一维热传导MATLAB模拟
一维热传导MATLAB模拟

昆明学院2015届毕业设计(论文)设计(论文)题目一维热传导问题的数值解法及其MATLAB模拟子课题题目无姓名伍有超学号************所属系物理科学与技术系专业年级2011级物理学2班指导教师王荣丽2015 年 5 月摘要本文介绍了利用分离变量法和有限差分法来求解一维传导问题的基本解,并对其物理意义进行了讨论。
从基本解可以看出,在温度平衡过程中,杠上各点均受初始状态的影响,而且基本解也满足归一化条件,表示在热传导过程中杆的总热量保持不变。
通过对一维杆热传导的分析,利用分离变量法和有限差分法对一维热传导进行求解,并用MATLAB 数学软件来对两种方法下的热传导过程进行模拟,通过对模拟所得三维图像进行取值分析,得出由分离变量法和有限差分法绘制的三维图基本相同,且均符合热传导过程中温度随时间、空间的变化规律,所以两种方法均可用来解决一维热传导过程中的温度变化问题。
关键词:一维热传导;分离变量法;有限差分法;数值计算;MATLAB 模拟AbstractIn this paper, the method of variable separation and finite difference method are introduced to solve the problem of one-dimensional heat conduction problems, and the physical significance of numerical methods for heat conduction problems are discussed. From the basic solution, we can see the temperature on the bar are affected by the initial state during the process of temperature balance, and basic solution also satisfy the normalization condition which implied the invariance of the total heat in the bar during the heat conduction process. Through the analysis of the one-dimensional heat conduction, by taking use of variable separation method and finite difference method, we simulated the one-dimensional heat conduction problem by MATLAB. The three-dimensional images of the simulation results obtained by the method of separation of variables and finite difference method are similar to each other, and the temperature curve is in accordance with the law of temperature variation during heat conduction. Thus, we can go to the conclusion that both methods can be used to deal with the one-dimensional heat conduction problems.Keywords: One-dimensional heat conduction; method of variable separation;finite difference method; numerical method; MATLAB simulation目录第一章绪论 (1)1.1热传导的概念 (1)1.2热质的运动和传递 (1)第二章一维热传导问题的两种数值解法 (3)2.1一维热传导问题的初值问题 (3)2.2一维热传导问题的分离变量法 (4)2.3一维热传导问题的有限差分法 (6)第三章一维有界杆热传导问题的MATLAB模拟 (9)3.1一维有界杆热传导问题 (9)3.2分离变量法的MATLAB模拟 (9)3.3有限差分法的MATLAB模拟 (12)第四章总结与展望 (18)参考文献 (19)谢辞 (20)第一章绪论1.1热传导的概念由于温度分布不均匀,热量从介质中温度高的地方流向温度低的地方称为热传导。
一维热传导方程数值解法及matlab实现

问题描述实验原理分离变量法实验原理有限差分法实验目的利用分离变量法和有限差分法解热传导方程问题利用matlab进行建模构建图形研究不同的情况下采用何种方法从更深层次上理解热量分布与时间、空间分布关系。
