数学分析 重积分的变量替换仿射变换

合集下载

8.重积分变量代换

8.重积分变量代换

~ ≤ f 。最后一步是利用了积分中值定理。再用一次微分中值定理得 其中 e ≤ u
47
mT ( R) =
∂y ~ ~ ∂y ~ ~ ⎛ ∂ ( x, y ) ⎞ (u , v )(h − g )( f − e) = (u , v )mR = ⎜ mR , ⎟ ∂v ∂v ~, v ~) ⎝ ∂ (u , v) ⎠ (u
2.二重积分变量代换公式 设 U 为 uv 平面上的开集, V 是 xy 平面上开集,映射
46
T: x = x ( u, v ) , y = y ( u, v ) 是 U 到 V 的一个一一对应。 进一步假设 x = x (u, v ) , y = y (u, v ) 具有连续偏导数, ∂ ( x, y ) ≠ 0,在这样的假设下,我们有如下的二重积分的变量代换公式。 且有 ∂(u, v) 定理(二重积分变量代换公式) 映射 T 和区域 D ⊂ V 如上假设。如果二元函 数 f ( x, y ) 在 T (D) 上连续,则
j 2
j
1,2, " , M )上成立 T = T2 D T1 (为简便起见去掉了标记 i ,注意对不同的 D i ,可
能有不同 T1 和 T2 ) ,这里 T1 和 T2 是本原映射。设 ⎧ξ = ξ (u , v), ⎧ x = x(ξ ,η ), T1 : ⎨ 和 T2 : ⎨ ⎩η = η (u , v), ⎩ y = y (ξ ,η ). 那么 ∂( x, y ) ∂( x, y ) ∂(ξ ,η ) 。 = ⋅ ∂(u , v) ∂(ξ ,η ) ∂(u , v) 由引理 2 得 ∂ ( x, y ) f ( x, y )dxdy = ∫∫ f ( x(ξ ,η ), y (ξ ,η )) dξ dη ∫∫ ∂(ξ ,η ) T (D ) T1 ( D )

数学分析ch13-3重积分的变量代换

数学分析ch13-3重积分的变量代换
第四页,共四十二页。
定理 13.3.1(二重积分变量代换公式) 映射T 和区域 D 如上假 设。如果二元函数 f (x, y) 在T (D) 上连续,则
f (x, y) d x d y f (x(u,v), y(u,v)) (x, y) d u d v 。
T (D)
D
(u, v)
显然,当 f (x, y) 1 时,由以上定理得
的所有小矩形,由引理 13.3.1,在 Di 上成立
(x, y) mT (Di ) (u, v)
mDi ,
(ui ,vi )
这里 (u~i ,v~i ) 为 Di 中某一点。设 ~xi x(u~i ,v~i ) , ~yi y(u~i ,v~i ) ,则从上式得
i
f (xi , yi )mT (Di )
u-曲线
v-曲线 x
第三页,共四十二页。
二重积分的变量代换 假设 x x(u,v) , y y(u,v) 具有连续偏导数,且有 (x, y) 0,则由
(u, v)
连续性可知 (x, y) 在U 上不变号。因此,对U 中任意具有分段光滑边
(u, v)
界的有界闭区域 D ,记它的像为 E T (D) V ,则 D 的内点和边界分别 被映为 E 的内点和边界,同时,由于连通集的像也连通,所以 E T (D) 也是具有分段光滑边界的有界闭区域。在这样的假设下,有如下的二 重积分的变量代换公式。
部分为 D 。这个方程中有
x2 a2
y2 b2
项,因此引入广义极坐标
x ar cos , y br sin ,
第十五页,共四十二页。
它的 Jacobi 行列式为
(x, y) a cos ar sin abr 。

