2018~2019学年济南外国语学校初二下学期期末数学试卷(详解)

合集下载

山东省济南市外国语学校小升初数学试卷带答案(最新)

山东省济南市外国语学校小升初数学试卷带答案(最新)

山东省济南市外国语学校小升初数学试卷一.(共8题,共16分)1.下面各项中成反比例关系的是()。

A.工作总量一定,工作时间和工作效率B.正方形的边长和面积C.长方形的周长一定,长和宽D.三角形的高一定,底和面积2.小明向东走了150米,然后又向西走了80米;如果小明向东走记作+150米,向西记作-80米,这时小明离原地多少米用正负数表示为()。

A.+230米B.-70米C.+70米D.-230米3.妈妈按八五折优惠价格买了5张游乐园门票,一共用了340元,每张游乐园门票的原价是()元。

A.68B.400C.80D.57.84.青少年的标准身高是170cm,小明的身高是162cm,记作-8cm,小刚的身高是175cm,应记作()cm。

A.+175B.-175C.+5D.-55.一种食品包装上标有“质量:500克±5克”质检员随机抽检了5袋,质量分别是496克、495克、506克、492克、507克。

其中有()袋不合格。

A.1B.2C.3D.46.张远按下边的利率在银行存了10000元,到期算得税前的利息共612元,他存了()年。

A.五B.三C.二D.一7.下列说法中错误的是()。

A.收入500元记作+500元,则支出200元记作-200元。

B.如果体重增加5千克记作+5kg,则-2kg表示体重下降2千克。

C.如果把生产成本增加15元记作+15元,则0表示没有成本。

D.如果把指针逆时针旋转45度记作-45度,则指针顺时针旋转30度记作+30度。

8.一张长方形纸,长6.28分米,宽3.14分米,如果以它为侧面,那么以下()的圆形纸片能和它配成圆柱体.A.直径1厘米B.半径1分米C.周长9.42分米D.面积18.5平方厘米二.(共8题,共16分)1.甲乙两数之比是5:7,乙数比甲数多40%。

()2.一块地的产量,今年比去年增长二成五,就是增长十分之二点五。

()3.两个量成正比例,那么一个量变大,另一个量会变小。

往年云南八下期中物理试卷及答案解析(2022整理版)

往年云南八下期中物理试卷及答案解析(2022整理版)