模拟与仿真作业(1)分离变量法(代码):x=0:0.1*pi:pi;y=0:0.04:1;[x,t]=meshgrid(x,y);s=0;m=length(j);%matlab可计算的最大数相当于无穷for i=1:ms=s+(200*(1-(-1)^i))/(i*pi)*(sin(i*x).*exp(-i^2*t)); end;surf(x,t,s);xlabel('x'),ylabel('t'),zlabel('T');title(' 分离变量法(无穷)');axis([0 pi 0 1 0 100]);所得到的三维热传导图形为:有限差分法:u=zeros(10,25); %t=1 x=pi 构造一个1025列的矩阵(初始化为0)用于存放时间t和变量x 横坐标为x 纵坐标为ts=(1/25)/(pi/10)^2;fprintf('稳定性系数S为:\n');disp(s);for i=2:9u(i,1)=100;end;for j=1:25u(1,j)=0;u(10,j)=0;end;for j=1:24for i=2:9u(i,j+1)=s*u(i+1,j)+(1-2*s)*u(i,j)+s*u(i-1,j); endenddisp(u);[x,t]=meshgrid(1:25,1:10);surf(x,t,u);xlabel('t'),ylabel('x'),zlabel('T');title(' 有限差分法解');所得到的热传导图形为:(2)i分离变量法(取前100项和)x=0:0.1*pi:pi;y=0:0.04:1;[x,t]=meshgrid(x,y);s=0;for i=1:100s=s+(200*(1-(-1)^i))/(i*pi)*(sin(i*x).*exp(-i^2*t)); end;surf(x,t,u);xlabel('x'),ylabel('t'),zlabel('T');title(' 分离变量法');axis([0 pi 0 1 0 100]);所得到的热传导图形为:Ii有限差分法根据(1)我们有如下图结论:比较可得这两幅图基本相同,有限差分法和分离变量法对本题都适应(3)第一种情况(取无穷项):在原来程序代码的基础上加上disp(s(:,6)); 可得出第六列(即x=pi/2)处温度随时间的变化情况x=0:0.1*pi:pi;y=0:0.04:1;[x,t]=meshgrid(x,y);s=0;m=length(j);%matlab可计算的最大数,相当于无穷for i=1:ms=s+(200*(1-(-1)^i))/(i*pi)*(sin(i*x).*exp(-i^2*t));end;surf(x,t,s);xlabel('x'),ylabel('t'),zlabel('T');title(' 分离变量法(无穷)');axis([0 pi 0 1 0 100]);disp(s(:,6));我们得到如下一组数据:当温度低于50度是时间为t=23.5*0.04=0.94第二种情况(取前100项和)在原来程序代码的基础上加上disp(s(:,6)); 可得出第六列(即x=pi/2)处温度随时间的变化情况x=0:0.1*pi:pi;y=0:0.04:1;[x,t]=meshgrid(x,y);r=0.04/(0.1*pi)^2;fprintf('稳定性系数S为:')disp(r);s=0;for i=1:100s=s+(200*(1-(-1)^i))/(i*pi)*(sin(i*x).*exp(-i^2*t));end;surf(x,t,s);xlabel('x'),ylabel('t'),zlabel('T');title(' 分离变量法');axis([0 pi 0 1 0 100]);disp(s(:,6));当温度低于50度是时间为t=23.5*0.04=0.94第三种情况(有限差分法)在原来程序代码的基础上加上disp(u(5,:));可得出第五行(即x=pi/2)处温度随时间的变化情况u=zeros(10,25); %t=1 x=pi 10行25列横坐标为x 纵坐标为ts=(1/25)/(pi/10)^2;fprintf('稳定性系数S为:\n');disp(s);for i=2:9u(i,1)=100;end;for j=1:25u(1,j)=0;u(10,j)=0;end;for j=1:24for i=2:9u(i,j+1)=s*u(i+1,j)+(1-2*s)*u(i,j)+s*u(i-1,j);endenddisp(u);[x,t]=meshgrid(1:25,1:10);surf(x,t,u);xlabel('t'),ylabel('x'),zlabel('T');title(' 有限差分法解');disp(u(5,:));得到如下结果我们知19列为50.3505 20列是数据为47.8902 所以时间t为20*0.04=0.78结论:比较一二三种情况,我们得到不同的时间,这是由于:1、加和不同一种为100,一种为无穷;2、采用的方法不同:一种为分离变量法,一种为有限差分法造成的。