重积分的积分变换和积分替换

重积分的积分变换和积分替换

重积分的积分变换和积分替换积分是高等数学中的一个重要概念,它被广泛应用在各个领域中,包括物理学、统计学、经济学等。

在微积分中,一类重要的积分就是重积分。

和单变量积分不同,重积分涉及到多个变量,其计算难度往往更大。

近年来,学者们发现,利用积分变换和积分替换的技巧,可以有效地简化重积分的计算过程。

本文就介绍一些有关积分变换和积分替换的基本知识和重要应用。

一、积分变换积分变换是将一类积分变换成另一类积分的过程,通常是通过一些数学技巧来实现的。

积分变换有很多种,包括线性变换、仿射变换、圆柱变换、球坐标变换等。

在这里,我们主要介绍球坐标变换和柱坐标变换两种。

1. 球坐标变换球坐标变换是将三维空间中的积分转化为球坐标系下的积分。

通过这种变换,可以将具有各向同性的问题转化为与方向无关的问题,从而简化积分的计算。

球坐标系下的积分变量包括径向距离r、极角θ和方位角φ。

一般来说,球坐标变换的步骤如下:(1)将被积函数写成球坐标的形式;(2)将坐标变量x、y、z表示为r、θ和φ的函数;(3)将分子(dx dy dz)替换成球坐标系下的积分元素r²sinθ dr dθ dφ;(4)对变量r、θ和φ进行变量替换,计算出新的积分区域。

例如,设空间中有一个函数f(x,y,z),要求其在球形区域内的积分。

那么,将被积函数转化为球坐标系下的形式:f(x,y,z)→f(r,θ,φ)然后,把直角坐标系下的坐标写成球坐标系下的形式:x=r sinθ cosφ;y=r sinθ sinφ;z=r cosθ。

接着,计算出雅可比行列式,替换分子,并对积分区域进行调整。

最终得到球坐标下的积分表达式:∫∫∫f(x,y,z) dxdydz = ∫∫∫f(r,θ,φ) r²sinθ dr dθ dφ2. 柱坐标变换柱坐标变换是将三维空间中的积分转化为柱坐标系下的积分。

柱坐标系下的积分变量包括径向距离r、极角θ和高度z。

柱坐标变换的一般步骤如下:(1)将被积函数写成柱坐标系下的形式;(2)将直角坐标系下的坐标表示为柱坐标系下的形式;(3)将分子(dx dy dz)替换成柱坐标下的积分元素r d r dθ dz;(4)对变量r、θ和z进行变量替换,计算出新的积分区域。

重积分中的变量代换

重积分中的变量代换

-1-
华北水利水电学院毕业论文
重积分中的变量代换
摘 要
大学数学和高中数学相比最主要的不同就是多了微积分,而微积分中最主要的难 点就是重积分的计算。对本科生而言,经常遇到的是二重积分和三重积分的计算,我 们首先学习和熟练掌握了不定积分和定积分的计算,为重积分的学习打下了基础。在 重积分的学习中,我们知道重积分的计算是化为累次积分来计算的,然而被积函数的 形式和积分区域的复杂性并不是所有的重积分都能在直角坐标系中化为累次积分顺 利求解,有的甚至根本不能求解。而解决这些困难的方法主要是引入新的变量,采用 合适的变量代换去简化被积函数或者积分区域来达到求解重积分的目的。本文主要针 对我个人以及大家在学习中的疑难点,从二重积分到三重积分再到 n 重积分进行详细 的论述。第二章和第三章中,主要介绍平面坐标变换和空间坐标变换的一般式以及几 种常见的变量代换,从变量代换的可行性和有效性出发,根据被积函数的形式和积分 区域的类型,如何合理地选取相应的坐标变换来简化重积分的计算。最后很自然地类 推到 n 重积分的变量代换,将变量代换一般化。针对各种不同的类型,我们讨论了不 同变量代换的本质以及几何意义,并通过实际应用,从根本上对变量代换有了更深入 的认识。 关键字:重积分,累次积分,变量代换,测度,雅克比行列式
[6] [6] [1] [3] [1]
n 维空间坐标变换........................................................................................ - 36 引言........................................................................................................ - 36 一般 n 维空间坐标变换定理

多重积分的变量替换

多重积分的变量替换

则称T为上的正则变换. • 结论: T()开集、T-1: T()也是正则 变换、且 1 1 x , T (T ( x)) T ( x)

4
记号复习:导数矩阵
• 导数矩阵(也叫Jacobi矩阵):
T1 ( x) x1 T2 ( x ) DT ( x) T ( x) x1 Tn ( x) x 1
线性变换:讨论特征函数 正则变换:讨论特征函数
• 非负可测函数和有积分函数的积分 变换公式
3
n 复习R 上正则变换
• 定义:设Rn是非空开集, T Rn满足 下列条件:
T在上是单射; T在上有一阶连续导数(即是C1的); DT=T在上处处可逆(即J(T)=det(T)恒不为零)
T ( y) T ( x) T ( x)( y x) o y x ( y x)
n
• 其中T(y), T(x), y和x都是n维列向量, |y-x|是 n维欧氏范数(也叫长度或距离)
yx
y x
i 1 i i
2
6
记号复习:差分矩阵表示
• 上页的式子的矩阵形式:
k 1