云南八下期中试卷1一、选择题1、【来源】 2018~2019学年云南曲靖马龙区马龙县通泉镇中学校初二下学期期中第1题2018~2019学年4月陕西西安新城区西安爱知中学初三下学期月考第10题2分2018~2019学年山东淄博高青县初二下学期期中第3题2018~2019学年北京西城区北京师范大学附属中学初二下学期期中第11题2分2019~2020学年天津和平区天津市双菱中学初二下学期期中第13题在图所示实验中,将小铁球从斜面顶端由静止释放,观察到它在水平桌面上运动的轨迹如图甲中虚线OA所示.在OA方向的侧旁放一磁铁,再次将小铁球从斜面顶端由静止释放,观察到它在水平桌面上运动的轨迹如图乙中虚线OB所示.由上述实验现象可以得出的结论是()A. 小铁球在桌面上继续运动是由于受到向前的作用力B. 磁铁对小铁球没有作用力C. 力可以改变小铁球的运动方向D. 力可以使小铁球发生形变2、【来源】 2018~2019学年云南曲靖马龙区马龙县通泉镇中学校初二下学期期中第2题2019~2020学年吉林长春朝阳区长春外国语学校初二下学期期末第5题2分2020年江苏扬州宝应县初三中考一模第8题2分2018年湖南衡阳中考真题第5题2分2018~2019学年3月内蒙古呼伦贝尔阿荣旗阿荣旗得力其尔中学初二下学期月考第16题如图所示,若小球向右摆动到最低点时绳子断裂,假设所有力同时消失,此后,小球的运动情况是()A. 匀速直线下落B. 匀速直线上升C. 匀速直线斜向上运动D. 沿水平方向向右做匀速直线运动3、【来源】 2018~2019学年云南曲靖马龙区马龙县通泉镇中学校初二下学期期中第3题质量相等的甲、乙两同学站在滑板上,在旱冰场上相对而立,如果甲用60N的力推乙,如图所示.以下分析正确的是()A. 甲、乙同时向后退,乙对甲的推力小于60NB. 甲静止不动,乙向后退C. 乙后退的过程中,始终受到60N推力的作用D. 乙由静止变为后退,说明力可以改变物体的运动状态4、【来源】 2018~2019学年云南曲靖马龙区马龙县通泉镇中学校初二下学期期中第4题2018~2019学年福建福州鼓楼区福州励志中学初二下学期期中第3题2018~2019学年黑龙江双鸭山宝清县宝清县第四中学初二下学期期中第2题2020~2021学年广东中山市石岐区中山市华侨中学初二下学期期中第1题3分2020~2021学年河北石家庄裕华区石家庄市第四十四中学初二下学期期中第3题3分关于惯性,下列说法中正确的是()A. 物体静止时有惯性,运动时没有惯性B. 物体保持静止或匀速直线运动状态时才有惯性C. 物体受力作用时才有惯性D. 物体的惯性与运动状态或是否受力无关5、【来源】 2018~2019学年云南曲靖马龙区马龙县通泉镇中学校初二下学期期中第5题2018~2019学年贵州毕节地区织金县织金县第六中学初二下学期期中第2题观察图中的四个情境,找出它们的共同特征,可以归纳得出的结论是()A. 力可以改变物体形状B. 力可以改变物体运动的方向C. 力可以改变物体运动速度大小D. 力的作用效果与力的作用点有关6、【来源】 2018~2019学年云南曲靖马龙区马龙县通泉镇中学校初二下学期期中第6题2019~2020学年山东泰安岱岳区初三下学期期末(五四制)第8题3分如图所示三个容器,底面积相等,若都装入相同质量的酒精,则酒精对容器底部的压强()A. 一样大B. A最大C. B最大D. C最大7、【来源】 2018~2019学年云南曲靖马龙区马龙县通泉镇中学校初二下学期期中第7题2018~2019学年甘肃兰州城关区兰州外国语学校初二下学期期末(兰州八中、兰州五十六中、兰州五十三中联考)第12题3分三峡船闸是世界上最大的人造连通器,如图是轮船通过船闸的示意图,此时上游阀门A打开,下游阀门B关闭.下列说法正确的是()A. 闸室和上游水道构成连通器,水对阀门A右侧的压力大于左侧的压力B. 闸室和上游水道构成连通器,水对阀门A两侧的压力相等C. 闸室和下游水道构成连通器,水对阀门B右侧的压力大于左侧的压力D. 闸室和下游水道构成连通器,水对阀门B两侧的压力相等8、【来源】 2018~2019学年云南曲靖马龙区马龙县通泉镇中学校初二下学期期中第8题2018~2019学年四川广安武胜县初二下学期期末第7题2分2019~2020学年5月山东青岛市南区青岛大学附属中学初二下学期开学考试第4题2分2020~2021学年四川成都邛崃市初二下学期期中第11题2分2020~2021学年4月四川成都武侯区成都市棕北中学初二下学期月考第13题2分如图所示的实例中,为了增大压强的是()A.安全锤一端做成锥形B.坦克的履带非常宽C.铁轨下铺放很多轨枕D.滑雪板的面积比较大二、填空题9、【来源】 2018~2019学年云南曲靖马龙区马龙县通泉镇中学校初二下学期期中第9题天花板上悬挂着一只吊灯,灯绳对灯的拉力和灯受到的是一对平衡力,灯对灯绳的拉力和灯绳对灯的拉力是一对.10、【来源】 2018~2019学年云南曲靖马龙区马龙县通泉镇中学校初二下学期期中第10题2019~2020学年6月江苏苏州工业园区星港学校初二下学期周测D卷第17题2分2018~2019学年江西南昌东湖区南昌十九中学初二下学期期末第9题如图所示,一把太阳伞固定在地面上,一阵大风吹来,伞面被“吸”,严重变形.伞面被(“向下”或“向上”)“吸”,伞上方的空气流速(填“大于”“小于”或“等于”)下方的空气流速.11、【来源】 2018~2019学年云南曲靖马龙区马龙县通泉镇中学校初二下学期期中第11题举世闻名的马德堡半球实验证明了的存在,如果做托里拆利实验时,不用水银而用水,玻璃管至少应该长m.(ρ水=1.0×103kg/m3,大气压为1.0×105Pa,g取10N/kg)12、【来源】 2018~2019学年云南曲靖马龙区马龙县通泉镇中学校初二下学期期中第12题用一30N的力将一质量为2kg的物体压在竖直的墙壁上不动,如图所示,则物体受到的摩擦力为N,方向.13、【来源】 2018~2019学年云南曲靖马龙区马龙县通泉镇中学校初二下学期期中第13题一个游泳池水深2m,池底受到水产生的压强是Pa;当向游泳池中继续注水时,随着水面的升高池底受到水的压强将.(取g=10N/kg)14、【来源】 2018~2019学年云南曲靖马龙区马龙县通泉镇中学校初二下学期期中第14题如图所示,两支相同的试管内盛同种液体.甲管竖直放置,乙管倾斜放置,两管液面相平,比较两管中液体的质量m甲m乙,液体对管底压强的大小p 甲p乙.(填“大于”“等于”或“小于”).15、【来源】 2018~2019学年云南曲靖马龙区马龙县通泉镇中学校初二下学期期中第15题2018~2019学年陕西西安雁塔区西安市曲江第一中学初二下学期期末第30题2分2018~2019学年江西宜春丰城市初二下学期期末第5题如图所示,在小瓶里装一些带颜色的水,再取一根两端开口的细玻璃管,在它上面画上刻度,使玻璃管穿过橡皮塞插入水中,从管子上端吹入少量气体,就制成了一个简易的气压计,小明把气压计从山脚带到山顶的水平地面上,玻璃管内水柱的高度,大气压强.(填“变小”“不变”或“变大”)16、【来源】 2018~2019学年云南曲靖马龙区马龙县通泉镇中学校初二下学期期中第16题如图所示的实验装置可以测出大气压的值,这个实验最早是由意大利科学家做的,在本实验中所用的液体是水银,水银的密度为13.6×103kg/ m3,则他所测量的大气压的值约Pa(g取9.8N/kg).17、【来源】 2018~2019学年云南曲靖马龙区马龙县通泉镇中学校初二下学期期中第17题2018~2019学年江西宜春丰城市初二下学期期末第1题滑板车深受青少年的喜爱,小明正“驾驶”滑板车向前滑行.小明一脚站立其上,另一只脚不时用力向后蹬地,使滑板车前进,这说明物体间力的作用是,当小明蹬一下地后双脚离地,滑板车由于向前滑行一段距离.18、【来源】 2018~2019学年云南曲靖马龙区马龙县通泉镇中学校初二下学期期中第18题2018~2019学年江西宜春丰城市初二下学期期末第4题2018~2019学年5月甘肃武威凉州区武威市第五中学初二下学期月考第17题2017~2018学年5月江苏苏州吴中区初二下学期月考第16题2分2016年江西中考真题第4题2分如图所示,是在冰面上行走时,套在鞋上的冰爪,爪做得尖而细是通过受力面积来增大压强,从而摩擦,便于行走、防止摔跤.(选填“增大”或“减小”)三、作图、实验探究题19、【来源】 2018~2019学年云南曲靖马龙区马龙县通泉镇中学校初二下学期期中第19题如图,弹簧测力计的读数是N.20、【来源】 2018~2019学年云南曲靖马龙区马龙县通泉镇中学校初二下学期期中第20题质量为200g的子弹在枪膛中受到火药的推力为500N,不考虑空气阻力,画出子弹在空中飞行时受到的力的图示.(g=9.8N/kg)21、【来源】 2018~2019学年云南曲靖马龙区马龙县通泉镇中学校初二下学期期中第21题如图所示,画出物块B对斜面压力的示意图.22、【来源】 2018~2019学年云南曲靖马龙区马龙县通泉镇中学校初二下学期期中第22题2018~2019学年山东济南市中区济南第六十八中学初二下学期期中第32题在探究“压力的作用效果与哪些因素有关”实验中,小邹同学用一块海绵和两块规格相同的长方体砖块做了如图所示的一系列实验,请仔细观察,并分析回答下列问题:(1) 压力的作用效果的大小是通过比较海绵的程度来确定.(2) 分析比较图乙和丙的实验现象,可以得出结论:.(3) 分析比较图的实验现象,可得出结论:当受力面积相同时,压力越大,压力的作用效果越显著.(4) 进一步综合分析图甲、乙、丙和丁的实验现象,并归纳得出结论:.23、【来源】 2018~2019学年云南曲靖马龙区马龙县通泉镇中学校初二下学期期中第23题小梁同学用实验测量某地大气压的值,她在长约1米,一端封闭的玻璃管里灌满水银,用手指将管口堵住,然后倒插在水银槽中,放开手指,管内水银面下降到一定高度时就不再下降,如图所示.(1) 从图中可知大气压值等于mm水银柱产生的压强.(2) 往玻璃管中倒入水银时,要倒满是为:.(3) 将玻璃管倾斜放置,管内与管外水银面高度差将将玻璃管向上提一段高度,管口仍在水银槽内,此时,管内与管外水银面高度差将.(4) 将玻璃管顶部敲一个小孔,你认为会出现的现象是:.24、【来源】 2018~2019学年云南曲靖马龙区马龙县通泉镇中学校初二下学期期中第24题2018~2019学年黑龙江鸡西密山市密山市实验中学初二下学期期中第30题2016~2017学年北京朝阳区清华大学附属中学朝阳学校初二下学期期中第33题6分2015~2016学年陕西西安莲湖区初二下学期期末第28题12分2017~2018学年天津河东区初二下学期期中第三学区片联盟联考第21题6分在研究液体压强的实验中,进行了如图所示的操作:(1) 实验前,应调整U型管压强计,使左右两边玻璃管中的液面.(2) 甲、乙两图是探究液体压强与的关系.(3) 要探究液体压强与盛液体的容器形状是否有关,应选择两图进行对比,结论是:液体压强与盛液体的容器形状.(4) 要探究液体压强与密度的关系,应选用两个图进行对比.(5) 在图丙中,固定U型管压强计金属盒的橡皮膜在盐水中的深度,使金属盒处于:向上、向下、向左、向右等方位,这是为了探究同一深度处,液体向的压强大小关系.四、综合题25、【来源】 2018~2019学年云南曲靖马龙区马龙县通泉镇中学校初二下学期期中第25题寒假期间,小红一家来到陕西省茵篓市临潼区秦始皇陵参观兵马俑.参观时发现,秦俑脚下都踏踩着一块正方形或长方形的踏板,如图所示.为了弄清这种制作的好处,她收集了一尊站立姿态兵马俑的有关数据:体重(含踏板)1600N,踏板面积1.6×10−2m2.问:(g取10N/kg)(1) 这尊兵马俑(含踏板)的质量是多少.(2) 这尊兵马俑竖放在水平地面上时,对地面的压强是多少.26、【来源】 2018~2019学年云南曲靖马龙区马龙县通泉镇中学校初二下学期期中第26题一个图钉,钉帽的面积是0.8cm2,图钉尖的面积是5×10−4cm2,往墙上按图钉时,手指对图钉帽的压力是20N.问:(1) 手指对钉帽的压强是多少?(2) 图钉尖对墙的压强是多少?27、【来源】 2018~2019学年云南曲靖马龙区马龙县通泉镇中学校初二下学期期中第27题如图所示,平底茶壶的质量是500g,底面积是50cm2,内盛1.5kg的开水,放置在面积为1.2m2的水平桌面中央.试求:(1) 水对茶壶底部的压强.(2) 水对茶壶底部的压力.(3) 茶壶对桌面的压力.(4) 茶壶对桌面的压强.1 、【答案】 C;【解析】 A选项 : 小铁球在桌面上继续运动是由于小铁球具有惯性,而不是受到向前的作用力,故A错误;B选项 : 小铁球的运动方向发生改变,说明磁铁对小铁球有作用力,故B错误;C选项 : 铁球受到磁铁吸引力的作用,运动方向发生改变,说明力可以改变小铁球的运动方向,故C正确;D选项 : 尽管力可以使物体发生形变,但不能从题干提供的信息得出力可以使小铁球发生形变的结论,故D错误;【标注】 ( 力的两种作用效果辨析 )2 、【答案】 D;【解析】根据牛顿第一定律可知,物体在不受外力作用时,原来静止的物体将永远保持静止状态;原来运动的物体将永远做匀速直线运动,速度的大小和方向都不改变;小球向右摆动到最低点时,其运动方向是水平向右的,则当外力突然消失时,小球仍然保持原来的运动状态,即小球沿水平方向向右做匀速直线运动,故D正确.故选D.【标注】 ( 根据牛顿第一定律判断物体的运动状态 )3 、【答案】 D;【解析】 A选项 : 物体间力的作用是相互的,甲用60N的力推乙,同时乙给甲一个60N的推力,方向相反,故A错误;B选项 : 甲乙都受到一个60N的力,都会改变原来的静止状态,都会由静止变为运动,故B错误;C选项 : 甲和乙接触的瞬间甲和乙都受到60N的推力,当甲和乙分开时,甲和乙不再有力的作用,甲乙都向后退是由于物体具有惯性的原因,故C错误;D选项 : 由于乙受到甲力的作用,改变了原来的静止状态,由静止变为运动而后退,说明力可以改变物体的运动状态,故D正确;【标注】 ( 利用力作用的相互性解释生活现象 ) ( 相互作用力的特点 )4 、【答案】 D;【解析】惯性定律的内容是:一切物体都有保持原来运动状态的性质,即任何物体在任何情况下都有惯性;根据惯性定律的内容进行分析.任何物体在任何情况下都有惯性,故A、B、C错误,D正确.故选D.【标注】 ( 惯性大小的影响因素 ) ( 惯性的概念及理解 )5 、【答案】 A;【解析】 A选项 : 气球瘪了,是物体的形状发生了变化,故A正确;B选项 : 竹子被拉弯,是物体的形状发生了变化,故B错误;C选项 : 钢丝弯曲,是物体的形状发生了变化,故C错误;D选项 : 手压弹簧,弹簧变短,是物体的形状发生了变化,故D错误;【标注】 ( 力的两种作用效果辨析 )6 、【答案】 D;【解析】方法一 : 由p=ρgℎ可知,此题中ρ相同,C容器中ℎ最大,所以酒精对容器底部的压强C最大.故选D.方法二 : 已知三容器底面积相等,装入相同质量的酒精,由题图可知:三容器内酒精的深度:ℎA<ℎB<ℎC,根据p=ρgℎ可知,三容器底部受到酒精的压强大小关系为:p A<p B<p C.故ABC错误,D正确.故选D.【标注】 ( 敞口、直柱形、缩口杯压力、压强的比较 )7 、【答案】 B;【解析】图中,上游阀门A打开,下游阀门B关闭:闸室和上游水道构成连通器,当水静止时,两侧水深相同,水对阀门A两侧的压强相等、压力相等,所以B选项是正确的、A错;阀门B关闭,闸室和下游水道不连通,不能构成连通器,不符合题意,故C、D错.故选B.【标注】8 、【答案】 A;【解析】 A选项 : 安全锤一端做成锥形,是在压力一定时,通过减小受力面积来增大压强,故A正确;B选项 : 坦克履带做得较宽,是在压力一定时,通过增大受力面积来减小压强,故B错误;C选项 : 铁轨下铺放很多轨枕,是在压力一定时,通过增大受力面积来减小压强,故C错误;D选项 : 滑雪板的面积比较大,是在压力一定时,通过增大受力面积来减小压强,故D错误;【标注】 ( 增大压强的方法及生活中的应用 )9 、【答案】重力;相互作用力;【解析】悬挂着的吊灯处于静止状态,它受到的力是平衡力,吊灯受到了重力和灯绳对它的拉力,这两个力是一对平衡力,大小相等、方向相反,作用在同一个物体上,在一条直线上;灯对灯绳的拉力和灯绳对灯的拉力,作用在彼此不同的物体上,且大小相等、方向相反,所以它们是一对相互作用力.【标注】 ( 平衡力与平衡状态 )10 、【答案】向上;大于;【解析】因为伞的顶面是凸面,在相同时间内,空气经过上方的路程长,速度大;经过下方的路程短,速度小;上方空气流速越大,压强越小;下方空气流速越小,压强越大;所以伞下方的气压大于伞上方的气压,所以伞会被向上吸起来.【标注】 ( 流体压强与流速的关系的认识及应用 )11 、【答案】大气压强;10;【解析】马德堡半球实验有力的证明了大气压强的存在;∵p0=p水gℎ,∴玻璃管至少长:ℎ=p0ρ水g= 1.0×105Pa1.0×103kg/m3×10N/kg=10m.【标注】 ( 大气压强存在的证明 ) ( 液体压强的计算 )12 、【答案】20;竖直向上;【解析】G=mg=2kg×10N/kg=20N,物体被30N的力压在竖直墙壁上静止不动,水平方向上受到的压力和支持力是平衡力,大小相等,支持力大小是30N,物体竖直方向上受到重力和摩擦力是一对平衡力,重力是20N,方向竖直向下,所以摩擦力的大小是20N,方向竖直向上.【标注】 ( 摩擦力的方向 ) ( 静摩擦力大小的计算 )13 、【答案】2×104;变大;【解析】p=ρgℎ=1.0×103kg/m3×10N/kg×2m=2×104Pa;当ℎ变大时,ρ不变,∵p=ρgℎ,∴水对池底产生的压强将变大.【标注】 ( 运动与相互作用观念 )14 、【答案】小于;等于;可知,m甲<m乙;根据液【解析】根据题意,结合图示可知,ρ甲=ρ乙,V甲<V乙,根据ρ=mV体压强计算公式p=ρgℎ知,液体压强的大小与液体的密度和深度有关,由题意知,甲乙两管内盛有同种液体,即密度相同,液面相平即深度相同,所以液体对试管底的压强相等.【标注】 ( 液体压强大小的比较 ) ( 质量、体积和密度之间的关系 )15 、【答案】变大;变小;【解析】从山脚到山顶,海拔增高,大气压强降低.由于管内气压不变,所以管柱内的水柱高度上升.故答案为:变大;变小.【标注】 ( 大气压强和高度的关系 )16 、【答案】托里拆利;1.013×105;【解析】意大利科学家托里拆利,利用一根玻璃管测出了大气压所能支持的水银柱的高度,即76cm,这也就是后来规定的1个标准大气压的大小,其具体数值是p=ρ水银gℎ=13.6×103kg/ m3×9.8N/kg×0.76m=1.013×105Pa.【标注】17 、【答案】相互的;惯性;【解析】 1. 脚向后蹬地,给地面一个向后的力,由于物体间力的作用是相互的,地面给小明一个向前的力,使小明和滑板车一起前进.2. 滑板由于惯性要保持原来的运动状态,继续前进滑行一段距离.【标注】 ( 利用力作用的相互性解释生活现象 ) ( 惯性的概念及理解 )18 、【答案】减小;增大;【解析】套在鞋上的冰爪,爪做得尖而细,是在压力一定时,减小受力面积来增大压强,套在鞋上的冰爪增大了接触面的粗糙程度,从而增大摩擦,便于在冰面上行走.故答案为:减小;摩擦.【标注】 ( 增大滑动摩擦力的方法 ) ( 增大压强的方法及生活中的应用 )19 、【答案】4.6;【解析】由图可知:弹簧测力计一个大格表示1N,里面有5个小格,一个小格表示0.2N,分度值为0.2N,指针在4N以下三格处,示数为4.6N.故答案为:4.6N.【标注】 ( 弹簧测力计的读数 ) ( 运动与相互作用观念 )20 、【答案】;【解析】【标注】 ( 力的图示的画法 ) ( 重力的示意图 )21 、【答案】;【解析】物块B对斜面压力的作用点在斜面上,从作用点起,垂直斜面画线段,在线段的末端画上箭头表示力的方向.【标注】 ( 压力的示意图作图 )22 、【答案】 (1) 凹陷;(2) 当压力相同时,受力面积越小,压力的作用效果越明显;(3) 乙、丁;(4) 压力的作用效果与压力的大小和受力面积大小有关,压力越大,受力面积越小,压力的作用效果越明显;【解析】 (1) 实验中,压力的作用效果的大小是通过比较海绵的凹陷程度来确定,这是转换法的运用.(2) 分析比较乙和丙的实验现象,可以看出,压力相同,受力面积不同,效果不同,故可得出结论:在压力一定时,受力面积越小,压力的作用效果越明显.(3) 分析比较图乙、丁的实验现象,可以看出,受力面积相同,压力不同,效果不同,故可得出结论:当受力面积相同时,压力越大,压力的作用效果越显著.(4) 进一步综合分析图甲、乙、丙和丁的实验现象,可得出结论:压力的作用效果与压力的大小和受力面积大小有关,压力越大,受力面积越小,压力的作用效果越明显.【标注】23 、【答案】 (1) 760;(2) 排出管里的空气,使管内水银面上方形成真空;(3) 不变;不变;(4) 试管中水银会下降到与管外水银面相平为止;【解析】 (1) 由图可知大气压能支持760mm高水银柱,即大气压的值等于760mm水银柱产生的压强.(2) 往玻璃管里灌满水银是为了排出管里的空气,这样当管倒插入水银槽里时,管内水银面上方才可能形成真空.(3) 1. 将玻璃管倾斜一些,大气压不变,水银柱高度也不变,但玻璃管内水银的长度会变大一些.(3) 2. 将玻璃管竖直上提,水银柱产生的压强会大于大气压,故水银柱会下降到原来的高度,即高度不变.(4) 当管顶开一个小孔时,管内的水银与外界的大气相通,此时外界大气压对管内水银也有个向下的压强,所以管内的水银不仅不会从小孔喷出,反而会立即下降,此时托里拆利管和水银槽实际上是构成了一个连通器,最终液面会相平.【标注】24 、【答案】 (1) 相平;(2) 深度;(3) 丙、丁;无关;(5) 各个方向;【解析】 (1) 实验前首先使左右两边的玻璃管中的液面相平.故答案为:相平.(2) 甲、乙两图液体的密度、液体的方向、容器的形状都相同,液体的深度不同,所以甲乙两图是探究液体压强跟液体深度的关系的.故答案为:深度.(3) 要探究液体压强与盛液体的容器形状是否有关,应保持液体的密度、深度、方向都相同,选择丙和丁两图进行对比,如图当改变容器的形状时,左右两边的液面差相同,液体的压强相同,所以液体压强与盛液体的容器形状无关.故答案为:丙、丁;无关.(4) 要探究液体压强与密度的关系,应保持液体的深度、方向、容器形状相同,选用乙和丙两个图进行对比.故答案为:乙、丙.(5) 在图丙中,固定U型管压强计金属盒的橡皮膜在盐水中的深度,不同方向,这是为了探究同种液体、同一深度处,液体向各个方向的压强大小关系.故答案为:各个方向.【标注】25 、【答案】 (1) 160kg;(2) 1×105Pa;【解析】 (1) 兵马桶的质量:m=Gg =1600N10N/kg=160kg.(2) 对地面的压强:p=FS =1600N1.6×10−2m2=1×105Pa.【标注】26 、【答案】 (1) 2.5×105Pa ;;【解析】 (1) 已知:F=20N,S1=0.8cm2=8×10−5m2,S2=5×10−4cm2=5×10−8m2;手对图钉帽的压强:p1=FS1=20N8×10−5m2=2.5×105Pa.(2) 因固体能够传递压力,所以,墙壁受到的压力为F=20N,图钉尖对墙的压强:p2=FS2= 20N5×10−8m2=4×108Pa.【标注】27 、【答案】 (1) 1200Pa;(2) 6N;(3) 20N;(4) 4000Pa;【解析】 (1) 由图可知,茶壶内水的深度:ℎ=12cm=0.12m,水对茶壶底部产生的压强:p=ρgℎ=1.0×103kg/m3×10N/kg×0.12m=1200Pa.(2) 受力面积:S=50cm2=5×10−3m2,由p=FS可得,水对茶壶底部产生的压力:F=pS= 1200Pa×5×10−3m2=6N.(3) 茶壶的重力:G壶=m壶g=500×10−3kg×10N/kg=5N,水的重力:G水=m水g=1.5kg×10N/kg=15N,茶壶对水平桌面的压力:F′=G水+G壶=5N+15N=20N.(4) 茶壶对水平桌面的压强:p′=F′S =20N5×10−3m2=4000Pa.【标注】。