matlab傅里叶谱方法求解热传导方程

文章标题:深度解析matlab傅里叶谱方法求解热传导方程在工程学和科学领域中,热传导方程是一个非常重要的偏微分方程,描述了物体内部温度分布随时间的变化。
而傅里叶谱方法是一种常用的数值求解方法,能够高效地对热传导方程进行求解。
本文将深入探讨matlab傅里叶谱方法在求解热传导方程中的应用,以及该方法在实际工程中的意义。
1. 热传导方程的基本概念热传导方程是描述物体内部温度分布随时间演化的方程。
一维情况下,热传导方程可以表示为:$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partialx^2}$$其中,$u(x,t)$是位置$x$和时间$t$的温度分布函数,$\alpha$是热扩散系数。
对于二维、三维情况,热传导方程的形式也可以相应拓展。
2. matlab傅里叶谱方法的基本原理傅里叶谱方法是一种基于傅里叶级数展开的数值求解方法。
它的基本思想是将热传导方程通过傅里叶变换转化为频域上的方程,再通过离散化的方式进行求解。
在matlab中,可以利用快速傅里叶变换(FFT)来高效地实现傅里叶谱方法。
该方法的优点是高精度、高效率,并且适用于多维情况。
3. matlab傅里叶谱方法的具体实现在matlab中,可以通过编写相应的程序来实现对热传导方程的求解。
首先需要将热传导方程进行离散化,得到一个离散的时间和空间网格。
然后利用傅里叶变换将热传导方程转化为频域上的方程,通过FFT算法高效地求解。
最后再利用逆傅里叶变换将频域上的解转化为时域的解。
通过这一系列步骤,就可以在matlab中实现对热传导方程的高效求解。
4. 实际工程中的应用与意义matlab傅里叶谱方法在实际工程中有着广泛的应用与意义。
例如在材料科学中,可以利用该方法对材料的热传导特性进行建模和仿真。
在电子工程领域,也可以利用该方法对电路元件的热特性进行分析和优化。
另外,在生物医学工程中,对人体组织的热传导特性进行研究也可以借助matlab傅里叶谱方法来实现。
一维热传导方程matlab程序

一维热传导方程matlab程序一维热传导方程是研究物体在一维情况下的温度分布变化的方程,其数学表达式为:∂u/∂t = α∂²u/∂x²其中,u表示温度,t表示时间,x表示空间位置,α表示热扩散系数。
为了求解一维热传导方程,我们可以采用有限差分法来进行数值计算。
具体来说,我们可以将时间和空间进行离散化,然后利用差分公式来逼近偏微分方程。
下面是一维热传导方程的matlab程序:% 定义参数L = 1; % 空间长度T = 1; % 时间长度N = 100; % 空间网格数M = 1000; % 时间网格数dx = L/N; % 空间步长dt = T/M; % 时间步长alpha = 0.1; % 热扩散系数% 初始化温度分布u = zeros(N+1,1);u(1) = 100; % 左端点温度为100度% 迭代求解for k = 1:Mfor i = 2:Nu(i) = u(i) + alpha*dt/dx^2*(u(i+1)-2*u(i)+u(i-1)); endend% 绘制温度分布图像x = linspace(0,L,N+1);plot(x,u,'LineWidth',2);xlabel('位置');ylabel('温度');title('一维热传导方程的数值解');在上述程序中,我们首先定义了一些参数,包括空间长度L、时间长度T、空间网格数N、时间网格数M、空间步长dx、时间步长dt 以及热扩散系数alpha。
然后,我们初始化了温度分布,将左端点的温度设为100度。
接下来,我们使用双重循环来迭代求解温度分布,最后绘制出了温度分布的图像。
通过这个程序,我们可以方便地求解一维热传导方程,并得到其数值解。
当然,如果需要更精确的结果,我们可以增加空间网格数和时间网格数,来提高计算精度。
一维非定常热传导方程的求解及matlab源程序

一维非定常热传导方程的求解及matlab 源程序1、计算模型本题计算的模型示意图如图1所示,在已知两边界点温度数值的情况下,根据一维非定常热传导方程,求解整个计算域长度上的温度分布。
一维非定常热传导方程为0x Tt T 22=∂∂⋅-∂∂α,式中α=1。
总长为10m ,两端的边界数值分别为T0=100℃和Tn=300℃。
计算域内的热传导满足方程:∂T ∂t −∂∙∂2T∂X2=0图1 一维非定常热传导方程计算模型示意图2、数值分析方法在本题的计算过程中,用到的数值分析方法有:差分近似导数,追赶法解三对角方程组。
对于一维非定常热传导而言,热传导参数的分布是连续的,具有无穷多个数值,它们的数值由给定的非定常热传导方程决定。
但是微分方程无法直接求解,因此通过差分近似导数的方法,将微分方程转化成代数方程,然后通过迭代即可计算出平衡时刻各个参考点的温度。
在计算时,先由一维非定常热传导的微分方程,推导出与其对应的线性方程,将第i 个时间层上某个离散点处的温度用第i-1个时间层上某些点的温度数值来表示。
