空间向量在立体几何中的应用和习题(含答案)
专题26 空间向量在立体几何中的运用(2)(纯答案)

专题26 空间向量在立体几何中的运用(2)答案题型一、面面角例1、【2020年高考全国Ⅰ卷理数】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,PO DO =.(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值.【解析】(1)设DO a =,由题设可得,,PO AO AB a ===,2PA PB PC ===. 因此222PA PB AB +=,从而PA PB ⊥. 又222PA PC AC +=,故PA PC ⊥. 所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,||OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得1(0,1,0),(0,1,0),(,0),(0,0,)222E A C P --. 所以31(,,0),(0,1,)22EC EP =--=-. 设(,,)x y z =m 是平面PCE 的法向量,则00EPEC ⎧⋅=⎪⎨⋅=⎪⎩m m ,即021022y z x y ⎧-+=⎪⎪⎨⎪--=⎪⎩,可取(=m . 由(1)知AP =是平面PCB 的一个法向量,记AP =n , 则cos ,|||5⋅==n m n m n m |. 所以二面角B PC E --的余弦值为5.变式1、【2020年高考全国Ⅱ卷理数】如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【解析】设AB a =,ADb =,1AAc =,如图,以1C 为坐标原点,11C D 的方向为x 轴正方向,建立空间直角坐标系1C xyz -.(1)连结1C F ,则1(0,0,0)C ,(,,)A a b c ,2(,0,)3E a c ,1(0,,)3F b c ,1(0,,)3EA b c =,11(0,,)3C F b c =,得1EA C F =.因此1EA C F ∥,即1,,,A E F C 四点共面,所以点1C 在平面AEF 内. (2)由已知得(2,1,3)A ,(2,0,2)E ,(0,1,1)F ,1(2,1,0)A ,(0,1,1)AE =--,(2,0,2)AF =--,1(0,1,2)A E =-,1(2,0,1)A F =-.设1(,,)x y z =n 为平面AEF 的法向量,则110,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,220,y z x z --=⎧⎨--=⎩可取1(1,1,1)=--n . 设2n 为平面1A EF 的法向量,则22110,0,A E A F ⎧⋅=⎪⎨⋅=⎪⎩n n 同理可取21(,2,1)2=n .因为121212cos ,||||⋅〈〉==⋅n n n n n n ,所以二面角1A EF A --.变式2、【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN∥平面C1DE;(2)求二面角A−MA1−N的正弦值.【答案】(1)见解析;(2)5.【解析】(1)连结B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1=DC,可得B1C=A1D,故ME=ND,因此四边形MNDE为平行四边形,MN∥ED.又MN⊄平面EDC1,所以MN∥平面C1DE.(2)由已知可得DE⊥DA.以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz,则(2,0,0)A ,A 1(2,0,4),2)M ,(1,0,2)N ,1(0,0,4)A A =-,1(12)A M =--,1(1,0,2)A N =--,(0,MN =.设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩m m ,所以2040x z z ⎧-+-=⎪⎨-=⎪⎩,.可取=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩,.n n所以020p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是cos ,||⋅〈〉===‖m n m n m n , 所以二面角1A MA N --变式3、【2019年高考全国Ⅱ卷理数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值.【答案】(1)证明见解析;(2 【解析】(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知Rt ABE △≌11Rt A B E △,所以45AEB ∠=︒,故AE AB =,12AA AB =.以D 为坐标原点,DA 的方向为x 轴正方向,||DA 为单位长,建立如图所示的空间直角坐标系D –xyz ,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,0,0)CB =,(1,1,1)CE =-,1(0,0,2)CC =.设平面EBC 的法向量为n =(x ,y ,x ),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n =(0,1,1)--.设平面1ECC 的法向量为m =(x ,y ,z ),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,0.z x y z =⎧⎨-+=⎩ 所以可取m =(1,1,0).于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --. 