2018-2019学年度八年级上数学期末试卷(解析版)

2018-2019学年度八年级上数学期末试卷(解析版)

2018-2019学年联考八年级(上)期末数学试卷一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣16.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣28.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a29.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.2011.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.712.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.24.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A 作AE⊥AD,并且始终保持AE=AD,连接CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DA E交BC于F,探究线段BD,DF,FC之间的数量关系,并证明;(3)在(2)的条件下,若BD=3,CF=4,求AD的长.2018-2019学年河北省石家庄市八校联考八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)近似数0.13是精确到()A.十分位B.百分位C.千分位D.百位【分析】确定近似数精确到哪一位,就是看这个数的最后一位是什么位即可.【解答】解:近似数0.13是精确到百分位,故选:B.【点评】此题考查了近似数,用到的知识点是精确度,一个数最后一位所在的位置就是这个数的精确度.2.(3分)下列四张扑克牌中,左旋转180°后还是和原来一样的是()A.B.C.D.【分析】左旋转180°后还是和原来一样的图形是中心对称图形,根据中心对称图形的定义解答即可.【解答】解:左旋转180°后还是和原来一样的是只有C.故选:C.【点评】本题主要考查了中心对称图形的定义,是需要熟记的内容.3.(3分)是2的()A.倒数B.平方根C.立方根D.算术平方根【分析】根据算术平方根与平方根的定义即可求出答案.【解答】解:是2的算术平方根,故选:D.【点评】本题考查平方根,解题的关键是熟练运用平方根的定义,本题属于基础题型.4.(3分)在3×3的方格中涂有阴影图形,下列阴影图形不是轴对称图形的是()A.B.C.D.【分析】直接利用轴对称图形的定义判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.【点评】此题主要考查了轴对称图形的定义,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.5.(3分)下列选项中,可以用来证明命题“若|a﹣1|>1,则a>2”是假命题的反例是()A.a=2B.a=1C.a=0D.a=﹣1【分析】所选取的a的值符合题设,则不满足结论即作为反例.【解答】解:当a=﹣1时,满足|a﹣1|>1,但满足a>2,所以a=﹣1可作为证明命题“若|a﹣1|>1,则a>2”是假命题的反例.故选:D.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.(3分)如图是作△ABC的作图痕迹,则此作图的已知条件是()A.已知两边及夹角B.已知三边C.已知两角及夹边D.已知两边及一边对角【分析】观察图象可知已知线段AB,α,β,由此即可判断.【解答】解:观察图象可知:已知线段AB,∠CAB=α,∠CBA=β,故选:C.【点评】本题考查作图﹣复杂作图,解题的关键是理解题意,属于中考常考题型.7.(3分)在代数式和中,x均可以取的值为()A.9B.3C.0D.﹣2【分析】根据分式的分母不等于0且二次根式的被开方数是非负数得出x的范围,据此可得答案.【解答】解:由题意知,x﹣3≠0且x﹣3≥0,解得:x>3,故选:A.【点评】本题主要考查二次根式有意义的条件,解题的关键是掌握分式的分母不等于0且二次根式的被开方数是非负数.8.(3分)如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W 中可以是()A.1B.C.ab D.a2【分析】直接利用分式的基本性质分别代入判断得出答案.【解答】解:如果把分式中的a、b同时扩大为原来的2倍,得到的分式的值不变,则W中可以是:b.故选:B.【点评】此题主要考查了分式的基本性质,正确掌握分式的基本性质是解题关键.9.(3分)我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是()A.B.C.D.【分析】先表示出图形中各个部分的面积,再判断即可.【解答】解:A、∵+c2+ab=(a+b)(a+b),∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;B、∵4×+c2=(a+b)2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;C、∵4×+(b﹣a)2=c2,∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;D、根据图形不能证明勾股定理,故本选项符合题意;故选:D.【点评】本题考查了勾股定理的证明,能根据图形中各个部分的面积列出等式是解此题的关键.10.(3分)若(b为整数),则a的值可以是()A.B.27C.24D.20【分析】根据二次根式的运算法则即可求出答案.【解答】解:+=3+=b当a=20时,∴=2,∴b=5,符合题意,故选:D.【点评】本题考查二次根式的运算法则,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.11.(3分)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3B.5C.6D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF =4+(3﹣2)=5;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.12.(3分)已知:△ABC中,AB=AC,求证:∠B<90°,下面写出可运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.③④①②B.③④②①C.①②③④D.④③①②【分析】通过反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;理顺证明过程即可.【解答】解:由反证法的证明步骤:①假设;②合情推理;③导出矛盾;④结论;所以题目中“已知:△ABC中,AB=AC,求证:∠B<90°”.用反证法证明这个命题过程中的四个推理步骤:应该为:假设∠B≥90°;那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,;所以因此假设不成立.∴∠B<90°;原题正确顺序为:③④①②.故选:A.【点评】本题考查反证法证明步骤,考查基本知识的应用,逻辑推理能力.13.(3分)已知x=,则代数式(7+4)x2+(2+)x+的值是()A.0B.C.D.2﹣【分析】将x的值代入原式,再利用完全平方公式和平方差公式计算可得.【解答】解:当x=时,原式=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7﹣4)+4﹣3+=49﹣48+1+=2+,故选:C.【点评】本题主要考查二次根式的化简求值,解题的关键是熟练掌握完全平方公式、平方差公式及二次根式的运算法则.14.(3分)在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是()A.10B.C.10或D.10或【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,最后即可求出斜边的长.【解答】解:①如图:因为CD==2,点D是斜边AB的中点,所以AB=2CD=4,②如图:因为CE==5,点E是斜边AB的中点,所以AB=2CE=10,原直角三角形纸片的斜边长是10或,故选:C.【点评】此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.二、填空题(本大题有3个小题,每小题4分,共20分.把答案写在题中横线上)15.(4分)=﹣.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵﹣的立方为﹣,∴﹣的立方根为﹣,故答案为﹣.【点评】此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.16.(4分)如图,在△ABC中,∠B=∠ACB=2∠A,AC的垂直平分线交AB于点E,D 为垂足,连接EC,则∠ECD=36°.【分析】根据三角形内角和定理求出∠A,根据线段垂直平分线的性质得到EA=EC,根据等腰三角形的性质解答.【解答】解:设∠A=x,则∠B=∠ACB=2x,则x+2x+2x=180°,解得,x=36°,∴∠B=∠ACB=72°,∵DE是AC的垂直平分线,∴EA=EC,∴∠ECD=∠A=36°,故答案为:36°.【点评】本题考查的是线段的垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.17.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,若AF=6,则BC的长为4.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC为x,可知AB=2BC=2x,再由作法可知BC=CD=x,CE是线段BD的垂直平分线,故CD是斜边AB 的中线,据此可得出BD=x,进而可得出结论.【解答】解:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,设BC=x,∴AB=2BC=2x.∵作法可知BC=CD=x,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=x,∴BF=DF=x,∴AF=AD+DF=x+x=6.解得:x=4.故答案为:4【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)18.如图,以O为圆心,以OB为半径画弧交数轴于A点;(1)说出数轴上点A所表示的数;(2)比较点A所表示的数与﹣2.5的大小.【分析】(1)根据勾股定理求出OB的长度,再根据圆的半径定义得到OA,求出A;(2)根据A所代表的数,直接比较与﹣2.5的大小;【解答】解:(1)OB=,∵OB=OA=∴A所代表的数字为﹣\sqrt{5}$;(2)A点表示的数为﹣$\sqrt{5}$≈﹣2.235∴A点表示的数大于﹣2.5【点评】本题运用了勾股定理、数轴上负数大小比较的方法;19.(1)发现.①;②;③;…………写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.【分析】(1)根据题目中的例子可以写出例4;(2)根据(1)中特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子化简,即可得到等号右边的式子,从而可以解答本题.【解答】解:(1)由例子可得,④为:,⑤,故答案为,,(2)如果n为正整数,用含n的式子表示这个运算规律:,故答案为:,(3)证明:∵n是正整数,∴.即.故答案为:∵n是正整数,∴.即.【点评】本题考查二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.20.如图,在△ABC中,AB=BC,BD是∠ABC的平分线,E为AB的中点,连接DE,若DE=5,AC=16,求DB的长.【分析】根据等腰三角形的性质得到AD=8,AD⊥AC,根据直角三角形的性质求出AB,根据勾股定理计算即可.【解答】解:∵AB=BC,BD是∠ABC的平分线,∴AD=DC=AC=8,AD⊥AC,∴∠ADB=90°,又E为AB的中点,∴AB=2DE=10,由勾股定理得,BD==6.【点评】本题考查的是角平分线的定义、等腰三角形的性质、直角三角形的性质,掌握等腰三角形的三线合一是解题的关键.21.如图所示,△ABC中,∠BAC的平分线与BC的垂直平分线相交于点E,EF⊥AB,EG ⊥AC,垂足分别为F、G,则BF=CG吗?说明理由.【分析】先根据点E在BC的垂直平分线上可求出BE=CE,再根据点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC可求出EF=EG,再由HL定理可求出Rt△EFB≌Rt△EGC,由全等三角形的性质即可得出结论.【解答】解:BF=CG;理由如下:因为点E在BC的垂直平分线上,所以BE=CE.因为点E在∠BAC的角平分线上,且EF⊥AB,EG⊥AC,所以EF=EG,在Rt△EFB和Rt△EGC中,因为BE=CE,EF=EG,所以Rt△EFB≌Rt△EGC(HL).所以BF=CG.【点评】本题涉及到角平分线的性质、线段垂直平分线的性质、直角三角形全等的判定定理及全等三角形的性质,涉及面较广,难度适中.22.已知代数式(﹣1)÷,则:(1)当x=﹣3时,求这个代数式的值;(2)这个代数式的值能等于﹣1吗?请说明理由.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)假设分式的值等于﹣1,根据化简结果列出关于x的方程,解方程求出x的值,依据分式有意义的条件作出判断.【解答】解:(1)原式=(﹣)÷=•=,当x=﹣3时,原式==﹣2;(2)若原式的值为﹣1,则=﹣1,解得:x=﹣1,而当x =﹣1时,原式分母为0,无意义;所以原式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.23.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,求杂拌糖的单价.【分析】设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据这两种糖混合前后质量相同列出方程,解方程即可.【解答】解:设杂拌糖的单价为x 元,则奶糖的单价为(x +4)元,水果糖的单价为(x ﹣6)元,根据题意得+=,解得:x =36.经检验,x =36是原方程的解.答:杂拌糖的单价为36元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.24.如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE .(1)求证:△ABD ≌△ACE ;(2)若AF 平分∠DAE 交BC 于F ,探究线段BD ,DF ,FC 之间的数量关系,并证明;(3)在(2)的条件下,若BD =3,CF =4,求AD 的长.【分析】(1)根据SAS ,只要证明∠1=∠2即可解决问题;(2)结论:BD 2+FC 2=DF 2.连接FE ,想办法证明∠ECF =90°,EF =DF ,利用勾股定理即可解决问题;(3)过点A 作AG ⊥BC 于G ,在Rt △ADG 中,想办法求出AG 、DG 即可解决问题;【解答】(1)证明:∵AE ⊥AD ,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE.(2)解:结论:BD2+FC2=DF2.理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°由(1)知△ABD≌△ACE∴∠4=∠B=45°,BD=CE∴∠ECF=∠3+∠4=90°,∴CE2+CF2=EF2,∴BD2+FC2=EF2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF∴DF=EF∴BD2+FC2=DF2.(3)解:过点A作AG⊥BC于G,由(2)知DF2=BD2+FC2=32+42=25∴DF=5,∴BC=BD+DF+FC=3+5+4=12,∵AB=AC,AG⊥BC,∴BG=AG=BC=6,∴DG=BG﹣BD=6﹣3=3,∴在Rt△ADG中,AD===3.【点评】本题考查三角形综合题、等腰直角三角形的性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