C
n k 1
k

11
零测集的像是零测集
• 设Rn中的开集,T为上的C1变换. E 为零测集, 即|E|=0, 则|T(E)|=0. • 证明: 可以表示成可数多个闭方块的并以 及上面的结论,就可以得到所要的结论.#
12
可测集的像是可测集
• 设Rn中的开集,T为上的正则变换.E, 为可测集, 则T(E)也是可测集. • 证明: 由E可测, 则存在可数多个开集Gk和零 测集Z, 有

数学分析中的变换法

数学分析中的变换法

α

n= 0 ∞
Cn X =
n
∑ (∑

n= 0 K= 0
ak bn- k ) x
n
n + β = (∑ + x )α an x ) (∑ bn x ) = A ( x ) B( x ) = ( 1 n= 0 n= 0 ∞
又 ( 1 + x)
α + β
=

α + β n
n= 0
×n
再由幂级数展开的唯一性即证 . 1. 5 傅里叶变换法 这种变换法实质上是一个求解问题的积分变换 , 是函数到函数的变换 ,且有逆变换 . G( W ) = F 〔 f ( t )〕=
2 变换法的基本步骤与逻辑框架图
一个数学问题可视其为一个数学系统或数学结构 , 组成其要素之间的相互依存或相互关 系的形式是可变的 , 但其形变并非唯一 , 可能是多种多样的 , 因而用变换法研究解决数学问题 题时无统一模式可循 , 但在实际应用时 ,可依以下三个基本步骤:
* ( 1)根据原问题的特点 , 施行变换 T 化为新问题 P ;
∫ f( t) e
-∞
+ ∞
- wt
dt 1 +∞ 〔 2 π -∞
其中 G( W)为 f ( t )的傅里叶变换 , 由傅里叶积分公式 f ( t ) =
∫ ∫ f( t) e
-∞
+ ∞
- wt
dt〕 e dW
wt
易得傅里叶变换的逆变换: - 1 1 +∞ wt f ( t) = F 〔 G( W )〕= G( W) e dW 2 π -∞ 傅里叶变换可将微分方程转化为关于象函数的代数方程 , 通过解代数方程和求傅里叶逆

