概率的含义
1.2事件的概率

例4 某城市的电话号码由5个数字组成,每个 数字可能是从0-9这十个数字中的任一个,求电 话号码由五个不同数字组成的概率.
解:
从10个不同数字中 取5个的排列
=0.3024
问:
保持计 数法则 的一致 性!
错在何处?
计算样本空间样本点总数和所求事件 所含样本点数计数方法不同.
需要注意的是:
1、在应用古典概型时必须注意“等可能 性”的条件.
P(A) 55 4 5 5 6 6 9
(2)事件B包含的基本事件数为mB=4×4×2+5×4=52 所以
P(B) 52 13 5 6 6 45
例:30名学生中有3名运动员,将这30名学生平均分 成3组,求: (1)每组有一名运动员的概率; (2)3名运动员集中在一个组的概率。 解:设A:每组有一名运动员;B: 3名运动员集中在一组
在许多场合,由对称性和均衡性,我们 就可以认为基本事件是等可能的并在此基础 上计算事件的概率.
2、在用排列组合公式计算古典概率时, 必须注意不要重复计数,也不要遗漏.
例:
用 0,1,2,3,4,5 这六个数字排成三位数,求
(1)没有相同数字的三位数的概率. (2)没有相同数字的三位偶数的概率.
解: 设A=没有相同数字的三位数,B表示没有相同 数字的三位偶数,则基本事件总数n=5×6×6=180 (1)事件A包含的基本事件数为mA=5×5×4 所以
NC C C
10 30
10 20
10 10
30! 10! 10! 10!
27! 3! 9! 9! 9! 50 P( A) N 203
3C C C P( B) N
7 27
10 20
10 10
概率统计公式范文

概率统计公式范文概率统计是一门研究随机事件的发生规律和数学统计方法的学科。
在概率统计中,有许多重要的公式被广泛应用于各种领域,如自然科学、社会科学、经济学等。
本文将介绍一些常用的概率统计公式,并且详细解释它们的含义和用途。
1.概率公式:-概率是表示事件发生可能性大小的数值,通常用P(A)表示事件A的概率,其中0≤P(A)≤1-事件的互斥性:如果事件A和事件B互斥(即A和B不能同时发生),则P(A∪B)=P(A)+P(B)。
-事件的相互独立性:如果事件A和事件B是相互独立的(即A的发生不受B的发生影响),则P(A∩B)=P(A)P(B)。
2.条件概率公式:-条件概率是指在已知其中一事件发生的条件下,另一事件发生的概率。
-条件概率的计算方法为P(A,B)=P(A∩B)/P(B),其中P(A,B)表示在事件B已经发生时事件A发生的概率。
3.乘法公式:-乘法公式用于计算多个事件同时发生的概率。
对于独立事件A和B,P(A∩B)=P(A)P(B)。
-对于不独立事件A和B,P(A∩B)=P(A)P(B,A)或P(A∩B)=P(B)P(A,B),其中P(B,A)表示在事件A发生的条件下事件B发生的概率。
4.全概率公式:-全概率公式用于计算一个事件的概率,通过已知该事件在多个互斥事件上的条件概率来计算。
-即P(A)=P(A,B1)P(B1)+P(A,B2)P(B2)+...+P(A,Bn)P(Bn),其中B1、B2、..、Bn为事件的所有互斥事件。
5.贝叶斯公式:-贝叶斯公式用于计算在已知其中一事件发生的条件下,另一事件发生的概率。
-贝叶斯公式为P(B,A)=P(A,B)P(B)/P(A),其中P(B,A)表示在事件A发生的条件下事件B发生的概率。
6.期望公式:- 期望是描述随机变量平均值的概念,用E(X)表示,对于离散型随机变量,期望的计算方法为E(X) = ΣxP(X=x),对于连续型随机变量,期望的计算方法为E(X) = ∫xf(x)dx,其中f(x)为概率密度函数。
概率互逆 互斥

概率互逆互斥概率是数学中一个重要的概念,它描述了事件发生的可能性大小。