2024-2025学年山东省济南外国语学校七年级(上)九月考数学试卷(含答案)

2024-2025学年山东省济南外国语学校七年级(上)九月考数学试卷(含答案)

外国语学校2024-2025学年第一学期七年级数学九月试题(满分150分时间120分钟)注意事项:1.本试题分第|卷和第||卷两部分,第Ⅰ卷,满40分;第Ⅱ卷,满分110分.本试题满分150分,考试时间为120分钟。

2.答卷前,请务必将自己的姓名、考场、准考证号、座号填写在答题卡规定的位置。

3.第Ⅰ卷为选择题,每小题选出答案后,用28铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案写在试卷上无效。

第Ⅱ卷为非选择题,请用0.5mm黑色签字笔答在答题卡相应区域内,超出答题区域作答无效。

4.考试期间,一律不得使用计算器。

第Ⅰ卷(选择题共40分)一.选择题:(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.-2024的相反数是( )A.﹣12024B.-2024 C.2024 D.120242.下列几何体中,属于棱柱的是()3.用一个平面去截一个正方体,得到的截面是不可能是()A.三角形B.圆C.四边形D.五边形4.下列图形中,不能折成正方体的图形是( )5.如果规定汽车向东行驶2千米记作+2千米,那么向西行驶10千米记作( )A.+2千米B.-2千米C.+10千米D.-10千米6.徐志摩的《泰山日出》一文描写了"泰山佛光"壮丽景象,1月份的泰山,山顶平均气温为﹣9℃,山脚平均气温为1℃,则山脚平均气温与山顶平均气温的温差是( )A.10℃B.-10℃C.-8℃D.8℃7.下列运算正确的是( )A.-2-1=-1B.5÷(-12)=-10 C.(﹣13)×(-3)=0D.-5+3=28.如图,数轴上点A 和点B 分别表示数a 和b ,则下列式子正确的是()A.a>0|<|6|C.a+b<0D.a-b>09.对于有理数a 、b ,定义一种新运算"⊕",规定:a ⊕b=|a|-6|-la-bl ,2⊕(-3)等于()A.-2B.-6C.0D.210.将一些完全相同的棋子按如图所示的规律摆放,第①个图中有4颗棋子,第②个图'中有7颗棋子,第③个图中有12颗棋子,…,按此规律,则第⑨个图中棋子的颗数是( )A.52B.67C.84D.101第II 卷 非选择题(共110分)二.填空题(共5个小题,每题4分,共20分)11.一个棱柱有九个面,则它是 棱柱12.若|x ﹣5|+|y +3|=0,则x-y= 8。

山东省济南外国语学校2014届下学期初中九年级第一次学业水平模拟考试数学试卷

山东省济南外国语学校2014届下学期初中九年级第一次学业水平模拟考试数学试卷

21 3
(D)
51 6
14.如图,正方形 ABCD 中,AB=8cm,对角线 AC, BD 相交于点 O,点 E,F 分别从 B,C 两点同时 出发,以 1cm/s 的速度沿 BC,CD 运动,到点 C,D 时停止运动,设运动时间为 t(s),△OEF 的 面积为 s( cm 2 ),则 s( cm 2 )与 t(s)的函数关系可用图像表示为( )
面朝上”是必然事件.正确说法的序号是( (A)① (B)② (C)③
) (D)④
9.若一次函数 y=ax+b(a≠0)的图象与 x 轴的交点坐标为(-2,0), 则抛物线 y=ax +bx 的对称轴为( (A)直线 x=1 (C)直线 x=-1
2
) (B)直线 x=-2 (D)直线 x=-4 )
10. 如图所示, 在平行四边形纸片上作随机扎针实验, 针头扎在阴影区域内的概率为 (
x 2 y 4k, 且 1 x y 0 ,则 k 的取值范围为 2 x y 2k 1
.
21. 二次函数 y=
的图象如图,点 A0 位于坐标原点,点 A1,A2,A3„An 在 y 轴的正半轴上,
点 B1,B2,B3„Bn 在二次函数位于第一象限的图象上,点 C1,C2,C3„Cn 在二次函数位于第二 象限的图象上,四边形 A0B1A1C1,四边形 A1B2A2C2,四边形 A2B3A3C3„四边形 An﹣1BnAnCn 都是菱 形,∠A0B1A1=∠A1B2A1=∠A2B3A3„=∠An﹣1BnAn=60°,菱形 An﹣1BnAnCn 的周长为 .
(A)
1 3
(B)
1 4

(C)
1 5
(D)
1 6
11.如图,⊙O 的半径 OD⊥弦 AB 于点 C,连结 AO 并延长交⊙O 于点 E,连结 EC.若 AB=8,

江苏省南京外国语学校2018-2019年第二学期期中考试八年级数学试卷(解析版)

江苏省南京外国语学校2018-2019年第二学期期中考试八年级数学试卷(解析版)