这样在求解过程中,先假定第0时间层的时刻各参考点的温度初值,然后运用线性方程组推导出第1时间层时刻,各个参考点的温度数值,再求第2时间层时刻各个参考点处的温度数值,依次类推,直到相邻时间层上的速度残差达到预先设定的收敛要求为止。
此计算模型中给定的左边界温度值为T0=100℃,右边界温度值为Tn=300℃,均恒定不变。
总长度10m 进行N 等分。
3、数值计算过程一维非定常热传导方程为:0x T t T 22=∂∂⋅-∂∂α,移项处理得:22xT t T ∂∂⋅=∂∂α一阶向前差分:t T ∂∂=t 1n ∆-+nii T T ;二阶中心差分:()211222x T x T T T ni n i n i ∆+⋅-⋅∂=∂∂⋅∂-+; 因此可化简为代数方程为:()2111n 2t x T T T T T ni n i n i n i i ∆+⋅-⋅∂=∆--++ ; 即 ()()nin i n i n i iT T T T x tT ++⋅-⋅∆∆⋅∂=-++1121n 2;用()n i n i T T 11121++++代替n i T 1+,用()n i n i T T ⋅-⋅-+22211代替n i T ⋅-2,用()ni n i T T 11121-+-+代替n i T 1-,即: ()()()()()⎥⎦⎤⎢⎣⎡++⋅-⋅-++⋅∆∂=∆+⋅-⋅∂=∆--+-++++-++n i n i n i n i n i n i n i n i n i n i i T T T T T T x x T T T T T 111111122111n 212221212t ()()()()()n i n i n i n i n i n i n i T T T x t T T x t T x t Tx t 1121121211222212-+++++-+⋅-⋅∆⋅∆⋅∂--=⋅∆⋅∆⋅∂+⋅⎪⎪⎭⎫ ⎝⎛∆∆⋅∂+-⋅∆⋅∆⋅∂因此,上式的含义是:第n+1个时间层上第i-1个,第i 个和第i+1个参考点处的温度值,与第n 个时间层上第i-1个,第i 个和第i+1个参考点处的温度值的关系式;代数关系式示意图如图2所示:图2代数方程式示意图令A=()22x t ∆⋅∆⋅∂,B=()21x t ∆∆⋅∂+ ,Ki=()()n i n i n i n i T T T x t T 11222-++⋅-⋅∆⋅∆⋅∂-- 则上式可化简为:Ki T A T B T A n i n i n i =⋅+⋅-⋅++++-11111即2321K T A T B T A =⋅+⋅-⋅'21232K T A K T A T B =⋅-=⋅+⋅-3432K T A T B T A =⋅+⋅-⋅112---=⋅+⋅-⋅n n n n K T A T B T A'1112----=⋅-=+⋅-⋅n n n n n K T A K T B T A⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⋅⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡--'16543'2165432B -A 0 0 0 0 0 00 0A B -A 0 0 00 0 0A B -A 0 00 0 0 0A B -A 00 0 0 0 0A B -A 0 0 0 0 0 0A B -n n K K K K K K T T T T T T当第0时间层时刻各个参考点温度已知时,方程式右侧的矩阵[K2’ K3 K4 K5 ……Kn-2 Kn-1’] ‘为已知量,系数矩阵U 也为已知量,则可以计算出第1时间层各个参考点的温度值[T2 T3 T4 T5 T6……Tn-1] ‘,并且T1=100,Tn=300。
有限差分法matlab程序一维热传导

有限差分法matlab程序一维热传导一维热传导是一个常见的物理问题,涉及到热量在一个维度上的传递和分布。
在工程和科学领域中,研究和解决一维热传导问题对于优化系统设计和预测热现象非常重要。
本文将介绍如何使用有限差分法在MATLAB中模拟一维热传导过程。
有限差分法是一种常用的数值解法,用于近似求解微分方程。
它将连续的物理问题离散化,将连续的空间和时间划分为离散的网格点,并通过近似替代微分算子来计算离散点上的数值。
在一维热传导问题中,我们可以将传热方程离散化为差分方程,然后通过迭代计算来模拟热传导过程。
我们需要定义问题的边界条件和初始条件。
对于一维热传导问题,我们通常需要给定材料的热扩散系数、初始温度分布和边界条件。
假设我们研究的是一个长为L的细杆,材料的热扩散系数为α,初始温度分布为T(x,0),边界条件为T(0,t)和T(L,t)。
接下来,我们将空间离散化为N个网格点,时间离散化为M个时间步长。
我们可以使用等距网格,将杆的长度L划分为N个小段,每段的长度为Δx=L/N。
同样,时间也被划分为M个小步长,每个步长的长度为Δt。
这样,我们可以得到网格点的坐标x(i)和时间点的坐标t(j),其中i=1,2,...,N,j=1,2,...,M。