数学分析 重积分的变量替换变量替换公式

数学分析 重积分的变量替换变量替换公式

数学分析(二):多元微积分梅加强副教授南京大学数学系内容提要:内容提要:重积分的变量替换公式;内容提要:重积分的变量替换公式; 极坐标变换;内容提要:重积分的变量替换公式; 极坐标变换;柱面坐标变换;内容提要:重积分的变量替换公式; 极坐标变换;柱面坐标变换;球面坐标变换.现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.设D⊂R n为开集,A可求体积且¯A⊂D,ϕ:D→R n为C1映射且Jϕ处处非退化.现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.设D⊂R n为开集,A可求体积且¯A⊂D,ϕ:D→R n为C1映射且Jϕ处处非退化.问题:ϕ(A)是否可求体积,如果是的话其体积等于多少?现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.设D⊂R n为开集,A可求体积且¯A⊂D,ϕ:D→R n为C1映射且Jϕ处处非退化.问题:ϕ(A)是否可求体积,如果是的话其体积等于多少?首先,根据反函数定理我们知道ϕ将A的内点映为ϕ(A)的内点,这说明∂ϕ(A)⊂ϕ(∂A).一般的变量替换现在我们考虑比仿射变换更一般的映射,看看可求体积的集合在这些映射下如何变化.设D⊂R n为开集,A可求体积且¯A⊂D,ϕ:D→R n为C1映射且Jϕ处处非退化.问题:ϕ(A)是否可求体积,如果是的话其体积等于多少?首先,根据反函数定理我们知道ϕ将A的内点映为ϕ(A)的内点,这说明∂ϕ(A)⊂ϕ(∂A).断言:ϕ(∂A)为零测集,从而∂ϕ(A)亦然,于是ϕ(A)可求体积.事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .根据覆盖引理的证明,任给ε>0,存在有限个小球B i⊂K,使得∂A⊂iB i,且iν(B i)<ε.事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .根据覆盖引理的证明,任给ε>0,存在有限个小球B i⊂K,使得∂A⊂iB i,且iν(B i)<ε.记B i=B ri (x i),由拟微分中值定理可知ϕ(B i)⊂B Cri(ϕ(x i)),这说明ϕ(∂A)⊂iB Cri(ϕ(x i)),且这些球的体积之和小于C nε.于是ϕ(∂A)为零测集.事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .根据覆盖引理的证明,任给ε>0,存在有限个小球B i⊂K,使得∂A⊂iB i,且iν(B i)<ε.记B i=B ri (x i),由拟微分中值定理可知ϕ(B i)⊂B Cri(ϕ(x i)),这说明ϕ(∂A)⊂iB Cri(ϕ(x i)),且这些球的体积之和小于C nε.于是ϕ(∂A)为零测集.从上述证明还可以得出,若 ψ(x)−ψ(y) ≤ρ x−y 且ψ将可求体积集B映为可求体积集ψ(B),则ν(ψ(B))≤ρnν(B).事实上,取δ>0,使得K={x|d(x,A)≤δ}⊂D.记C=max K Jϕ .根据覆盖引理的证明,任给ε>0,存在有限个小球B i⊂K,使得∂A⊂iB i,且iν(B i)<ε.记B i=B ri (x i),由拟微分中值定理可知ϕ(B i)⊂B Cri(ϕ(x i)),这说明ϕ(∂A)⊂iB Cri(ϕ(x i)),且这些球的体积之和小于C nε.于是ϕ(∂A)为零测集.从上述证明还可以得出,若 ψ(x)−ψ(y) ≤ρ x−y 且ψ将可求体积集B映为可求体积集ψ(B),则ν(ψ(B))≤ρnν(B).为了研究ϕ(A)的体积,我们将ϕ线性化并做误差估计.引理1沿用以上记号,则任给ε>0,存在0<η<δ,使得当x∈A,d(x ,x)≤η时ϕ(x )−ϕ(x)−Jϕ(x)(x −x) ≤ε x −x .引理1沿用以上记号,则任给ε>0,存在0<η<δ,使得当x∈A,d(x ,x)≤η时ϕ(x )−ϕ(x)−Jϕ(x)(x −x) ≤ε x −x .证明.在Bδ(x)中考虑函数F(y)=ϕ(y)−ϕ(x)−Jϕ(x)(y−x),则F(x)=0,JF(y)=Jϕ(y)−Jϕ(x).根据拟微分中值定理,存在ξ=x+θ(x −x)(0<θ<1),使得F(x ) = F(x )−F(x) ≤ Jϕ(ξ)−Jϕ(x) x −x ,由Jϕ在K上的一致连续性即可完成证明.引理2沿用以上记号,则当B⊂A可求体积且d(B)<η时ν(ϕ(B))≤[|det Jϕ(x)|+O(ε)]ν(B),x∈B.引理2沿用以上记号,则当B⊂A可求体积且d(B)<η时ν(ϕ(B))≤[|det Jϕ(x)|+O(ε)]ν(B),x∈B.证明.考虑仿射变换L(y)=[Jϕ(x)]−1(y−ϕ(x))+x,则L◦ϕ(x )=[Jϕ(x)]−1F(x )+x ,于是当x ,x ∈Bη(x)时L◦ϕ(x )−L◦ϕ(x ) ≤[1+ [Jϕ(x)]−1 ε] x −x .由B⊂Bη(x)可得ν(L◦ϕ(B))≤[1+ [Jϕ(x)]−1 ε]nν(B).再由仿射变化的体积变化公式即可完成证明.(重积分的变量替换)设ϕ:D→R n为C1单射,且Jϕ处处非退化.设A可求体积,¯A⊂D,f在ϕ(A)中可积,则ϕ(A)f=Af◦ϕ|det Jϕ|.(1)特别地,ν(ϕ(A))=A|det Jϕ|.(重积分的变量替换)设ϕ:D→R n为C1单射,且Jϕ处处非退化.设A可求体积,¯A⊂D,f在ϕ(A)中可积,则ϕ(A)f=Af◦ϕ|det Jϕ|.(1)特别地,ν(ϕ(A))=A|det Jϕ|.证明.不妨设A为矩形,且f非负.任给A的分割π={A ij},我们有ϕ(A)f=ijϕ(A ij)f≤ij[supϕ(A ij)f]ν(ϕ(A ij))证明(续).