2018-2019学年江苏省南京外国语学校八年级(下)期中数学试卷一、选择题(每小题2分,共16分)1.(2分)如图“数字图形”中,中心对称图形有()A.1个B.2个C.3个D.4个2.(2分)一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下列事件中,发生可能性最大的是()A.摸出的是白球B.摸出的是黑球C.摸出的是红球D.摸出的是绿球3.(2分)下列调查中,适合采用抽样调查的是()A.对乘坐高铁的乘客进行安检B.调意本班学装的身高C.为保证某种新研发的战斗机试飞成功,对其零部件进行检查D.调查一批英雄牌钢笔的使用寿命4.(2分)中华汉字,源远流长.某校为了传承中华优秀传统文化,组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,学校随机抽取了其中200名学生的成绩进行统计分析,下列说法正确的是()A.这3000名学生的“汉字听写”大赛成绩的全体是总体B.每个学生是个体C.200名学生是总体的一个样本D.样本容量是30005.(2分)在1x,25ab,﹣0.7xy+y3,mm n+,5b ca-+中,分式有()A.2个B.3个C.4个D.5个6.(2分)菱形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.邻边相等D.对边平行7.(2分)若x+1x=3,求2421xx x++的值是()A.18B.110C.12D.148.(2分)如图,已知正方形ABCD,对角线的交点M(2,2).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(﹣2012,2)B.(﹣2012,﹣2)C.(﹣2013,﹣2)D.(﹣2013,2)二、填空题(每小题2分,共20分)9.(2分)(1)当x时,分式211xx-+有意义;(2)当x时,分式3||3xx-+的值为0.10.(2分)已知反比例函数的解析式为y=||2ax-.则a的取值范围是.11.(2分)一个不透明的袋子中装有4个红球、2个黑球,它们除颜色外其余都相同,从中任意摸出3个球,则事件“摸出的球至少有1个红球”是事件(填“必然”、“随机”或“不可能”)12.(2分)当m=时,解分式方程53xx--=3mx-会出现增根.13.(2分)若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是.14.(2分)如图,在△ABC中,D,E分别是AB,AC的中点,F是线段DE上一点,连接AF,BF,若AB=16,EF=1,∠AFB=90°,则BC的长为.15.(2分)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为.16.(2分)对于反比例函数y=﹣2x,下列说法正确的是.①图象分布在第二、四象限;②当x>0时,y随x的增大而增大;③图象经过点(1,﹣2);④若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2.17.(2分)如图,已知一次函数y=ax+b和反比例函数y=kx的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<kx的解集为.18.(2分)已知矩形ABCD,AB=6,AD=8,将矩形ABCD绕点A顺时针旋转θ(0°<θ<360°)得到矩形AEFG,当θ=°时,GC=GB.三、解答题(共64分)19.(10分)计算:(1)(2a b cd -)3÷32a d •(2c a)2 (2)(22221-a b a ab --)÷a a b+ 20.(10分)解方程:(1)23x -=3x(2)1x x -﹣1=232x x +- 21.(6分)先化简(21a a +﹣a +1)÷21a a -,然后将﹣1、0、12、1、2中,所有你认为合适的数作为a 的值,代入求值.22.(3分)如图4×4的正方形网格中,将△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,请用尺规作图法确定旋转中心O 点(保留作图痕迹,标出O 点).23.(7分)某学校为了解今年八年级学生足球运球的掌握情况,随机抽取部分八年级学生足球运球的测试成绩作为一个样本,按A 、B 、C 、D 四个等级进行如图不完整的统计图根据所给信息,解答以下问题:(1)在扇形统计图中,C 对应的扇形的圆心角是 度;(2)补全条形统计图、扇形统计图;(3)该校八年级有300名学生,请估计足球运球测试成绩达到A 级的学生有多少人?24.(6分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m 和2000m ,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min 到达剧院.求两人的速度.25.(7分)为打造美丽校园,小明、小红为校园内的一块空地分别提供了如图甲、乙的设计方案,其中阴影部分都用于绿化,图甲空白区域修建一座雕像,图乙空白区域修建石子小路.已知S 甲表示图甲中绿化的面积S 乙表示图乙中绿化的面积.(1)S 甲= (用含a ,b 的代数式表示);(2)设k =F ZS S , ①请用含a ,b 的代数式表示k 并化简;②当2S 甲﹣S 乙=98a 2时,求k 的值.26.(8分)如图,在Rt △ABC 中,∠ACB =90°,D 、E 分别是AB 、AC 的中点,连接CD ,过E 作EF ∥DC 交BC 的延长线于F .(1)证明:四边形CDEF 是平行四边形;(2)若四边形CDEF 的周长是16cm ,AC 的长为8cm ,求线段AB 的长度.27.(7分)平面直角坐标系xOy 中,点A 、B 分别在函数y 1=3x (x >0),与y 2=﹣3x (x <0)的图象上,A 、B 的横坐标分别为a 、b .(a 、b 为任意实数)(1)若AB ∥x 轴,求△OAB 的面积;(2)作边长为2的正方形ACDE ,使AC ∥x 轴,点D 在点A 的左上方,那么,当a ≥3时,CD 边与函数y 1=3x(x >0)的图象有交点,请说明理由.2018-2019学年江苏省南京外国语学校八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题2分,共16分)1.【分析】利用中心对称图形的定义回答即可.【解答】解:2,0,1,9四个数中中心对称图形有2,0,1共3个,故选:C.【点评】考查了中心对称图形的定义,解题的关键是了解中心对称图形的定义,难度不大.2.【分析】个数最多的就是可能性最大的.【解答】解:因为白球最多,所以被摸到的可能性最大.故选:A.【点评】本题主要考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.3.【分析】对于精确度要求高的调查,事关重大的调查往往选用普查.适合普查的方式一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.【解答】解:A、对乘坐高铁的乘客进行安检,必须普查;B、调意本班学生的身高,必须普查;C、为保证某种新研发的战斗机试飞成功,对其零部件进行检查,必须普查;D、调查一批英雄牌钢笔的使用寿命,适合抽样调查;故选:D.【点评】本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.4.【分析】解此类题需要注意“考查对象实际应是表示事物某一特征的数据,而非考查的事物.”我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考查的对象,考查对象是组织了一次全校3000名学生参加的“汉字听写”大赛的成绩,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A 、这3000名学生的“汉字听写”大赛成绩的全体是总体,正确;B 、每个学生的“汉字听写”大赛成绩是个体,错误;C 、200名学生的“汉字听写”大赛成绩是总体的一个样本,错误;D 、样本容量是200,错误;故选:A .【点评】考查统计知识的总体,样本,个体等相关知识点,要明确其定义.易错易混点:学生易对总体和个体的意义理解不清而错选.5.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:1x ,25ab ,﹣0.7xy +y 3,m+n m ,5b c a -+中,分式有1x ,m+n m ,5b c a-+一共3个.故选:B .【点评】本题主要考查分式的定义,分母中含有字母则是分式,如果不含有字母则不是分式.6.【分析】菱形拥有平行四边形的全部性质,且菱形的各边长相等且对角线互相垂直,分析A 、B 、C 、D 选项的正确性,即可解题.【解答】解:菱形具有平行四边形的全部性质,(A )平行四边形对角相等,故本选项错误;(B )平行四边形对边相等,故本选项错误;(C )邻边平行的平行四边形为菱形,故本选项正确,(D )平行四边形对边平行,故本选项错误.故选:C .【点评】本题考查了平行四边形对边平行且相等的性质,考查了菱形各边长相等的性质,本题中熟练掌握菱形的性质是解题的关键.7.【分析】把x +1x =3两边平方后,得到即221x x+=7,先计算出原代数式的倒数4221x x x ++=2211x x ++的值后,再计算原代数式的值. 【解答】解:∵x +1x=3, ∴(x +1x )2=9,即221x x +=9﹣2=7,∴4221x xx++=2211xx++=7+1=8,∴2421xx x++=18.故选:A.【点评】此题要熟悉完全平方公式,同时注意先求它的倒数,可以约分,简便计算.8.【分析】根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD 的对角线交点M的坐标.【解答】解:∵对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2﹣1,﹣2),即(1,﹣2),第2次变换后的点M的对应点的坐标为:(2﹣2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2﹣3,﹣2),即(﹣1,﹣2),第n次变换后的点M的对应点的为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(﹣2012,2).故选:A.【点评】此题考查了点的坐标变化,对称与平移的性质.得到规律:第n次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2﹣n,﹣2),当n为偶数时为(2﹣n,2)是解此题的关键.二、填空题(每小题2分,共20分)9.【分析】(1)根据分式有意义的条件可得x+1≠0,再解即可;(2)根据分式值为零的条件可得3﹣|x|=0,且x+3≠0,再解即可.【解答】解:(1)由题意得:x+1≠0,解得:x≠﹣1,故答案为:≠﹣1;(2)由题意得:3﹣|x|=0,且x+3≠0,解得:x=3,故答案为:=3.【点评】此题主要考查了分式值为零和有意义的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零;式有意义的条件是分母不等于零.10.【分析】根据反比例函数解析式中k 是常数,不能等于0解答即可.【解答】解:由题意可得:|a |﹣2≠0,解得:a ≠±2,故答案为:a ≠±2.【点评】此题主要考查了反比例函数,关键是根据反比例函数关系式中k 的取值范围解答.11.【分析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:一个不透明的袋子中装有4个红球、2个黑球,它们除颜色外其余都相同,从中任意摸出3个球,则事件“摸出的球至少有1个红球”是必然事件.故答案为:必然.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.【分析】分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.【解答】解:分式方程可化为:x ﹣5=﹣m ,由分母可知,分式方程的增根是3,当x =3时,3﹣5=﹣m ,解得m =2,故答案为:2.【点评】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.13.【分析】根据解分式方程的方法求出题目中分式方程的解,然后根据关于x 的方程333x m m x x++--=3的解为正数和x ﹣3≠0可以求得m 的取值范围. 【解答】解:333x m m x x++--=3, 方程两边同乘以x ﹣3,得x+m﹣3m=3(x﹣3)去括号,得x+m﹣3m=3x﹣9移项及合并同类项,得2x=﹣2m+9系数化为1,得x=292m-+,∵关于x的方程333x m mx x++--=3的解为正数且x﹣3≠0,∴29229302mm-+⎧>⎪⎪⎨-+⎪-≠⎪⎩,解得,m<92且m32≠.【点评】本题考查分式方程的解,解一元一次不等式组,解答本题的关键是明确它们各自的计算方法.14.【分析】根据直角三角形的性质得到DF=8,根据EF=1,得到DE=9,根据三角形中位线定理解答即可.【解答】解:∵∠AFB=90°,点D是AB的中点,∴DF=12AB=8,∵EF=1,∴DE=9,∵D、E分别是AB,AC的中点,∴BC=2DE=18,故答案为:18【点评】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.15.【分析】设A坐标为(x,y),根据四边形OABC为平行四边形,利用平移性质确定出A 的坐标,利用待定系数法确定出解析式即可.【解答】解:设A坐标为(x,y),∵B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0﹣3,解得:x=﹣2,y=﹣3,即A(﹣2,﹣3),设过点A的反比例解析式为y=kx,把A(﹣2,﹣3)代入得:k=6,则过点A的反比例解析式为y=6x,故答案为:y=6 x【点评】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.16.【分析】根据反比例函数的性质对各小题进行逐一分析即可.【解答】解:∵k=﹣2<0,∴①图象分布在第二、四象限,正确;②当x>0时,y随x的增大而增大,正确;③图象经过点(1,﹣2),正确;④若点A(x1,y1),B(x2,y2)都在图象上,且0<x1<x2,则y1<y2故错误.正确的有:①②③,故答案为:①②③.【点评】本题考查的是反比例函数的性质,熟知反比例函数的图象既是轴对称图形,又是中心对称图形是解答此题的关键.17.【分析】根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.【解答】解:观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,则不等式ax+b<kx的解集是﹣2<x<0或x>1.故答案为:﹣2<x<0或x>1.【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是根据两函数图象的上下位置关系解不等式.本题属于基础题,难度不大,解决该题型题目时,根据两函数图象的上下位置关系结合交点坐标得出不等式的解集是关键.18.【分析】当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论,依据∠DAG=60°,即可得到旋转角α的度数.【解答】解:当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=12AD=12AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角θ=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角θ=360°﹣60°=300°.故答案为:60或300【点评】本题考查了旋转的性质,矩形的性质,利用分类讨论思想解决问题是本题的关键.三、解答题(共64分)19.【分析】(1)先计算乘方、将除法转化为乘法,再约分即可得;(2)先计算括号内异分母分式的减法、除法转化为乘法,再约分即可得.【解答】解:(1)原式=(﹣6333a b c d )•32d a •224c a =﹣338a b c; (2)原式=[21()()()a b a b a a b -+--]•a b a+ =[2()()()()a a b a a b a b a a b a b +-+--+]•a b a+ =()()a b a a b a b -+-•a b a+ =21a . 【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.20.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2x =3x ﹣9,解得:x =9,经检验x =9是分式方程的解;(2)去分母得:x 2+2x ﹣x 2﹣x +2=3,解得:x =1,经检验x =1是增根,分式方程无解.【点评】此题考查了解分式方程,熟练掌握运算法则是解本题的关键.21.【分析】先化简分式,然后代入a 求值.【解答】解:原式=2211a a a -++)÷21a a - =11a +•21a a -=1 aa -∵a2﹣1≠0,a≠0,a≠±1,0,当a=2时,原式=211 22 -=,当a=12时,原式=﹣1.【点评】本题考查了分式的化简求值,熟练分解因式是解题的关键.22.【分析】利用关于点对称图形的性质得出对应点到旋转中心的距离相等,进而作出对应点连线的垂直平分线进而得出其交点.【解答】解:如图所示;O点即为所求.【点评】此题主要考查了图形的旋转变换,利用关于点对称的图形性质得出是解题关键.23.【分析】(1)先由B等级人数及其所占百分比求出总人数,由各等级人数之和等于总人数得出C等级人数,从而可用360°乘以C等级人数占总人数的比例即可得;(2)由各等级人数之和等于总人数得出C等级人数,根据百分比概念求出A、C等级对应的百分比,由百分比之和等于1求出D等级对应的百分比,从而补全图形;(3)用总人数乘以样本中A等级对应的百分比即可得.【解答】解:(1)18÷45%=40,即在这次调查中一共抽取了40名学生,在扇形统计图中,C对应的扇形的圆心角是:360°×40418540---=117°,故答案为:117;(2)C等级的人数为:40﹣4﹣18﹣5=13,A 等级对应的百分比为440×100%=10%,C 等级对应的百分比为1340×100%=32.5%, 则D 等级对应的百分比为1﹣(10%+45%+32.5%)=12.5%,补全图形如下:(3)估计足球运球测试成绩达到A 级的学生有300×10%=30(人).【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.24.【分析】设小明的速度为3x 米/分,则小刚的速度为4x 米/分,根据时间=路程÷速度结合小明比小刚提前4min 到达剧院,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设小明的速度为3x 米/分,则小刚的速度为4x 米/分, 根据题意得:20004x ﹣12003x=4, 解得:x =25,经检验,x =25是分式方程的根,且符合题意,∴3x =75,4x =100.答:小明的速度是75米/分,小刚的速度是100米/分.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.25.【分析】(1)根据S 甲=边长为a 的正方形的面积﹣边长为2b 的正方形的面积列式即可;(2)①先根据S 乙=边长为a 的正方形的面积﹣长为a 、宽为b 的长方形的面积×2求出图乙中绿化的面积,再代入k =F ZS S 化简即可; ②根据2S 甲﹣S 乙=98a2列出方程,即可求出k 的值. 【解答】解:(1)S 甲=a2﹣(2b )2=a2﹣4b2.故答案为a2﹣4b2;(2)①S 乙=a2﹣2ab ,k =F Z S S =22242a b a ab --=(2)(2)(2)a b a b a a b +--=2a b a+;②∵2S 甲﹣S 乙=98a2, ∴2(a2﹣4b2)﹣(a2﹣2ab )=98a2, 化简,得a2﹣16ab+64b2=0,∴a =8b ,∴k =2a b a +=828b b b +=54. 【点评】本题考查了列代数式,正方形、长方形的面积以及分式的化简,正确求出甲、乙两图中绿化的面积是解题的关键.26.【分析】(1)由三角形中位线定理推知ED ∥FC ,2DE =BC ,然后结合已知条件“EF ∥DC ”,利用两组对边相互平行得到四边形DCFE 为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB =2DC ,即可得出四边形DCFE 的周长=AB +BC ,故BC =16﹣AB ,然后根据勾股定理即可求得.【解答】(1)证明:∵D 、E 分别是AB 、AC 的中点,∴ED 是Rt △ABC 的中位线,∴ED ∥FC .BC =2DE ,又 EF ∥DC ,∴四边形CDEF 是平行四边形;(2)解:∵四边形CDEF 是平行四边形;∴DC =EF ,∵DC 是Rt △ABC 斜边AB 上的中线,∴AB =2DC ,∴四边形DCFE 的周长=AB +BC ,∵四边形DCFE 的周长为16cm ,AC 的长8cm ,∴BC =16﹣AB ,∵在Rt △ABC 中,∠ACB =90°,∴AB 2=BC 2+AC 2,即AB 2=(16﹣AB )2+82,解得:AB=10cm,【点评】本题考查了平行四边形的判定和性质,三角形的中位线定理,直角三角形斜边中线的性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.27.【分析】(1)点A、B的坐标分别为(a,3a)、(b,﹣3b),AB∥x轴,则33a b=-,即可求解;(2)设点A(a,3a),则点C(a﹣2,3a),点D(a﹣2,32a+),点F(a﹣2,32a-),验证2﹣FC≥0,即可求解【解答】解:(1)A、B的横坐标分别为a、b,则点A、B的坐标分别为(a,3a)、(b,﹣3b),AB∥x轴,则33a b =-,则a=﹣b,AB=a﹣b=2a,S△OAB=12×2a×3a=3;(2)如图所示:∵a≥3,AC=2,则直线CD在y轴右侧且平行于y轴,CD一定与函数有交点,设交点为F,设点A(a,3a),则点C(a﹣2,3a),点D(a﹣2,32a+),点F(a﹣2,32a-)则2﹣FC=2﹣32a-+3a=2(1)(3)(2)a aa a+--,∵a≥3,∴a﹣3≥0,a﹣2>0,故2﹣FC≥0,FC≤2,即点F在线段CD上,即当a≥3时,CD边与函数y1=3x(x>0)的图象有交点.【点评】本题考查的是反比例函数和正方形的性质,该类问题最重要的就是,确定关键点如点D、F的坐标,进而求解.。