而在概率论中,概率互逆和互斥是两个重要的概念。
本文将围绕这两个概念展开讨论,并探讨它们之间的关系。
我们来理解一下概率互逆的含义。
概率互逆是指两个事件的概率之和等于1。
换句话说,如果事件A的发生概率为P(A),那么事件A 不发生的概率就是1-P(A)。
同样地,如果事件B的发生概率为P(B),那么事件B不发生的概率就是1-P(B)。
如果事件A和事件B是互逆的,那么P(A)+P(B)等于1,即P(A)+P(B)=1。
接下来,我们来讨论互斥事件。
互斥事件是指两个事件不能同时发生。
如果事件A发生了,那么事件B就不能发生;反之亦然。
换句话说,事件A和事件B是互斥的,当且仅当它们的交集为空集,即A∩B=∅。
在互斥事件中,两个事件同时发生的概率为0。
那么,概率互逆和互斥之间有什么关系呢?我们可以通过一个例子来说明。
假设有一枚硬币,正面朝上的概率是P(H),反面朝上的概率是P(T)。
根据概率互逆的定义,P(H)+P(T)=1。
而根据互斥事件的定义,如果硬币正面朝上,那么反面朝上的概率就是0,即P(T|H)=0;反之亦然,即P(H|T)=0。
可以看出,在这个例子中,概率互逆和互斥是相互关联的。
在实际应用中,概率互逆和互斥常常用于描述随机事件的发生情况。
例如,在一次投掷硬币的实验中,正面朝上和反面朝上是互斥事件,它们的概率之和等于1。
又例如,在一次掷骰子的实验中,出现奇数点数和出现偶数点数是互斥事件,它们的概率之和等于1。
除了概率互逆和互斥,还有一些其他的概率相关概念。
例如,概率的加法法则和乘法法则。
概率的加法法则指的是,对于两个互不相容的事件A和B,它们的概率之和等于它们的并集的概率,即P(A∪B)=P(A)+P(B)。
概率的乘法法则指的是,对于两个独立事件A和B,它们同时发生的概率等于它们各自发生的概率的乘积,即P(A∩B)=P(A)×P(B)。
随机事件的概率及古典概型

概率的加法公式及其应用,事件的关系与运算。
一、知识导学1.必然事件:在一定的条件下必然要发生的事件.不可能事件:在一定的条件下不可能发生的事件.随机事件:在一定的条件下可能发生也可能不发生的事件. 2. 概率:实际生活中所遇到的事件包括必然事件、不可能事件和随机事件.随机事件在现实世界中是广泛存在的.在一次试验中,事件A 是否发生虽然带有偶然性,但在大量重复试验下,它的发生呈现出一定的规律性,即事件A 发生的频率nm总是接近于某个常数,在它附近摆动,这个常数就叫做事件A 的概率.记着P (A ). 0≤P (A )≤13.若在一次试验中,每个基本事件发生的可能性都相同,则称这些基本事件为等可能基本事件. 4.具有以下两个特点:(1)所有的基本事件只有有限个;(2)每个基本事件的发生都是等可能的.我们将满足上述条件的 随 机 试 验 的 概 率 模 型 称 为 古 典 概 型5.等可能事件的概率:如果一次试验中共有n种等可能出现的结果,其中事件A 包含的结果有m种,那么事件A 的概率P (A )=nm . 二、疑难知识导析1.必然事件、不可能事件、随机事件的区别与联系:必然事件是指在一定条件下必然发生的事件;不可能事件是指在一定的条件下不可能发生的事件;随机事件是指在一定的条件下可能发生也可能不发生的事件.要辨析清事件的条件和结果,理解事件的结果是相应于“一定条件”而言的,必须明确什么是事件发生的条件,什么是在此条件下产生的结果.上述三种事件都是在一定条件下的结果.2.频率与概率:随机事件A 的频率指此事件发生的次数m与试验总次数n的比值,它是随着试验次数的改变而变化的,它具有一定的稳定性,即总在某个常数p附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小,于是,我们给这个常数取个名字,叫随机事件的概率.