在有限差分法中,我们使用差分近似代替偏导数项。
对于一维热传导方程,我们可以使用向前差分近似代替时间导数项,使用中心差分近似代替空间导数项。
这样,我们可以得到差分方程:(T(i,j+1)-T(i,j))/Δt = α*(T(i+1,j)-2*T(i,j)+T(i-1,j))/Δx^2其中,T(i,j)表示在位置x(i)和时间t(j)的温度。
通过对差分方程进行重排和整理,我们可以得到递推公式:T(i,j+1) = T(i,j) + α*Δt*(T(i+1,j)-2*T(i,j)+T(i-1,j))/Δx^2现在,我们可以在MATLAB中实现这个递推公式。
首先,我们需要定义问题的参数和初始条件。
matlab求解一维带内热源传热问题

matlab 求解一维带内热源传热问题解一维带有内部热源的传热问题通常涉及到热传导方程的求解。
热传导方程描述了温度场随时间和空间的变化。
一维热传导方程通常写作:22()T T Q x t xα∂∂=+∂∂ 其中:• T 是温度,• t 是时间,• x 是空间坐标,• α 是热扩散系数,• Q(x) 是热源。
解这个方程需要适当的边界条件和初始条件。
为了简化问题,我们可以考虑一个稳态(0T t∂=∂)情况。
以下是使用 MATLAB 求解一维带有内部热源的传热问题的简单示例代码:% 参数设置L = 1; % 区域长度alpha = 0.01; % 热扩散系数Q = @(x) 1; % 内部热源% 空间离散化N = 100; % 离散网格数x = linspace(0, L, N);% 热传导方程T = zeros(1, N);T(1) = 0; % 初始条件T(N) = 100; % 边界条件% 离散格式求解dx = x(2) - x(1);dt = 0.01;num_steps = 1000;for step = 1:num_stepsfor i = 2:N-1T(i) = T(i) + alpha * dt / dx^2 * (T(i+1) - 2*T(i) + T(i-1)) + Q(x(i)) * dt;endend% 结果可视化plot(x, T);xlabel('空间坐标');ylabel('温度');title('一维带内部热源传热问题');请注意,这是一个简化的例子,具体的问题可能需要更多的考虑,例如更精确的数值方法、不同的边界条件和初始条件、更复杂的热源分布等。
这个示例主要用于演示MATLAB 中解决这类问题的基本方法。
一维稳态导热数值解法matlab

一维稳态导热数值解法matlab 在导热传输的研究中,解析方法常常难以适用于复杂的边界条件和非均匀材料性质的情况。
因此,数值解法在求解热传导方程的问题上发挥了重要作用。
本文将介绍一维稳态导热数值解法,以及如何使用MATLAB来实现。
稳态导热数值解法通常基于有限差分法(Finite Difference Method, FDM),它将连续的一维热传导方程离散为一组代数方程。
首先,我们需要将热传导方程转化为差分格式,然后利用MATLAB编写程序来求解。
下面,将具体介绍该方法的步骤。
步骤一:离散化根据一维热传导方程,可以将其离散为一组差分方程。
假设被研究的材料长度为L,将其等分为N个离散节点。
令x为节点位置,T(x)表示节点处的温度。
则可以得到以下差分方程:d²T/dx² ≈ (T(x+Δx) - 2T(x) + T(x-Δx)) / Δx²其中,Δx = L/N是节点之间的间距。
将热传导方程在每个节点处应用上述差分格式后,我们便得到了一组代表节点温度的代数方程。
步骤二:建立矩阵方程将差分方程中各节点的温度代入,我们可以将其表示为一个线性方程组。
这个方程组可以用矩阵的形式表示为Ax = b,其中A是系数矩阵,x是节点温度的向量,b是右侧项的向量。
步骤三:求解方程组使用MATLAB的线性方程求解器可以直接求解上述的线性方程组。
具体而言,通过利用MATLAB中的"\ "操作符,我们可以快速求解未知节点的温度向量x。
步骤四:结果分析与可视化在得到节点温度向量后,我们可以对结果进行可视化和分析。
例如,可以使用MATLAB的plot函数绘制温度随位置的分布曲线,以及温度随节点编号的变化曲线。
这样可以直观地观察到温度的变化情况。
总结:本文介绍了一维稳态导热数值解法以及使用MATLAB实现的步骤。
通过将热传导方程离散化为差分方程,然后建立矩阵方程并利用MATLAB的线性方程求解器求解,我们可以得到节点温度的数值解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
昆明学院2015届毕业设计(论文)设计(论文)题目一维热传导问题的数值解法及其MATLAB模拟子课题题目无姓名伍有超学号 5所属系物理科学与技术系专业年级2011级物理学2班指导教师王荣丽2015 年 5 月摘要本文介绍了利用分离变量法和有限差分法来求解一维传导问题的基本解,并对其物理意义进行了讨论。