济南外国语学校华山校区新初一分班数学试卷含答案

济南外国语学校华山校区新初一分班数学试卷含答案

济南外国语学校华山校区新初一分班数学试卷含答案一、选择题1.把一个长5毫米的零件画在图纸上是1分米,这张图纸的比例尺是( )。

A .5∶1 B .200∶1C .20∶12.钟面上三点整的时候,分针和时针的夹角是( ).A .直角B .锐角C .钝角D .平角3.一段公路长300km ,甲队单独修3天完成,乙队单独修5天完成.求两队合修几天可以修完.正确的算式是( ). A .()130033005÷÷+÷ B .1130035⎛⎫÷+ ⎪⎝⎭C .11135⎛⎫÷+ ⎪⎝⎭D .()30035÷+4.如图是一个由草绳编织成的圆形茶杯垫片,沿直线剪开,形成了一个三角形。

观察这个三角形,高相当于圆的( )。

A .周长的一半B .周长C .半径D .直径5.甲、乙两人练习赛跑,甲每秒跑7m ,乙每秒跑6.5m ,甲让乙先跑5m ,设x 秒后甲可追上乙,则下列四个方程中不正确的是( ) A .7x=6.5x+5B .7x+5=6.5xC .(7﹣6.5)x=5D .6.5x=7x ﹣56.有一个立体图形,从上面看到的形状是,从右面看到的形状是,搭这样的一个立体图形,最少需要( )个小立方体。

A .4 B .5 C .6 D .77.一项工程,甲队单独做需要10天完成,乙队单独做需要12天完成。

下面说法有错误的是( )。

A .甲每天可以完成这项工程的110B .两队合作每天可以完成这项工程的111012+ C .甲的工作效率比乙的工作效率低 D .甲乙两队合作一共需要6011天 8.如图,以点A 为圆心的圆内,三角形ABC 一定为等腰三角形。

做出这个判断是运用了圆的什么特征?( )A.圆的周长是它的直径的π倍B.同一个圆的直径相等C.同一个圆的直径为半径的2倍D.同一个圆的半径相等9.六年级的小明和爸爸妈妈去太阳岛游玩,太阳岛收费为门票80元/张,学生半价(小明打五折)三人共花费()元。