因此,概率从数量上反映了随机事件发生的可能性的大小;而频率在大量重复试验的前提下,可近似地作为这个事件的概率.即概率是频率的稳定值,频率是概率的近似值.3.必然事件的概率为1,不可能事件的概率为0,随机事件的概率:0<P (A )<1,这里要辩证地理解它们的概率:必然事件和不可能事件可以看作随机事件的两个极端,它们虽是两类不同的事件,但在一定的情况下又可以统一起来,即任意事件A 的概率满足:0≤P (A )≤14.等可能事件的理解:一次试验中所有可能的n个基本结果出现的可能性都相等,这n个结果对应着n个基本事件.对等可能事件的理解,其实质在于对等可能性的理解.“等可能性”指的是结果,而不是事件.例如抛掷两枚均匀的硬币,可能出现“两个正面”“两个反面”“一正一反”“一反一正”这四种结果,每一种结果的可能性相等,都是0.25;而出现“两个正面”“两个反面”“一正一反”这三种结果就不是等可能的.5.注意用集合的观点来看概率,运用图式法来弄清各事件之间的关系.对古典概率来说,一次试验中等可能出现的几个结果组成一个集合I ,其中各基本事件均为集合I 的含有一个元素的子集,包括m个基本事件的子集A ,从而从集合的角度来看:事件A 的概率是子集A 的元素的个数与集合I 的元素个数的比值,即P (A )=nm.因此,可以借助集合的表示法来研究事件,运用图示法弄清各事件的关系,从而做到较深刻的理解. 6.互斥事件:不可能同时发生的两个事件.如果事件A 、B 、C ,其中任何两个都是互斥事件,则说事件A 、B 、C 彼此互斥.当A ,B 是互斥事件时,那么事件A +B 发生(即A ,B 中有一个发生)的概率,等于事件A ,B 分别发生的概率的和.P (A +B )=P (A )+P (B ).如果事件A 1、A 2、…、A n彼此互斥,那么事件A 1+A 2+…+A n发生(即A 1、A 2、…、A n中有一个发生)的概率,等于这n个事件分别发生的概率的和.7.对立事件:其中必有一个发生的两个互斥事件.事件A 的对立事件通常记着A .对立事件的概率和等于1.P (A )=1-P (A )8.相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件.当A ,B 是相互独立事件时,那么事件A ∙B 发生(即A ,B 同时发生)的概率,,等于事件A ,B 分别发生的概率的积.P (A ∙B )=P (A )∙P (B ).如果事件A 1、A 2、…、A n相互独立,那么事件A 1∙A 2∙…∙A n发生(即A 1、A 2、…、A n同时发生)的概率,等于这n个事件分别发生的概率的积.二.古典概型:概率内容的新概念较多,相近概念容易混淆,本文就学生易犯错误作如下总结:类型一 “非等可能”与“等可能”混同例1掷两枚骰子,求所得的点数之和为6的概率.错解 掷两枚骰子出现的点数之和2,3,4,…,12共11种基本事件,所以概率为P=111剖析 以上11种基本事件不是等可能的,如点数和2只有(1,1),而点数之和为6有(1,5)、(2,4)、(3,3)、(4,2)、(5,1)共5种.事实上,掷两枚骰子共有36种基本事件,且是等可能的,所以“所得点数之和为6”的概率为P=536. 类型二 “互斥”与“对立”混同例2 把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与“乙分得红牌”是A .对立事件B .不可能事件C .互斥但不对立事件D .以上均不对 错误答案:A剖析 本题错误的原因在于把“互斥”与“对立”混同,要准确解答这类问题,必须搞清对立事件与互斥事件的联系与区别,这二者的联系与区别主要体现以以下三个方面: (1)两事件对立,必定互斥,但互斥未必对立;(2)互斥的概念适用于多个事件,但对立概念只适用于两个事件;(3)两个事件互斥只表明这两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生;而两事件对立则表示它们有且仅有一个发生.