从基本解可以看出,在温度平衡过程中,杠上各点均受初始状态的影响,而且基本解也满足归一化条件,表示在热传导过程中杆的总热量保持不变。
通过对一维杆热传导的分析,利用分离变量法和有限差分法对一维热传导进行求解,并用MATLAB 数学软件来对两种方法下的热传导过程进行模拟,通过对模拟所得三维图像进行取值分析,得出由分离变量法和有限差分法绘制的三维图基本相同,且均符合热传导过程中温度随时间、空间的变化规律,所以两种方法均可用来解决一维热传导过程中的温度变化问题。
关键词:一维热传导;分离变量法;有限差分法;数值计算;MATLAB 模拟AbstractIn this paper, the method of variable separation and finite difference method are introduced to solve the problem of one-dimensional heat conduction problems, and the physical significance of numerical methods for heat conduction problems are discussed. From the basic solution, we can see the temperature on the bar are affected by the initial state during the process of temperature balance, and basic solution also satisfy the normalization condition which implied the invariance of the total heat in the bar during the heat conduction process. Through the analysis of the one-dimensional heat conduction, by taking use of variable separation method and finite difference method, we simulated the one-dimensional heat conduction problem by MATLAB. The three-dimensional images of the simulation results obtained by the method of separation of variables and finite difference method are similar to each other, and the temperature curve is in accordance with the law of temperature variation during heat conduction. Thus, we can go to the conclusion that both methods can be used to deal with the one-dimensional heat conduction problems.Keywords: One-dimensional heat conduction; method of variable separation;finite difference method; numerical method; MATLAB simulation目录第一章绪论 (1)1.1热传导的概念 (1)1.2热质的运动和传递 (1)第二章一维热传导问题的两种数值解法 (3)2.1一维热传导问题的初值问题 (3)2.2一维热传导问题的分离变量法 (4)2.3一维热传导问题的有限差分法 (6)第三章一维有界杆热传导问题的MATLAB模拟 (9)3.1一维有界杆热传导问题 (9)3.2分离变量法的MATLAB模拟 (9)3.3有限差分法的MATLAB模拟 (12)第四章总结与展望 (18)参考文献 (19)辞 (20)第一章绪论1.1热传导的概念由于温度分布不均匀,热量从介质中温度高的地方流向温度低的地方称为热传导。
热传导是热传递三种基本方法之一,它是固体中热传递的主要方式,在不流动的液体或气体层中传递,在流动的情况下往往伴随着对流同时发生。
固体、液体以及球体热传导热传导的实质是由大量的物质分子热运动相互撞击,而使能量从高温部传至低温部分,或由高温物体传给低温物体的过程。
在固体中,热传导的微观过程是:在高温部分,晶体中结点上的微粒振动动能较大。
在温度低的部分,微粒的振动动能比较小。
因为微粒的振动互相联系,所以在晶体部就发生着微粒的振动,动能由动能大的部分分向给动能小的部分。
在固体中热的传导,就伴随着能量的迁移。
在金属物质中因为存在大量的自由电子,在不停的做无规则运动。
自由电子在热传导过程中起主要作用。