2018-2019学年山东省济南市槐荫区八年级(下)期中数学试卷

2018-2019学年山东省济南市槐荫区八年级(下)期中数学试卷

2018-2019 学年山东省济南市槐荫区八年级(下)期中数学试卷副标题题号一二三总分得分一、选择题(本大题共12 小题,共 48.0分)1.下列式子中,是一元一次不等式的是()A. x2< 1B. y-3>0C. a+b=1D. 3x=22.不等式 x< 3 的解集在数轴上表示为()A. B.C. D.3.如图, A、 B 两点被一座山隔开, M、 N 分别是 AC、 BC中点,测量 MN 的长度为 40m,那么 AB 的长度为()A.40mB.80mC.160mD.不能确定4. 若 a>b,则下列不等式成立的是()A.a+1<b+1B.a-5<b-5C.>-3bD. >-3a5.如图,在 ?ABCD 中,点 E、 F 分别在边 AB 和 CD 上,下列条件不能判定四边形 DEBF 一定是平行四边形的是()A. AE=CFB. DE=BFC. ∠ADE=∠CBFD. ∠AED=∠CFB6.设“ ▲ ”、“ ●”、“ ■”分别表示三种不同的物体,现用天平秤两次,情况如图所示,那么▲● ■)、、这三种物体按质量从大到小排列应为(A.、、B.▲、、 C. 、、●D. 、、■■ ● ▲■ ●■ ▲● ▲7.如图,在菱形 ABCD 中,AB =6,∠ABD =30 °,则菱形ABCD 的面积是()A. 18B. 18C.36D. 368.不等式组的解集是x> 1,则 m 的取值范围是()A. m≥1B. m≤1C. m≥0D. m≤09.用“&”定义新运算:对于任意实数a b都有a& b=2a-b,如果x&(1&3)=2,那,么 x 等于()A. 1B.C.D. 210.用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素 C 含量及购买这两种原料的价格如下表:甲种原料乙种原料维生素 C 含量(单位 ?千克)600100原料价格(元 ?千克)84现配制这种饮料10kg,要求至少含有4200 单位的维生素C,若所需甲种原料的质量为 xkg,则 x 应满足的不等式为()A. 600x+100(10-x)≥4200B.8x+4( 100-x)≤ 4200C. 600x+100(10-x)≤ 4200D.8x+4( 100-x)≥ 420011.观察图中菱形四个顶点所标的数字规律,可知数2019 应标在()A. 第504个菱形的左边B. 第505个菱形的左边C. 第504个菱形的上边D. 第505个菱形的下边12.如图,已知正方形 ABCD 的边长为 4,P 是对角线 BD 上一点,PE⊥BC 于点 E,PF⊥CD 于点 F ,连接 AP,EF .给出下列结论:① PD = EC;②四边形 PECF 的周长为 8;③△APD 一定是等腰三角形;④ AP=EF;⑤ EF 的最小值为 2 ;⑥ AP⊥EF .其中正确结论的序号为()A. ①②④⑤⑥B. ①②④⑤C. ②④⑤D. ②④⑤⑥二、填空题(本大题共 6 小题,共24.0 分)13.x 的与 12 的差不小于 6,用不等式表示为 ______.14.一个多边形的内角和是 1800°,这个多边形是 ______ 边形.15.如图,平行四边形 ABCD 的对角线相交于点 O,且 AB≠AD ,过 O作 OE⊥BD 交 BC 于点 E.若△CDE的周长为10,则平行四边形ABCD 的周长为 ______.16.如图,在 Rt△ABC 中,∠ACB=90°, D 、E、 F 分别是 AB、BC、 CA 的中点,若 CD =3cm,则 EF=______ cm.17.如图,边长为 1 的菱形 ABCD 中,∠DAB=60 度.连接对角线AC,以 AC 为边作第二个菱形ACC1D 1,使∠D 1AC=60 °;连接AC1,再以 AC1为边作第三个菱形AC 1C2D 2,使∠D2AC1=60 °;,按此规律所作的第n 个菱形的边长为______.18.如图,已知正方形ABCD 的边长为8,点 O 是 AD 上一个定点, AO=5,点 P 从点 A出发,以每秒 1 个单位长的速度,按照 A→ B→ C→ D 的方向,在正方形的边上运动,设运动的时间为t(秒),当t 的值为 ______时,△AOP 是等腰三角形.三、解答题(本大题共9 小题,共78.0 分)19.解一元一次不等式< x+1,并在数轴上表示出它的解集.20.如图,在 ?ABCD 中, BE⊥AC, DF ⊥AC 垂足分别为 E、 F ,求证: AF=CE.21.如图在 8×8 的正方形网格中,△ABC 的顶点在边长为 1的小正方形的顶点上.(1)填空:∠ABC=______, AC=______;(2)画出一个以 A、B、 C、 D 为顶点的平行四边形,使顶点 D 也在格点上,并求这个平行四边形的面积.22. 比较下面两列算式结果的大小(在横线上选“>”“<““=”)22×4×34 +3 ______2(-2)2+2 2______2 ×( -2)×222+22______2 ×2×2( 1)通过观察归纳,得20002+20012______2 ×2000 ×2001.( 2)写出能反映这种规律的一般结论:______.( 3)用所学知识说明所得结论的正确性.23.某厂为了丰富大家的业余生活,组织了一次工会活动,准备一次性购买若干钢笔和笔记本(每支钢笔的价格相同,每本笔记本的价格相同)作为奖品.若购买 2 支钢笔和 3 本笔记本共需62 元,购买 5 支钢笔和 1 本笔记本共需90 元.(1)购买一支钢笔和一本笔记本各需多少元?(2)工会准备购买钢笔和笔记本共80 件作奖品,根据规定购买的总费用不超过1100 元,则工会最多可以购买多少支钢笔?24.如图所示, O 是矩形 ABCD 的对角线的交点, DE∥AC, CE∥BD .(1)求证:四边形 OCED 是菱形.(2)若∠AOD =120°, DE=2 ,求矩形 ABCD 的面积.25.阅读下面材料,根据要求解答问题:求不等式(2x-1)( x+3)> 0 的解集.解:根据“同号两数相乘,积为正”可得:①或②解不等式组①得:x>.解不等式组②得x< -3.∴不等式( 2x-1)( x+3)> 0 的解集为x>或 x< -3.请你仿照上述方法解决下列问题:(1)求不等式( 2x-3)( x+1)< 0 的解集.(2)求不等式≥0的解集.ABC中,点O是AC上的一动点,过点O作直线MN BC MN26. 已知:如图,△∥ ,设交∠BCA 的平分线于点E,交∠BCA 的外角∠ACG 的平分线于点 F ,连接 AE、 AF .(1)求证:∠ECF =90°;( 2)当点 O 运动到何处时,四边形AECF 是矩形?请说明理由;(3)在( 2)的条件下,△ABC 应该满足条件: ______,就能使矩形 AECF 变为正方形.(直接添加条件,无需证明)27.数学学习小组“文化年”最近正在进行几何图形组合问题的研究,认真研读以下三个片段,并回答问题.【片断一】小文说:将一块足够大的等腰直角三角板置于一个正方形中,直角顶点与对角线交点重合,在转动三角板的过程中我发现某些线段之间存在确定的数量关系.如图( 1),若三角板两条直角边的外沿分别交正方形的边AB, BC 于点 M ,N,则① OM +ON=MB+NB;② AM+CN=OD.请你判断他的猜想是否正确?若正确请说明理由;若不正确请说明你认为正确的猜想并证明.【片断】小化说:将角板中个45°角的顶点和正方形的一个顶点重合放置,使得这个角的两条边与正方形的一组邻边有交点.2A为顶点的45°BC CD于点M N 如图(),若以角的两边分别交正方形的边、,.交对角线 BD 于点 E、 F,我发现: BE2+DE 2=2AE2,只要准确旋转图(2)中的一个三角形就能证明这个结论.请你在图 2 中画出图形并写出小化所说的具体的旋转方式:______.【片断三】小年说:将三角板的一个45°角放置在正方形的外部,同时角的两边恰好经过正方形两个相邻的顶点.如图( 3),设顶点为 E 的45°角位于正方形的边AD 上方,这个角的两边分别经过点 B、C,连接 EA,ED ,那么线段 EB,EC,ED 也存在确定的数量关系:( EB+ED)2=2EC2,请你证明这个结论.答案和解析1.【答案】B【解析】解:A 、未知数次数是 2,属于一元二次不等式,故本选项错误;B、符合一元一次不等式的定义,故本选项正确;C、含有2 个未知数,属于二元一次方程,故本选项错误;D、含有 1 个未知数,是一元一次方程,故本选项错误;故选:B.根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是 1的不等式就可以.本题考查的是一元一次不等式的定义,只要熟练掌握一元一次不等式的定义即可轻松解答.2.【答案】B【解析】解:由于x<3,所以表示 3 的点应该是空心点,折线的方向应该是向左.故选B.不等式 x< 3 表示所有< 3 的数组成的集合,即数轴上 3 左边的点的集合.本题考查不等式解集的表示方法,将不等式的解集在数轴上表示出来,体现了数形结合的思想,是我们必须要掌握的知识,也是中考的常考点.不等式 x< 3 的解集用数轴表示时,3 应为空心点,且解集向左,本题考查用数轴表示不等式的解集.3.【答案】B【解析】解:∵M 、N 分别是 AC、BC 中点,∴NM 是△ACB 的中位线,∴AB=2MN=80m ,故选:B.根据三角形中位线定理计算即可.本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.4.【答案】D【解析】解:A 、∵a> b,∴a+1>b+1,故此选项错误;B、∵a> b,∴a-5>b-5,故此选项错误;C、∵a> b,∴-3a<-3b,故此选项错误;D、∵a> b,∴ >,故此选项正确;故选:D.直接利用不等式的基本性质分别判断得出答案.此题主要考查了不等式的性质,正确应用不等式基本性质是解题关键.5.【答案】B【解析】解:A 、由 AE=CF,可以推出 DF=EB,DF∥EB,四边形 ABCD 是平行四边形;B、由 DE=BF,不能推出四边形 ABCD 是平行四边形,有可能是等腰梯形;C、由∠ADE= ∠CBF,可以推出△ADE ≌△CBF,推出 DF=EB,DF∥EB,四边形ABCD 是平行四边形;D、由∠AED= ∠CFB,可以推出△ADE ≌△CBF,推出 DF=EB,DF∥EB ,四边形ABCD 是平行四边形;故选:B.根据平行四边形的判断方法一一判断即可;本题考查平行四边形的判定和性质、全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.【答案】C【解析】解:设▲、●、■的质量为 a、b、c,由图形可得:,由①得:c>a,由②得:a=2b,故可得 c> a>b.故选:C.设▲、●、■的质量为 a、b、c,根据图形,可得 a+c> 2a,a+b=3b,由此可将质量从大到小排列.本题考查了不等式的性质及等式的性质,解答本题关键是根据图形列出不等式和等式,难度一般.7.【答案】B【解析】解:过点 A 作 AE⊥BC 于 E,如图:,∵在菱形 ABCD 中,AB=6 ,∠ABD=30°,∴∠BAE=30°,∵AE⊥BC,∴AE=3,∴菱形 ABCD 的面积是=18 ,故选:B.根据菱形的对角线平分对角求出∠ABC=60°,过点 A 作 AE⊥BC 于 E,可得∠BAE=30°,根据 30 °角所对的直角边等于斜边的一半求出 AE=3,然后利用菱形的面积公式列式计算即可得解.本题考查了菱形的邻角互补的性质,作辅助线求出菱形边上的高线的长度是解题的关键.8.【答案】D【解析】解:不等式整理得:,由不等式组的解集为 x>1,得到 m+1≤1,解得:m≤0,故选:D.表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m 的范围即可.此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.9.【答案】C【解析】解:∵a&b=2a-b,∴x& (1&3 )=x& (1×2-3)=x& (-1)=2x+1=2,∴x=.故选:C.由题意对于任意实数 a,b 都有 a&b=2a-b,可以根据新定义,先算1&3 ,然后再算 x& (1&3 ),再根据x& (1&3 )=2,解出 x.此题主要考查了实数的运算,解这种关于定义一种新运算的题目,关键是搞清楚新的运算规则,按规则解答计算.10.【答案】A【解析】解:若所需甲种原料的质量为 xkg,则需乙种原料(10-x)kg.根据题意,得 600x+100(10-x)≥4200.故选:A.首先由甲种原料所需的质量和饮料的总质量,表示出乙种原料的质量,再结合表格中的数据,根据“至少含有 4200 单位的维生素 C”这一不等关系列不等式.能够读懂表格,会把文字语言转换为数学语言.11.【答案】B【解析】解:观察图形发现菱形的四个角上的数字排列规律为 1为下边,2 为上边,3 为左边,4 为右边,∵2019=504 4+3×,∴2019 应该在第 505 个菱形的左 边,∴所以数 2019 应标在第 505 个菱形左 边,故选:B .首先发现四个数的排列 规律,然后设第 n 个菱形中 标记的最大的数 为 a n ,观察给定图形,可找出规律“a =4n ”,依此规律即可得出 结论 .n本题考查了规律型中的 图形的变化类,根据菱形顶点上标数的变化找出变化规律是解题的关键.12.【答案】 A【解析】解:① 如图,延长 FP 交 AB 与 G ,连 PC ,延长 AP 交 EF 与 H ,∵GF ∥BC ,∴∠DPF=∠DBC ,∵四边形 ABCD 是正方形∴∠DBC=45°∴∠DPF=∠DBC=45°, ∴∠PDF=∠DPF=45°, ∴PF=EC=DF ,∴在 Rt △DPF 中,DP 2=DF 2+PF 2=EC 2+EC 2=2EC 2,∴DP=EC .故① 正确;②∵PE ⊥BC ,PF ⊥CD ,∠BCD=90°,∴四边形 PECF 为矩形,∴四边形 PECF 的周长 =2CE+2PE=2CE+2BE=2BC=8,故② 正确;③∵点 P 是正方形 ABCD 的对角线 BD 上任意一点, ∠ADP=45 度,∴当∠PAD=45 度或 67.5 度或 90 度时,△APD 是等腰三角形,故③ 错误.④∵四边形 PECF 为矩形,∴PC=EF ,∠PFE=∠ECP ,由正方形 为轴对称图形,∴AP=PC ,∠BAP=∠ECP , ∴AP=EF ,∠PFE=∠BAP , 故④ 正确;⑤ 由 EF=PC=AP ,∴当 AP 最小时,EF 最小,则当 AP ⊥BD 时,即AP= BD==2 时,EF 的最小值等于 2 ,故⑤ 正确;⑥∵GF ∥BC , ∴∠AGP=90°,∴∠BAP+∠APG=90°, ∵∠APG=∠HPF ,∴∠PFH+∠HPF=90°, ∴AP ⊥EF , 故⑥ 正确;本题正确的有:①②④⑤⑥ ;故选:A .① 根据正方形的 对角线平分对角的性质,得△PDF 是等腰直角三角形,在Rt △DPF 中,DP 2=DF 2+PF 2=EC 2+EC 2=2EC 2,求得 DP= EC .② 先证明四边形 PECF 为矩形,根据等腰直角三角形和矩形的性质可得其周长为 2BC ,则四边形 PECF 的周长为 8;③ 根据 P 的任意性可以判断 △APD 不一定是等腰三角形;④ 由② ,PECF 为 则 过 正方形的 轴对 证矩形, 通 称性, 明 AP=EF ; ⑤ 当 AP 最小时,EF 最小,EF 的最小值等于 2 ;⑥ 证明 ∠PFH+∠HPF=90°,则 AP ⊥EF .本题考查了正方形的性 质,全等三角形的判定及性 质,垂直的判定,等腰三角形的性 质,勾股定理的运用.本题难度较大,综合性较强,在解答时要认真13.【答案】x-12≥6【解析】解:根据题意,得x-12≥6.理解:差不小于 6,即是最后算的差应大于或等于 6.读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.14.【答案】12【解析】解:设这个多边形是 n 边形,根据题意得:(n-2)×180=1800,解得:n=12.∴这个多边形是 12 边形.故答案为:12.首先设这个多边形是 n 边形,然后根据题意得:(n-2)×180=1800,解此方程即可求得答案.此题考查了多边形的内角和定理.注意多边形的内角和为:(n-2)×180°.15.【答案】20【解析】解:∵四边形 ABCD 是平行四边形,∴OB=OD ,AB=CD ,AD=BC ,∵OE⊥BD,∴BE=DE,∵△CDE 的周长为 10,即 CD+DE+EC=10,∴平行四边形 ABCD 的周长为:AB+BC+CD+AD=2 (BC+CD )=2(BE+EC+CD )=2(DE+EC+CD )=2×10=20.故答案为:20.由四边形ABCD 是平行四边形,根据平行四边形的对角线互相平分、对边相等,即可得 OB=OD,AB=CD ,AD=BC ,又由 OE⊥BD ,即可得 OE 是 BD 的垂直周长为 10,即可求得平行四边形 ABCD 的周长.此题考查了平行四边形的性质与线段垂直平分线的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用.16.【答案】3【解析】解:∵∠ACB=90°,D 为 AB 中点,∴AB=2CD ,∵CD=3cm,∴AB=6cm ,∵E、F 分别是 BC、CA 的中点,∴EF=AB=3cm ,故答案为:3.首先根据在直角三角形中,斜边上的中线等于斜边的一半可得 AB=2CD=6cm ,再根据中位线的性质可得 EF= AB=3cm.此题主要考查了三角形中位线的性质以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.17.【答案】()n-1【解析】解:连接 DB,∵四边形 ABCD 是菱形,∴AD=AB .AC ⊥DB ,∵∠DAB=60°,∴△ADB 是等边三角形,∴DB=AD=1 ,∴BM=,∴AM==,同理可得 AC1=AC= (2AC=(3,),2= AC1=3)n-1按此规律所作的第 n 个菱形的边长为()故答案为(n-1.)根据已知和菱形的性质可分别求得 AC ,AC 1,AC 2的长,从而可发现规律根据规律不难求得第 n 个菱形的边长.此题主要考查菱形的性质以及学生探索规律的能力.18.【答案】5或10.5或20【解析】解:∵四边形 ABCD 是正方形∴AB=BC=CD=AD=8 ,∠D=90°∵AO=5,∴OD=3若 AP=AO=5 ,即t=若AP=OP,即点P 在AO 的垂直平分线上,∴点 P 在 BC 上,且 BP=2.5∴t=若 AO=OP=5,即点 P 在 CD 上,∴PD==4∴t=故答案为:5 或 10.5 或20由正方形的性质可得 AB=BC=CD=AD=8 ,∠D=90°,OD=3,分AP=AO ,AP=PO,AO=OP 三种情况讨论,由等腰三角形的性质可求 t 的值.本题考查了正方形的性质,等腰三角形的性质类讨论思想解决问题,利用分是本题的关键.19.【答案】解:,x< 2x+2x-2x< 2-x< 2在数轴上表示出它的解集为:【解析】先去分母、再去括号、移项、合并同类项、系数化为 1 即可求出此不等式的解集,再在数轴上表示出其解集即可.本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,解此题的关键是能正确求出不等式的解集.20.【答案】证明:∵四边形ABCD是平行四边形,∴AB=CD, AB∥CD,∴∠BAE=∠DCF .又 BE⊥AC, DF ⊥AC,∴∠AEB=∠CFD =90 °.在△ABE 与△CDF 中,,∴△ABE≌△CDF ( AAS),∴AE=CF ,∴AE+EF=CF +EF,即 AF=CE.【解析】由全等三角形的判定定理 AAS 证得△ABE ≌△CDF,可得AE=CF,即可解决问题;本题考查了全等三角形的判定与性质,熟练掌握三角形全等的判定方法并准确识图是解题的关键.21.【答案】135°2【解析】解:(1)有网格的特点可知∠ABC=135°,AC==2.故答案为:135°,2;(1)根据网格的特点及勾股定理即可得出 结论;(2)画出?ABCD ,利用平行四边形的面积公式即可得出 结论 .本题考查的是作图-应用与设计作图,熟知平行四边形的性质是解答此 题的关键.2222.【答案】 > > = > a +b ≥2ab解:42+32>2×4×322(-2)+2 >2×(-2)×222+22=2×2×2(1)(20002+20012)-2 ×2000×2001=1>0;故20002+20012>2×2000×2001.(2)设 a ,b 是任意实数,则 a 2+b 2≥ 2ab .3a 2 22≥0,得 2 2≥ 2ab ()由 +b -2ab= a-ba +b ( )结论:a 2+b 2≥2ab ;22≥ 2ab .故答案为:>;>=;>;a +b(1)根据题意得出规律解答即可;(2)根据规律解答即可;(3)通过作差法比 较大小,然后总结出规律,并借助数学知识验证规 律是否成立.此题考查数字的规律问题,比较代数式的大小可使用作差法,即左 边式子 -右边式子;若差大于 0,则左>右;若差小于 0,则左<右;若差等于 0,则左 =右.23.【答案】 解:( 1)设一支钢笔需 x 元,一本笔记本需 y 元,由题意得解得:答:一支钢笔需16 元,一本笔记本需 10 元;( 2)设购买钢笔的数量为 x ,则笔记本的数量为80-x ,由题意得16x+10 (80-x ) ≤ 1100答:工会最多可以购买50 支钢笔.【解析】(1)首先用未知数设出买一支钢笔和一本笔记本所需的费用,然后根据关键语“购买 2 支钢笔和 3 本笔记本共需 62 元,购买 5 支钢笔和 1 本笔记本共需90元”,列方程组求出未知数的值,即可得解.(2)设购买钢笔的数量为 x,则笔记本的数量为 80-x,根据总费用不超过1100 元,列出不等式解答即可.此题主要考查了二元一次方程组和一元一次不等式的应用,关键是正确理解题意,找出等量关系,列出方程组和不等式.24.【答案】解:(1)∵DE∥AC,CE∥BD,∴四边形 OCED 是平行四边形.∵四边形 ABCD 是矩形,∴OD =OC.∴四边形 OCED 是菱形.(2)∵四边形 ABCD 是矩形,且∠AOD =120°,∴△OCD 是等边三角形,∴CD =OC=DE=2,∴AC=4 , AB=2,在 Rt△ABC 中,利用勾股定理可得BC=.∴矩形 ABCD 的面积 =2×2=4.【解析】(1)先证明四边形 OCED 是平行四边形,再证明 OD=OC,根据一组邻边相等的平行四边形是菱形进行判定;(2)根据∠AOD=120°,DE=2,推导出 AC=4 ,AB=2 ,利用勾股定理求出 BC 长,矩形面积 =AB× BC .本题主要考查了矩形的性质、菱形的判定和性质以及勾股定理.解题的关键是熟知特殊四边形的判定和性质.25.【答案】解:(1)(2x-3)(x+1)<0可得:①或②,解不等式①得:无解;∴不等式( 2x-3)( x+1 )< 0 的解集为: -1< x<;( 2)≥0可得:①或②,解不等式①得:x≥3;解不等式组②得:x< -2;∴不等式≥0的解集为: x≥3或 x< -2;【解析】(1)将不等式转换为两个不等式组①或②,分别求解;2转换为两个不等式①或②别()将不等式,分求解;本题考查二元一次不等式的解法;能够将二元一次不等式转化为一元一次不等式组是解题的关键.26.【答案】(1)证明:∵CE平分∠BCO,CF平分∠GCO,∴∠OCE=∠BCE ,∠OCF =∠GCF ,∴∠ECF= ×180 °=90 °;(2)解:当点 O 运动到 AC 的中点时,四边形 AECF 是矩形.理由如下:∵MN ∥BC,∴∠OEC=∠BCE ,∠OFC =∠GCF ,又∵CE 平分∠BCO, CF 平分∠GCO ,∴∠OCE=∠BCE ,∠OCF=∠GCF ,∴∠OCE=∠OEC ,∠OCF =∠OFC ,∴EO=CO,FO=CO,∴OE=OF ;又∵当点 O 运动到 AC 的中点时, AO=CO,∴四边形 AECF 是平行四边形,∵∠ECF=90 °,∴四边形 AECF 是矩形;【解析】(1)由已知MN ∥BC,CE、CF 分别平分∠BCO 和∠GCO,可推出∠OEC=∠OCE,∠OFC=∠OCF,所以得 EO=CO=FO.(2)由(1)得出的EO=CO=FO,点O 运动到 AC 的中点时,则由EO=CO=FO=AO ,所以这时四边形 AECF 是矩形.(3)由已知和(2)得到的结论,点O 运动到 AC 的中点时,且△ABC 满足∠ACB 为直角的直角三角形时,则推出四边形 AECF 是矩形且对角线垂直,所以四边形 AECF 是正方形.此题考查的是正方形和矩形的判定,角平分线的定义,平行线的性质,等腰三角形的判定等知识.解题的关键是由已知得出 EO=FO,确定(2)(3)的条件.27.【答案】将△ABE绕点A逆时针旋转90°得到△ADG.连接GF【解析】解:【片断一】:图如1 中,① 错误,② 正确;理由:如图 1 中,∵四边形 ABCD 是正方形,∴AC ⊥BD ,OB=OC=OD=OA ,∠ABO= ∠OCN=45°,∵∠MON= ∠BOC,∴∠MOB= ∠NOC,∴△MOB ≌△NOC,∴BN=CN ,∴AM+CN=AM+BM=AB=OA=OD,①正确的结论:OM 2+ON2=BM2+BN2.理由:∵OM 2+ON2=MN2,BM2+BN2=MN2,【片断二】:图如 2 中,将△ABE 绕点 A 逆时针旋转 90°得到 △ADG .连接 GF .理由:∵AF=AF ,∠GAF= ∠EAF=45°,AG=AE ,∴△AFG ≌△AFE ,∴EF=GF ,∵∠ADG= ∠ABE= ∠ADF=45°,∴∠FDG=90°,∴GF 2=DF 2+DG 2,∴EF 2=BE 2+DF 2.故答案为:将△ABE 绕点 A 逆时针旋转 90°得到 △ADG .连接 GF .【片断三】:图如 3 中,过点 C 作 EC 的垂线交 EB 延长线于 F ,∵∠ECF=∠DCB=90°,∴∠DCE=∠BCF ,∵CD=CB ,CE=CF ,∴△CDE ≌△CBF ,∴ED=FB ,∴EB+ED=EB+FB=EF ,又因为 EC 2+FC 2=EF 2,2 2∴(EB+ED )=2EC .【片断一】如图 1 中,① 错误 .结论:OM 2+ON 2=BM 2+BN 2.② 正确.只要证明△MOB ≌△NOC 即可解决 问题;【片断二】如图 2 中,将△ABE 绕点 A 逆时针旋转 90°得到 △ADG .连接 GF .理第21 页,共 22页由勾股定理即可证明;【片断三】如图 3 中,过点 C 作 EC 的垂线交 EB 延长线于 F,构造全等三角形即可解决问题;本题考查四边形综合题、正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.第22 页,共 22页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018~2019学年山东济南天桥区济南外国语学校(初中 部)初二下学期期末数学试卷(详解)
一、选择题(本大题共12小题,每小题4分,共48分)
1. “瓦当”是中国古建筑装饰檐头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中,既
是轴对称图形,又是中心对称图形的是( ).
A.
B.
C.
D.
【答案】 D 【解析】 A 选项:既不是轴对称图形,又不是中心对称图形.
, ,