事件“甲分得红牌”与“乙分得红牌”是不能同时发生的两个事件,这两个事件可能恰有一个发生,一个不发生,可能两个都不发生,所以应选C . 类型三 “互斥”与“独立”混同例3 甲投篮命中率为O .8,乙投篮命中率为0.7,每人投3次,两人恰好都命中2次的概率是多少?错解 设“甲恰好投中两次”为事件A ,“乙恰好投中两次”为事件B ,则两人都恰好投中两次为事件A+B ,P(A+B)=P(A)+P(B): 2222330.80.20.70.30.825c c ⨯+⨯=剖析 本题错误的原因是把相互独立同时发生的事件当成互斥事件来考虑,将两人都恰好投中2次理解为“甲恰好投中两次”与“乙恰好投中两次”的和.正确解答:设“甲恰好投中两次”为事件A ,“乙恰好投中两次”为事件B ,且A ,B 相互独立,则两人都恰好投中两次为事件A·B,于是P(A·B)=P(A)×P(B)= 2222330.80.20.70.30.169c c ⨯+⨯≈.例4 某家庭电话在家中有人时,打进的电话响第一声时被接的概率为0.1,响第二声时被接的概率为O .3,响第三声时被接的概率为0.4,响第四声时被接的概率为0.1,那么电话在响前4声内被接的概率是多少? 错解 分别记“电话响第一、二、三、四声时被接”为事件A 1、A 2、A 3、A 4,且P(A1)=0.1, P(A 2)=0.3,P(A 3)=O .4,P(A 4)=0.1,则电话在响前4声内被接的概率为P=P(A 1)·P(A 2)· P(A 3)·P(A 4)=0.1×0.3×0.4×0.1=0.0012.剖析 本题错解的原因在于把互斥事件当成相互独立同时发生的事件来考虑.根据实际生活中的经验电话在响前4声内,每一声是否被接彼此互斥.所以,P=P(A 1)十P(A 2)+P(A 3)+P(A 4)=0.1+0.3+0.4+0.1=0.9.点评 以上两例错误的原因都在于把两事件互斥与两事件相互独立混同,互斥事件是指两个事件不可能同时发生;两事件相互独立是指一个事件的发生与否对另一个事件发生与否没有影响,它们虽然都描绘了两个事件间的关系,但所描绘的关系是根本不同.类型四 “条件概率P(B / A)”与“积事件的概率P(A·B)”混同例5 袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次,求第二次才取到黄色球的概率.错解 记“第一次取到白球”为事件A ,“第二次取到黄球”为事件B,”第二次才取到黄球”为事件C,所以P(C)=P(B/A)=6293=. 剖析 本题错误在于P(A ⋅B)与P(B/A)的含义没有弄清, P(A ⋅B)表示在样本空间S 中,A 与B 同时发生的概率;而P (B/A )表示在缩减的样本空间S A 中,作为条件的A 已经发生的条件下事件B 发生的概率。
沪教版(上海)八年级数学第二学期-第二十三章概率初步-教案设计

沪教版(上海)八年级数学第二学期-第二十三章概率初步-教案设计第二十三章概率初步【教学目标】1.知道概率的含义,会用符号表示一个事件的概率。
2.知道各种事件发生的可能性大小有不同,能根据经验判断一些随机事件发生的可能性的大小并排出大小顺序3.会根据大数次试验所得频率估计事件的概率。
【教学重难点】1.理解随机事件发生的频率的意义;2.会根据大数次试验所得频率估计事件的概率。
体会从特殊到一般的数学思维3.正确判断确定事件和随机事件,联系实际判断事件发生的可能性的大小。
【第一课时】【教学过程】一、思考与探究。
1.复习引入“上海地区明天降水”是什么事件?结论:随机事件。