当分割充分细时,由之前的引理可得ϕ(A)f≤ijsupA ij[f◦ϕ]|det Jϕ(ξij)|ν(A ij)+O(ε),由Riemann和与积分之间的关系可得ϕ(A)f≤Af◦ϕ|det Jϕ|+O(ε),令ε→0可得ϕ(A)f≤Af◦ϕ|det Jϕ|.根据反函数定理,ϕ:D→ϕ(D)可逆.如果对ϕ−1重复上述论证就可得到另一边的不等式.例1设0<p <q,0<a <b.抛物线y 2=px,y 2=qx 以及双曲线xy =a,xy =b 围成的区域记为A.计算积分I = A xy d x d y.例1设0<p <q,0<a <b.抛物线y 2=px,y 2=qx 以及双曲线xy =a,xy =b 围成的区域记为A.计算积分I = A xy d x d y.解.积分区域是一个曲边的四边形,为了简化,我们令y 2/x =u ,xy =v ,则(u ,v )关于(x ,y )的Jacobi 行列式为∂(u ,v )∂(x ,y )= −y 2/x 22y /x y x =−3y 2/x =−3u ,因此(x ,y )关于(u ,v )的Jacobi 行列式为−(3u )−1.在这个变换下,积分区域变为矩形[p ,q ]×[a ,b ],因此I =q p d u b a v −(3u )−1 d v =16(b 2−a 2)ln q p.我们知道,在平面R2上有直角坐标(x,y)和极坐标(r,θ),其变换关系为x=r cosθ,y=r sinθ,r≥0,0≤θ≤2π.我们知道,在平面R2上有直角坐标(x,y)和极坐标(r,θ),其变换关系为x=r cosθ,y=r sinθ,r≥0,0≤θ≤2π.这个变换称为极坐标变换,其Jacobi行列式为∂(x,y)∂(r,θ)=cosθ−r sinθsinθr cosθ=r.我们知道,在平面R2上有直角坐标(x,y)和极坐标(r,θ),其变换关系为x=r cosθ,y=r sinθ,r≥0,0≤θ≤2π.这个变换称为极坐标变换,其Jacobi行列式为∂(x,y)∂(r,θ)=cosθ−r sinθsinθr cosθ=r.极坐标变换将(r,θ)平面上的矩形[0,R]×[0,2π]变为(x,y)平面上的圆x2+y2≤R2.不过,这个变换不是一一的,且在r=0处退化.我们知道,在平面R2上有直角坐标(x,y)和极坐标(r,θ),其变换关系为x=r cosθ,y=r sinθ,r≥0,0≤θ≤2π.这个变换称为极坐标变换,其Jacobi行列式为∂(x,y)∂(r,θ)=cosθ−r sinθsinθr cosθ=r.极坐标变换将(r,θ)平面上的矩形[0,R]×[0,2π]变为(x,y)平面上的圆x2+y2≤R2.不过,这个变换不是一一的,且在r=0处退化.尽管如此,由于此变换在(0,+∞)×(0,2π)上是一一的且非退化,因此将前面的证明略作改动即知,积分的变量替换公式对这个变换仍然成立.例子例2求椭圆x2a2+y2b2=1(a,b>0)所包围的面积.例子例2求椭圆x2a2+y2b2=1(a,b>0)所包围的面积.解.作所谓的广义极坐标变换x=ar cosθ,y=br sinθ,r∈[0,1],θ∈[0,2π],其Jacobi行列式为∂(x,y)∂(r,θ)=a cosθ−ar sinθb sinθbr cosθ=abr,因此所求面积为10d r2πabr dθ=πab.我们再考虑R3中的坐标变换.如下的柱面坐标变换有时能用到:x=r cosθ,y=r sinθ,z=z,其Jacobi行列式也是r.我们再考虑R3中的坐标变换.如下的柱面坐标变换有时能用到:x=r cosθ,y=r sinθ,z=z,其Jacobi行列式也是r.与极坐标变换类似,R3中也有所谓的球面坐标变换:x=r sinθcosϕ,y=r sinθsinϕ,z=r cosθ,r≥0,θ∈[0,π],ϕ∈[0,2π].我们再考虑R3中的坐标变换.如下的柱面坐标变换有时能用到:x=r cosθ,y=r sinθ,z=z,其Jacobi行列式也是r.与极坐标变换类似,R3中也有所谓的球面坐标变换:x=r sinθcosϕ,y=r sinθsinϕ,z=r cosθ,r≥0,θ∈[0,π],ϕ∈[0,2π]. 这个变换的Jacobi行列式为∂(x,y,z)∂(r,θ,ϕ)=sinθcosϕr cosθcosϕ−r sinθcosϕsinθsinϕr cosθsinϕr sinθcosϕcosθ−r sinθ0=r2sinθ.我们再考虑R3中的坐标变换.如下的柱面坐标变换有时能用到:x=r cosθ,y=r sinθ,z=z,其Jacobi行列式也是r.与极坐标变换类似,R3中也有所谓的球面坐标变换:x=r sinθcosϕ,y=r sinθsinϕ,z=r cosθ,r≥0,θ∈[0,π],ϕ∈[0,2π]. 这个变换的Jacobi行列式为∂(x,y,z)∂(r,θ,ϕ)=sinθcosϕr cosθcosϕ−r sinθcosϕsinθsinϕr cosθsinϕr sinθcosϕcosθ−r sinθ0=r2sinθ.球面坐标和伸缩变换结合起来称为广义球面坐标变换.例3计算椭球x2a2+y2b2+z2c2≤1(a,b,c>0)的体积.例3计算椭球x2a2+y2b2+z2c2≤1(a,b,c>0)的体积.解.用广义球面坐标变换:x=ar sinθcosϕ,y=br sinθsinϕ,z=cr cosθ,此变换的Jacobi行列式为abcr2sinθ,积分区域变为{(r,θ,ϕ)|r∈[0,1],θ∈[0,π],ϕ∈[0,2π]},因此椭球体积为V=10d rπabcr2sinθdθ2πdϕ=43πabc.例3计算椭球x2a2+y2b2+z2c2≤1(a,b,c>0)的体积.解.用广义球面坐标变换:x=ar sinθcosϕ,y=br sinθsinϕ,z=cr cosθ,此变换的Jacobi行列式为abcr2sinθ,积分区域变为{(r,θ,ϕ)|r∈[0,1],θ∈[0,π],ϕ∈[0,2π]},因此椭球体积为V=10d rπabcr2sinθdθ2πdϕ=43πabc.在一般的欧氏空间R n中也有类似的(广义)球面坐标变换.。