15. 已知
为分式方程,有增根,则

【答案】 【解析】 去分母得,


时,
为增根,


16.
/
如图,
是将
的度数是
绕点 顺时针旋转 得到的.若点 , , 在同一条直线上,则 .
【答案】
【解析】 ∵旋转 ,






, , ,
17. 如图,已知线段
, 是直线 上一动点,点 , 分别为 , 的中点,对下列各值:①
中,分别以 、 为边向外作等边

,延长 交
于点 ,点 在点 、 之间,连接 , , ,则以下四个结论一定正确的是( ).


;②
;③
;④
是等边三角形.
A. 只有①②
B. 只有①④
C. 只有①②③
D. ①②③④
【答案】 B
/
【解析】 ∵
为平行四边形,











∴①对.
②∵






∴②不对.



Hale Waihona Puke ∴,,∴四边形
是平行四边形.
( 2 )∵
, 是 的中点,



∵四边形
是平行四边形,
∴四边形
是菱形,
/


∴四边形
的周长为 .
24. 列方程解应用题: 从甲地到乙地有两条公路,一辆私家车在高速公路上的平均速度比在普通公路上的平均速度高 ,行驶 千米的高速公路比行驶同等长度的普通公路节约 分钟,求该汽车在高速公路上的 平均速度.
【答案】

【解析】 设普通公路上的平均速度为


解得

经检验:
是原分式方程的解,

∴高速度公路上的平均速度为

25. 如图,在四边形
中,对角线 , 相交于点 ,

,且

( 1 ) 求证:四边形 ( 2 )若
是矩形. ,
,求
的度数.
【答案】( 1 )证明见解析. (2) .
【解析】( 1 )∵


∴四边形
元,
购进的数量为
件.
故答案为:


( 2 ) 第一批利润:
(元),
第二批利润:
(元),
, 整理得
, ∴增长率为
(舍), .
27.
/
已知四边形

, 于点 , ,且
关系.
( 1 ) 如图( ),当
, 与 互补,以点 为顶点作一个角,角的两边分别交线段 ,连接 ,试探究:线段 , , 之间的数量
时, , , 之间的数量关系为
是平行四边形,






∴四边形
是矩形.
( 2 )∵


/






∵四边形
是矩形,






26. 年“双十一”来临之际,某网点以每件 元的价格购进 件衬衫以每件 元的价格迅速
售罄,所以该网店第二个月再次购进一批同款衬衫迎接“双十一”,与第一批衬衫相比,这批衬
衫的进价和数量都有一定的提高,其数量的增长率是进价增长率的 倍,该批衬衫仍以每件

20. 解方程:

【答案】


【解析】


21. 解不等式组:
,并将解集在数轴上表示出来.
【答案】

【解析】 解不等式①,得

解不等式②,得 ,
所以不等式组的解集是

在数轴上可表示为:
/
22. 如图,已知平行四边形 .
,取 的中点 ,连接 并延长,交 的延长线于点 ,求证:
【答案】 证明见解析.
B.
C.
D.
【答案】 D 【解析】 ∵旋转 ,



















,则










/
. 故选 .
11. 若关于 的方程
A.

C.
的解为正数,则 的取值范围是( ).
B.
D.

【答案】 A
【解析】 去分母得




∵解为正数,






∴,





故选 .
12. 如图,在平行四边形
【解析】 ∵四边形
是平行四边形,














23. 如图,已知在
中, , , 分别是 , , 的中点,连结 , , .
( 1 ) 求证:四边形
是平行四边形.
( 2 )若

,求四边形
的周长.
【答案】( 1 )证明见解析.
( 2 ) 四边形
的周长为 .
【解析】( 1 )∵ , , 分别是 , , 的中点,
元销售,十二月十二日下午六点,商店对剩余的 件衬衫以每件 的价格一次性清仓销售,商
店出售这两批衬衫共盈利 元,设第二批衬衫进价的增长率为 .
( 1 ) 第二批衬衫进价为
元,购进的数量为
件.(都用含 的代数式表示)
( 2 ) 求 的值.
【答案】( 1 )
;
(2) .
【解析】( 1 )由题意得,
第二批衬衫进价为
3. 要使分式
有意义,则 的取值应满足( ).
A.
B.
C.
D.
【答案】 A
【解析】
,.
故选 .
4. 不等式 A.
C.
的解集在数轴上表示正确的是( ). B.
D.
【答案】 B
【解析】



故选 .
5. 用配方法解方程
时,配方结果正确的是( ).
A.
B.
C.
D.
【答案】 B
【解析】



/
故选 .
6. 若关于 的一元二次方程
,连接 ,
在正方形
中,




中,

/
















中,










( 2 ) 延长 交点 ,使
,连接 ,
∵ ∴ ∵ ∴ ∴ ∵ ∴ ∴ ∴ ( 3 )将













绕点 旋转至
,连接 ,



/




























/
,,

,则
的最小值
【答案】 【解析】
如图,作
交 于 ,连接 、 、作



是等腰直角三角形,





























∴当 、 、 共线时,
的值最小,
于.
/
最小值


中,∵




中,
, .
三、解答题(本大题共9小题,共78分)
19. 化简:

【答案】 . 【解析】 原式
∵ 的长度不变,点 到 的距离等于 与 的距离的一半,

的面积不变,故③符合题意;
直线 , 之间的距离不随点 的移动而变化,故④符合题意;
/
的大小点 的移动而变化,故⑤不符合题意. 综上所述,不会随点 的移动而改变的是:①③④.
18. 如图,已知平行四边形
绕点 逆时针旋转 至


, ,连接
, 是 边的中点, 是 边上一动点,将线段
相关文档
最新文档