在液体中传导表现为:液体分子在温度高的区域热运动比较强,由于液体分子之间存在着相互作用,热运动的能量将逐渐向周围层传递,引起了热传导现象。
由于热传导系数小,传导较慢,它与固体相似,因而不同于气体;气体依靠分子的无规则热运动以及分子间的碰撞,在气体部发生能量的迁移,从而形成宏观上的热量传递[1]。
1.2热质的运动和传递物质具有的热能(粒子无规运动动能) 是物质能量形式之一,它又对应着物质所具有的热质量,并且可看作为是热子气的质量[2]。
物体导热过程中的热量输运对应着热质量(热子气质量) 的输运。
与对流输运不同,热质的输运是属于分子输运或扩散输运。
它可以用热子气的宏观速度(漂移速度) 来描述。
与此类似,为了能够描述和研究热子气的宏观运动,需要建立热子气运动的速度和加速度等物理量。
为了能确定热子气运动状态的变化与施加在热子气之上的非平衡作用力之间的关系,我们需要建立热质运动定律[3]。
在热质和热子气概念基础上,建立了热子气的质量、动量和能量守恒方程;基于傅立叶导热定律求得了热子气粘性力的近似式[4];傅立叶导热定律本质上是忽略惯性力条件下的热子气的压力梯度与粘性力的平衡方程,当惯性力可以忽略时,热子气的动量守恒方程退化为傅立叶导热定律。
在极低温或极高热流密度时傅立叶导热定律不再适用[5]。
在最近的20多年里,对一维体系热传导性质的研究已经从纯理论研究的兴趣延伸到了对其应用性的探讨。
自从2002年G. Casati 等人提出了利用非线性参数来控制一维体系中的热流量,例如制备热整流器(thermal rectifier)的设想和方案以来,通过组合不同性质的一维晶格体系来控制和操纵热流,制备出诸如热二极管(thermal diode)[6]、热阻(thermal resistance)、热晶体管(thermal transistor)[7]等微观热器件的研究,为人们展示了一维体系热传导研究中诱人的应用前景[8]。
第二章 一维热传导问题的两种数值解法2.1一维热传导问题的初值问题问题简述:一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,并服从规律:dSdt u u k dQ )(11-= 。
(1)又假设杆的密度为ρ,比热为c ,热传导系数为k ,式导出此时温度u 满足的方程。
(1)任取细杆中的一段),(21x x ,从时刻1t 到时刻2t 热量的增量为:()()()()dxdt t t x u cps dx t x u t x u cps Q t t x x x x ⎰⎰⎰∂∂=-=2121121,,,21 , (2) 其中24l s π=是杆的截面积,通过),(21x x 的两端流入的热量为:()()()()dxdt x t x u ks dt t x u t x u ks Q t t x x t T x x ⎰⎰⎰∂∂=-=21212212,,,221 。
(3)通过),(21x x 的侧面与周围介质发生的热交换量为:⎰⎰-=2121)(113t t x x dt ldx u u k Q π , (4)由能量守恒定律 321Q Q Q -=,以及2121,,,t t x x 的任意性得:l u u k x t x u ks t t x u s c πρ)(),(),(1122--∂∂=∂∂ , (5) 记 ρc k a =2,l c k s c l k b ρρπ1124==,可得: )(),(),(12222u u b x t x u a t t x u --∂∂=∂∂。
(6)若考虑一维热传导方程的初值问题即是Cauchy 问题[9]:()⎩⎨⎧+∞<<-∞==>+∞<<-∞=-x x u o t t x t x f u a u xx t ),(:0,,,2ϕ, (7) 求具有所需次数偏微商的函数()t x u ,,满足方 程(1)()+∞<<∞-x 和初始条件:()+∞<<-∞=x x x u ),(0,ϕ。
(8)考虑齐次热传导方程的初值问题()⎩⎨⎧+∞<<-∞==>+∞<<-∞=-x x u o t t x t x f u a u xx t ),(:0,,,2ϕ, (9) 通过推导可以推导出: ()()[]()()ξξϕπξξϕξd e t a d t e e a t x u f t x u ta x a x t x ⎰⎰∞+∞----∞--=+==22431)(2121,, 。
(10) 若考虑非齐次热传导方程的齐次初始条件[10]的初值问题:()⎩⎨⎧+∞<<-∞==>+∞<<-∞=-x u o t t x t x f u a u xx t ,0:0,,,2, (11)通过推导可以推导出解为:()()()()()τξττξπτξd d e t f a t x u t a x t ⎰⎰∞+∞----=2240,21,。
(12)若考虑非齐次热传导方程的非齐次初始条件初值问题的:()()()()()()τξττξπξξϕπτξξd d e t f a d e t a t x u t a x t t a x ⎰⎰⎰∞+∞---∞+∞---+=2222404,21)(21, 。