13.3重积分的变量代换

13.3重积分的变量代换

m
i
y
→ ∫∫ f (r cos θ , r sin θ )rdrdθ
D'
∆σ ij = 1 (2r + ∆r )∆r ∆θ j j j i
0
1 2 = rj ∆rj ∆θ i + ∆rj ∆θ i 2
2
x
D= ( x, y ) | x + y ≤ a
2 2
{
2
}
用曲线网 格代替直 线网格
I =
∫∫ e
∴∫∫
D
x y 2 1 − 2 − 2 dxdy = ∫∫ 1 − r abrdrdθ a b D′
2
2
2 = πab. 3
变量代换公式的证明
∫∫
T (D)
f ( x, y )dxdy = ∫∫
D
∂ ( x, y ) f ( x(u, v), y (u, v)) | | dudv ∂ (u, v)
Di 分为两种:正方形及正方形与D的边界相交 分为两种:正方形及正方形与 的边界相交
正方形与D的边界相交部分因其面积和 正方形与 的边界相交部分因其面积和 的边界相交 趋于零,则其上积分也收敛与零。 趋于零,则其上积分也收敛与零。
下面考虑正方形的情形: 下面考虑正方形的情形: 正方形的情形
v
v+k v
在可求面积区域 D 上连续
− ( x2 + y2 )
I = ∫ dx ∫
=
a2 − x2
− a2 − x
e 2
dy

