 预备知识 1. 二阶系统的数学模型 2. 二阶系统的单位阶跃响应 3. 欠阻尼二阶系统的动态过程分析 4. 过阻尼二阶系统的动态过程分析 5. 二阶系统的单位斜坡响应 6. 二阶系统性能的改善 7. 非零初始条件下二阶系统的响应过程
超调量 % :
显然 h(tp) hmax
若 h(tp) h() 则响应无超调
实际中,常用的动态性能指标
tr
tp
评价系统起始段的响应速度;
ts
评价系统整个过渡过程的响应速度,是响应速度和阻尼程度的综合指标。
%
评价系统的阻尼程度;
思考:稳态误差从图中怎么看?
3-2 一阶系统的时域分析
一阶系统定义:能够用一阶微分方程描述的系统称为一阶系统。
第三章 线性系统的时域分析法
系统的数序模型确定后,便可以用多种不同的方 法去分析控制系统的动态性能和稳态性能。
在经典控制理论中
时域分析的一般思路:
时域分析法 根轨迹法 频域分析法
数数数数
数数数数数数数 求解微分方程
数数数数
数数数数
优点:直接在时间域对系统进行分析,具有直观、准确的 优点,并可以提供系统时间响应的全部信息。
本章内容
▪ 3-1 系统时间响应的性能指标 ▪ 3-2 一阶系统的时域分析 ▪ 3-3 二阶系统的时域分析 ▪ 3-4 高阶系统的时域分析 ▪ 3-5 线性系统的稳定性分析 ▪ 3-6 线性系统的稳态误差计算 ▪ 3-7 控制系统时域设计
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dtr K
tr d
ξ一定时,ωn越大,tr越小; ωn一定时,ξ越大,tr越大。
峰值时间tp
c(t) 1
ent
1 2
s in( d t

)
dc(t) dt |ttp 0
tan(dt p )
1 2
dt p 0, ,2 ...
c(t) 1
e nt
1 2
sin( d t


)
(t0)
d n 1 2
阻尼振荡频率
tg 1 1 2
无稳态误差; 含有指数衰减振荡项:
其振幅衰减的快慢由ξ和ωn决定振荡幅值随ξ减小而 加大。
d n 1 2
tg 1 1 2
二阶系1 统的性能分析和描述,都是用这两个参数表示的。
例如RLC电路 微分方程式为:
RL
r(t)
C c(t)
d 2c(t)
dc(t )
LC dt 2 RC dt c(t) r(t)
Φ(s)
C(s) R(s)
零 初 条 件
T 2s2
1
2Ts 1

s2
n2 2ns n2
出现最小值后, ωnts随ξ几乎线性 增加。
结论:
当ξ增加到0.69或0.78时,调整时间ts为最 小。设计二阶系统,一般选ξ=0.707,为最佳阻 尼比,此时不但调整时间ts为最小,而且超调量也 不大。
当0<ξ<0.7时
ts
ln ln
n
1 2

4


2)ξ一定时,ωn越大,瞬态响应分量衰减越迅速系 统能够更快达到稳态值,响应的快速性越好。
3)控制系统的阻尼比选择 工程中除了一些不允许产生振荡的应用,如指示和记录
仪表系统等,通常采用欠阻尼系统,且阻尼比通常选择在 0.4~0.8之间,以保证系统的快速性同时又不至于产生过大 的振荡。
3、欠阻尼二阶系统的动态过程分析
衰减系数: n
无阻尼:=0
C(s) R(s)

s2

n2 2 n s
n2
P1、2 jn
R(s) 1 s
c(t) 1 cosnt (t0)
无阻尼的等幅振荡
稳定边界 n :自然频率(无阻尼振荡频率)
临界阻尼:=1
C(s)

2 n
R(s) s2 2 ns n2
s2

2 n s


2 n
P1、2 n n 2 1
极点实部大于零,响应发散,系统不稳定。
-1<ξ<0
振荡发散
ξ < -1
单调发散
几点结论:
1)二阶系统的阻尼比ξ决定了其振荡特性:
ξ < 0 时,阶跃响应发散,系 统不稳定; ξ = 0时,出现等幅振荡 0<ξ<1时,有振荡,ξ愈小,振 荡愈严重,但响应愈快, ξ≥ 1 时,无振荡、无超调,过 渡过程长;
c(t) 1
1
e( 2 1)nt
2 2 1( 2 1)

1
e( 2 1)nt
2 2 1( 2 1)
(t0)
系统包含两类瞬态衰减分量
单调上升,无振荡,过 渡过程时间长,无稳态 误差。
负阻尼(ξ<0)
C(s)

2 n
R(s)
调整时间ts
c(t) 1
ent
1 2
s in( d t

)
包络线
e n t 1
1 2
e nt s
1
1
1 2
ln ln 1 2
ts
n
ln ln 1 2
ts
n
实际的ωnts—ξ曲线
当ξ由零增大时, ωnts先减小后增大, ∆= 5%,ωnts的最 小值出现在ξ= 0.78处; ∆= 2%,ωnts的最 小值出现在ξ= 0.69处;
临界阻尼:=1
P1、2 n
过阻尼:>1
P1、2 n n 2 1
无阻尼:=0 负阻尼:<0
P1、2 jn
欠阻尼:0< <1
C(s) R(s)

s2


2 n
2 n s
n2
R(s) 1 s
P1、2 n jn 1 2
n jd
tp d
峰值时间等于阻尼 振荡周期的一半
ξ一定时,ωn越大,tp越小; ωn一定时,ξ越大,tp越大。
最大超调量σ %
tp

d
σ
p

c(t p ) c() c()
100%

e 1 2 100%
仅与阻尼比ξ有关。
ξ越大,σ %越小,系统的平稳性越好 ξ = 0.4~0.8σ % = 25.4%~1.5%。
上升时间 峰值时间 最大超调量 调整时间 振荡次数 小结
上升时间tr
c(t) 1
ent
1 2
s in( d t

)
(t0)
d n 1 2
c(tr ) 1
ent
1 2
s in( d tr

)
1
tg 1 1 2
sin(dtr ) 0
R(s) 1 s
P1、2 n
c(t) 1 ent (1 nt) (t0)
系统包含两类瞬态衰减分量
单调上升,无振荡、 无超调、无稳态误差。
过阻尼:>1
C(s)

2 n
R(s) s2 2 ns n2
R(s) 1 s
P1、2 n n 2 1
3.3 二阶系统的时域分析
1. 二阶系统的数学模型 标准化二阶系统的结构图为:
闭环传递函数为
R(s)
+﹣
n2
C(s)
s(s+2n)

2 n
(s)

1
s(s

2n

2 n
)

s2
n2

2
n
s


2 n
s(s 2n )
二阶系统有两个结构参数 (阻尼比)和n(无阻尼振荡频率) 。
T LC
n 1/T
R C
2L
对于不同的二阶系统,阻尼比和无阻尼振荡频率的 含义2 是不同的。
2、二阶系统的单位阶跃响应
C(s) R(s)

s2

n2 2 n s
n2
系统的特征方程
s2

2
ns


2 n

0ห้องสมุดไป่ตู้
闭环特征方程根(闭环极点)P1、2 n n 2 1 欠阻尼:0< <1 P1、2 n jn 1 2
相关文档
最新文档