2.天气预报“上海地区明天降水概率80%”与“上海地区明天降水概率50%”它们有什么异同点?共同点:都是随机事件;不同点:降水概率80%——很有可能降水;降水概率60%——也是很有可能降水;但是可能的程度略低。
二、概率的定义:1.概率:用来表示某事件发生的可能性大小的数叫做这个事件的概率。
2.事件发生的概率的取值要求不可能事件:如果用V表示,则概率为0:P(V)=0;必然事件:如果用U表示,则概率为1:P(U)=1;随机事件:一般用A表示,则概率介于0到1之间;P(A)——纯小数、真分数、百分数等表示。
练习1:写出下列事件的概率:(若是很可能发生的事件,填“接近1”,若是小概率事件,填“接近0”)1.用A表示“上海天天是晴天”,则P(A):________。
2.用B表示“新买的圆珠笔写得出字”,则P(B)____。
3.用C表示“坐火车出行,遭遇出轨”,则P(C)____。
4.用D表示“当m是正整数时,2m是偶数”,则P(D)。
三、用频率估计概率。
1.介绍频数和频率:以上操作中总共摸牌的次数称为“试验总次数”,抽到红桃的次数称为这一事件发生的“频数”;“频数÷总次数”即是这一事件发生的频率。
2.【活动】全班31名同学,分为5组,每组一名组长,一名书记员,组长在一副扑克牌中取红桃、梅花、方块各一张牌混合放在一起,其他组员从中任意摸出一张牌,书记员记录摸牌的次数和各种花色出现的次数,最后计算每种花色出现的频率。
概率的概念和含义

【本讲教育信息】一. 教学内容:概率的概念和含义教学目标:1. 知识与技能目标(1)明确通过试验的方法,用频率估计概率的大小,必须要求实验是在相同的条件下进行的。
(2)了解在相同条件下,实验次数越多,就越有可能得到较高的估计值,但每个人所得的值也并不一定相同。
(3)能用实验的频率估计概率的大小。
(4)通过试验,理解当试验次数足够大时,试验频率稳定于理论频率,并据此估计某一事件发生的概率。
2. 过程与方法目标(1)通过实验的方法,学会用频率估计概率的大小。
(2)通过观察比较,体会用实验解决一些实际问题的方法。
(3)经历多次试验统计的过程,初步体会概率的含义。
3. 情感态度与价值观目标(1)通过观察、实验、归纳、体验数学活动的探索性和创造性,培养学生合作学习的能力,并学会与他人交流。
(2)在试验中,进一步发展合作交流的能力,体会概率是反映现实生活中事件可能性大小的模型。
二. 重点、难点:重点:随机现象与决定性现象的区别,求随机事件的概率,理解概率的含义。
难点:求随机事件的概率,概率含义的实际应用。
知识要点归纳:1. 决定性现象和随机现象决定性:在每次实验中一定发生的现象。
随机现象:在每次实验中,有时发生,有时不发生的现象称随机现象。
2. 概率的概念在随机现象中一个事件发生的可能性大小叫做这个事件的概率。
3. 特别说明(1)概率是一个不超过1的非负实数。
(2)在随机现象中,做了大量试验后,一个事件发生的频率可以作为这个事件的概率的近似值。
(3)概率是在随机现象中一个事件发生的可能性的大小。
(4)决定性现象一定发生,随机现象不一定发生。
4. 概率的含义表示一个事件发生的可能性大小的这个数,叫做该事件的概率。
说明:概率的含义必须表示在大量的反复试验中。
【典型例题】例1. 在每个事件后面的括号里填上“决定性现象”和“随机现象”。
(1)如果a =b ,则a b 22=。
( )(2)如果两个角相等,则这两个角是对顶角。
概率的意义

思考7:在遗传学中有下列原理: (1)纯黄色和纯绿色的豌豆均由两个特 征因子组成,下一代是从父母辈中各随 机地选取一个特征组成自己的两个特征. (2)用符号YY代表纯黄色豌豆的两个特 征,符号yy代表纯绿色豌豆的两个特征. (3)当这两种豌豆杂交时,第一年收获 的豌豆特征为:Yy.把第一代杂交豌豆再 种下时,第二年收获的豌豆特征为: YY, Yy,yy.