a
−a
e
−x
2
dx ∫
a2 − x2
2 2
− a −x
e
− y2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学分析(二): 多元微积分
梅加强 副教授 南京大学数学系
内容提要:
3.5.1 仿射变换
3.5.1 仿射变换
内容提要: 线性变换的分解;
3.5.1 仿射变换
内容提要: 线性变换的分解; 伸缩变化下体积的变换公式;
3.5.1 仿射变换
内容提要: 线性变换的分解; 伸缩变化下体积的变换公式; 正交变换下体积的变换公式;
因此下面不妨设 b = 0, 考虑线性变换.
线性变换的分解
如果 det M = 0, 则 ϕ(Rn) 包含于某个超平面中, 而超平面是 Rn 中的零测集, 特 别地, 容易看出这时 ϕ(A) 可求体积且体积为零.
线性变换的分解
如果 det M = 0, 则 ϕ(Rn) 包含于某个超平面中, 而超平面是 Rn 中的零测集, 特 别地, 容易看出这时 ϕ(A) 可求体积且体积为零. 于是我们进一步假设 det M = 0. 根据线性代数中矩阵的极分解, 我们知道存在 正定对称矩阵 P 以及正交矩阵 O, 使得 M = PO.
Bi ⊂ A, ν(Bi ) > ν(A) − ε; Bj ⊃ A, ν(Bj ) < ν(A) + ε,
i
i
j
j
其中 {Bi } 的内部互不相交.
证明要点: 先看 {Bi } 的存在性, 此时可设 ν(A) > 0.
覆盖引理之二
(覆盖引理之二)
设 A 为 Rn 中可求体积的有界集合, 则任给 ε > 0, 存在有限个 n 维球体 {Bi } 与 {Bj }, 使得
这称为伸缩变换.
伸缩变换
设 {λi } 为一组正实数, 考虑线性变换 ϕ : Rn → Rn, ϕ(x1, x2, · · · , xn) = (λ1x1, λ2x2, · · · , λnxn),
这称为伸缩变换.
矩形 I = [a1, b1] × · · · × [an, bn] 在伸缩变换下的像仍为矩形, 其体积为 ν(ϕ(I)) = λ1 · · · λnν(I) = | det(ϕ)|ν(I).
M = O1diag(λ1, · · · , λn)O2. 通过上述分解, 下面我们只要考虑伸缩变换和正交变换即可.
伸缩变换
设 {λi } 为一组正实数, 考虑线性变换 ϕ : Rn → Rn, ϕ(x1, x2, · · · , xn) = (λ1x1, λ2x2, · · · , λnxn),
ν(A) − ε < ν(Iij ) ≤
ν(Iij ) < ν(A) + ε.
Iij ⊂A
Iij ∩A=∅
覆盖引理之一
证明.取包含 A 的矩形 I, 由体积的定义, 有 I χA = ν(A). 因此, 任给 ε > 0, 存在 I 的分割 π = {Iij }, 使得
χA(ξij )ν(Iij ) − ν(A) < ε, ∀ ξij ∈ Iij .
Bi ⊂ A, ν(Bi ) > ν(A) − ε; Bj ⊃ A, ν(Bj ) < ν(A) + ε,
i
i
j
j
其中 {Bi } 的内部互不相交.
证明要点: 先看 {Bi } 的存在性, 此时可设 ν(A) > 0.
根据覆盖引理之一的证明可知, 存在包含于 A 且内部互不相交的小矩形 {Ii1 = [ai , bi ]n}, 使得 i ν(Ii1) > ν(A)/2.
ij
由特征函数的定义和上式容易得出
ν(A) − ε < ν(Iij ) ≤
ν(Iij ) < ν(A) + ε.
Iij ⊂A
Iij ∩A=∅
从证明可以看出, 那些内部与 ∂A 有非空交的矩形的体积之和不超过 2ε. 同时, 也可 以看出伸缩变换将可求体积的集合变为可求体积的集合.
例子
例1 计算 Rn 中半径为 r 的球体的体积.
对于一般的可求体积集合, 上述公式仍然成立, 这可从下面的覆盖引理看出. (覆盖引理之一) 设 A 为 Rn 中可求体积的有界集合, 则任给 ε > 0, 存在有限个矩形 {Ii } 与 {Jj }, 使得
Ii ⊂ A, ν(Ii ) > ν(A) − ε; Jj ⊃ A, ν(Jj ) < ν(A) + ε,
i
i
j
j
其中 {Ii } 的内部互不相交.
覆盖引理之一
证明.取包含 A 的矩形 I, 由体积的定义, 有 I χA = ν(A). 因此, 任给 ε > 0, 存在 I 的分割 π = {Iij }, 使得
χA(ξij )ν(Iij ) − ν(A) < ε, ∀ ξij ∈ Iij .
ij
由特征函数的定义和上式容易得出
线性变换的分解
如果 det M = 0, 则 ϕ(Rn) 包含于某个超平面中, 而超平面是 Rn 中的零测集, 特 别地, 容易看出这时 ϕ(A) 可求体积且体积为零. 于是我们进一步假设 det M = 0. 根据线性代数中矩阵的极分解, 我们知道存在 正定对称矩阵 P 以及正交矩阵 O, 使得 M = PO. 又因为正定对称矩阵可以对角化, 因此存在一组正实数 {λi } 以及正交矩阵 O1, O2, 使得
−1
0
利用 ω1 = 2 以及一元微积分中的计算可得
(2π)k πk
2k πk−1
ω2k = (2k )!! = k ! , ω2k−1 = (2k − 1)!! , k ≥ 1.
(1)
覆盖引理之二
(覆盖引理之二)
设 A 为 Rn 中可求体积的有界集合, 则任给 ε > 0, 存在有限个 n 维球体 {Bi } 与 {Bj }, 使得
覆盖引理之二
(覆盖引理之二)
设 A 为 Rn 中可求体积的有界集合, 则任给 ε > 0, 存在有限个 n 维球体 {Bi } 与 {Bj }, 使得
Bi ⊂ A, ν(Bi ) > ν(A) − ε; Bj ⊃ A, ν(Bj ) < ν(A) + ε,
i
ijBiblioteka j其中 {Bi } 的内部互不相交.
i
i
i
这一过程可继续重复. 任给 ε > 0, 可得到内部互不相交的有限个 n 维球体 {Bi }, 使得
0 < ν A \ Bi < qk ν(A) < ε.
i
覆盖引理之二和正交变换

q
=
1

, ωn
2n+1

0
<
q
<
1,

0
<
ν
A\
i Bi1
< qν(A).
对 A \ i Bi1 重复上述过程, 可得包含于 A \ i Bi1 的有限个球体 {Bi2}, 使得
证明要点: 先看 {Bi } 的存在性, 此时可设 ν(A) > 0.
根据覆盖引理之一的证明可知, 存在包含于 A 且内部互不相交的小矩形 {Ii1 = [ai , bi ]n}, 使得 i ν(Ii1) > ν(A)/2.
Ii1 的内接球记为 Bi1, 则
i
ν(Bi1)
=
ωn 2n
i
ν(Ii1)
>
例子
例1 计算 Rn 中半径为 r 的球体的体积.
解. 根据体积的平移不变性, 不妨设球心为原点.
利用伸缩变换可知,半径为 r 的球体的体积等于 ωnr n, 其中 ωn 是单位球的体积. 利用
投影法可得
ωn+1 =
1
ωn(1 − x12)n/2 dx1 = 2ωn
π
2 sinn+1 t dt .
ωn 2n+1
ν
(A).
覆盖引理之二和正交变换

q
=
1

, ωn
2n+1

0
<
q
<
1,

0
<
ν
A\
i Bi1
< qν(A).
覆盖引理之二和正交变换

q
=
1

, ωn
2n+1

0
<
q
<
1,

0
<
ν
A\
i Bi1
< qν(A).
对 A \ i Bi1 重复上述过程, 可得包含于 A \ i Bi1 的有限个球体 {Bi2}, 使得
ϕ : Rn → Rn, x → Mx + b, 其中 M ∈ Mn×n, b ∈ Rn. 问题: 如果 A ⊂ Rn 可求体积, 那么 ϕ(A) 是否可求体积, 如果是的话体积等于多 少?
根据矩形体积的平移不变性容易知道, 如果 A 可求体积, 则经过平移以后 A 也 是可求体积的, 并且体积不变, 这可称为体积的平移不变性.
仿射变换
所谓仿射变换是指欧氏空间到自身的一类映射, 它是线性变换和平移的复合映 射:
ϕ : Rn → Rn, x → Mx + b, 其中 M ∈ Mn×n, b ∈ Rn. 问题: 如果 A ⊂ Rn 可求体积, 那么 ϕ(A) 是否可求体积, 如果是的话体积等于多 少?
仿射变换
所谓仿射变换是指欧氏空间到自身的一类映射, 它是线性变换和平移的复合映 射:
0 < ν A \ Bi1 \ Bi2 < qν A \ Bi1 < q2ν(A).
i
i
i
覆盖引理之二和正交变换

q
=
1

, ωn
相关文档
最新文档