2、决策中的概率思想
思考2:某中学高一年级有12个班,要从 中选2个班代表学校参加某项活动。由于 某种原因,一班必须参加,另外再从二 至十二班中选1个班.有人提议用如下的 方法:掷两个骰子得到的点数和是几, 就选几班,你认为这种方法公平吗?哪 个班被选中的概率最大? 不公平,因为各班被选中的概率不全相 等,七班被选中的概率最大.
思考3:试验:全班同学各取一枚同样的 硬币,连续抛掷两次,观察它落地后的 朝向.将全班同学的试验结果汇总,计算 三种结果发生的频率.你有什么发现?随 着试验次数的增多,三种结果发生的频 率会有什么变化规律?
“两次正面朝上”的频率约为0.25, “两次反面朝上” 的频率约为0.25, “一次正面朝上,一次反面朝上” 的频率约为0.5.
4、遗传机理中的统计规律 豌豆杂交试验的子二代结果
性状 的 5474 性状 茎的高度 长茎 787 隐性 绿色 2001 皱皮 短茎 1850 277
思考6:你能从这些数据中发现什么规律吗?
孟德尔的豌豆实验表明,外表完全相同 的豌豆会长出不同的后代,并且每次试 验的显性与隐性之比都接近3︰1,这种 现象是偶然的,还是必然的?我们希望 用概率思想作出合理解释.
思考3:如果连续10次掷一枚骰子,结果 都是出现1点,你认为这枚骰子的质地是 均匀的,还是不均匀的?如何解释这种 现象? 这枚骰子的质地不均匀,标有6点的那面 比较重,会使出现1点的概率最大,更有 可能连续10次都出现1点. 如果这枚骰子 的质地均匀,那么抛掷一次出现1点的概 率为,连续10次都出现1点的概率 1 为 . 0.000000016538 6 这是一个小概率事件,几乎不可能发生.
几率效应的名词解释

几率效应的名词解释几率效应(Probability effect)是指在决策过程中常常会受到概率的错觉影响。
这一效应意味着人们在面对概率情境时,往往会出现与逻辑相悖的判断或决策。
为了更好地理解几率效应,我们需要从概率、心理学以及行为经济学的角度对其进行解析。
一、概率的本质与特性概率是描述事件发生可能性的数值量度,常用0到1之间的概率值表示。
这一概念是在18世纪由数学家拉普拉斯提出的,其数学表示为事件发生的次数与实验次数的比值。
然而,概率并非直观可感知的量,我们需要借助概率的可视化或实例来帮助我们理解。
二、几率效应的心理学解释几率效应的存在源于人类心理对于概率判断的特殊模式。
通过心理学的研究发现,人们在面对概率时,往往会受到几种因素的影响,导致判断出现偏差。
其中,最突出的几率效应表现为人们对于概率的主观评估和实际概率之间存在较大的偏差。
例如,当人们面对一项可能性为90%的事件时,他们常常会认为该事件几乎是必然发生的。
反之,当事件的概率仅为10%时,人们往往会过于乐观地认为事件不会发生。
这种主观评估与实际概率发生偏差的现象即为几率效应。
三、几率效应的行为经济学视角行为经济学研究人们在决策中的行为模式,揭示了几率效应的深层次原因。
考虑到人们的逃避风险倾向和寻求损益平衡的心理特点,几率效应可以被解释为人们对风险的特殊态度。
具体来说,人们在面对潜在损失时更容易为此付出努力,而在可能获得收益时却相对不愿意冒风险。
这种行为模式导致了人们对于高概率事件过于乐观,对于低概率事件过于悲观的看法。
这种非理性的决策模式,在某种程度上,可能导致人们无法准确评估概率和风险,从而影响决策的质量。
四、调整几率效应的方法了解几率效应的存在以及其潜在的影响,对我们的决策而言是至关重要的。
那么,如何有效地应对几率效应呢?首先,我们需要加强概率与现实的联系。
通过分析实际数据、案例和实际情境,我们可以更好地理解概率的含义和应用,减少主观评估的偏差。