题型二、探索性问题例2、【2019年高考北京卷理数】如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =. (1)求证:CD ⊥平面PAD ; (2)求二面角F –AE –P 的余弦值; (3)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【答案】(1)见解析;(2)3;(3)见解析.【解析】(1)因为PA ⊥平面ABCD ,所以PA ⊥CD . 又因为AD ⊥CD ,所以CD ⊥平面PAD . (2)过A 作AD 的垂线交BC 于点M .因为PA ⊥平面ABCD ,所以PA ⊥AM ,PA ⊥AD .如图建立空间直角坐标系A −xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2).因为E 为PD 的中点,所以E (0,1,1). 所以(0,1,1),(2,2,2),(0,0,2)AE PC AP ==-=.所以1222224,,,,,3333333PF PC AF AP PF ⎛⎫⎛⎫==-=+= ⎪ ⎪⎝⎭⎝⎭.设平面AEF 的法向量为n =(x ,y ,z ),则0,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,2240.333y z x y z +=⎧⎪⎨++=⎪⎩ 令z =1,则1,1y x =-=-.于是=(1,1,1)--n .又因为平面PAD 的法向量为p =(1,0,0),所以cos ,||⋅〈〉==‖n p n p n p . 由题知,二面角F −AE −P.(3)直线AG 在平面AEF 内. 因为点G 在PB 上,且2,(2,1,2)3PG PB PB ==--, 所以2424422,,,,,3333333PG PB AG AP PG ⎛⎫⎛⎫==--=+=- ⎪ ⎪⎝⎭⎝⎭. 由(2)知,平面AEF 的法向量=(1,1,1)--n .所以4220333AG ⋅=-++=n . 所以直线AG 在平面AEF 内.变式1、(2019南通、泰州、扬州、徐州、淮安、宿迁、连云港二调)如图,在四棱锥PABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,AB =1,AP =AD =2.(1) 求直线PB 与平面PCD 所成角的正弦值;(2) 若点M ,N 分别在AB ,PC 上,且MN ⊥平面PCD ,试确定点M ,N 的位置.规范解答 (1)由题意知,AB ,AD ,AP 两两垂直.以{AB →,AD →,AP →}为正交基底,建立如图所示的空间直角坐标系Axyz ,则B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,2). 从而PB →=(1,0,-2),PC →=(1,2,-2),PD →=(0,2,-2). 设平面PCD 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PC →=0,n ·PD →=0,即⎩⎨⎧x +2y -2z =0,2y -2z =0,不妨取y =1,则x =0,z =1.所以平面PCD 的一个法向量为n =(0,1,1).(3分) 设直线PB 与平面PCD 所成角为θ, 所以sin θ=|cos 〈PB →,n 〉|=|PB →·n |PB →|·|n ||=105,即直线PB 与平面PCD 所成角的正弦值为105.(5分) (2)设M (a ,0,0),则MA →=(-a ,0,0).设PN →=λPC →,则PN →=(λ,2λ,-2λ),而AP →=(0,0,2), 所以MN →=MA →+AP →+PN →=(λ-a ,2λ,2-2λ).(8分) 由(1)知,平面PCD 的一个法向量为n =(0,1,1), 因为MN ⊥平面PCD ,所以MN →∥n .所以⎩⎨⎧λ-a =0,2λ=2-2λ,解得λ=12,a =12.所以M 为AB 的中点,N 为PC 的中点.(10分)变式2、(2020届浙江省宁波市余姚中学高考模拟)如图,ABC 为正三角形,且2BC CD ==,CD BC ⊥,将ABC 沿BC 翻折.(1)若点A 的射影在BD 上,求AD 的长;(2)若点A 的射影在BCD 中,且直线AB 与平面ACD AD 的长.【答案】(1)2 (2. 【解析】(1)过A 作AE BD ⊥交BD 于E ,则AE ⊥平面BCD . 取BC 中点O ,连接AO ,OE , ∵AE ⊥平面BCD ,BC ⊂平面BCD , ∴AE BC ⊥,又ABC 是正三角形,∴BC AO ⊥, 又AEAO A =,AE ,AO ⊂平面AOE ,∴BC ⊥平面AOE ,∴BC OE ⊥.又BC CD ⊥,O 为BC 的中点,∴E 为BD 的中点.∵2BC CD ==,∴112OE CD ==,AO =BD =,∴DE =AE ==∴2AD ==;(2)取BC 中点为,O 过点A 作平面BCD 的垂线,垂足为E ,连接AO ,因为,AB AC OE BC =∴⊥.以O 为原点,以BC 为x 轴,以OE 为y 轴,以平面BCD 的过O 的垂线为z 轴建立空间直角坐标系,如图所示:设二面角D BC A --为θ,因为AE ⊥平面BCD ,与(1)同理可证BC ⊥平面AOE ,OE BC ⊥,AOE θ∴∠=,AO =则)A θθ,(1,0,0)B -,(1,0,0)C ,(1,2,0)D .∴(1,)BA θθ=,(0,2,0)CD =,()CA θθ=-,设平面ACD 的法向量为(,,)nx y z =,则200n CD y n CA x y z θθ⎧⋅==⎪⎨⋅=-⋅⋅=⎪⎩, 令1z =,得(3sin ,0,1)n θ=.∴cos ,n BA <>==解得sinθ=∴1(0,,22A ,又(1,2,0)D ,∴AD ==变式3、如图1,在直角梯形ABCP 中,BC ∥AP ,AB ⊥BC ,CD ⊥AP ,AD =DC =PD =2,E 、F 、G 分别是PC 、PD 、BC 的中点,现将△PDC 沿CD 折起,使平面PDC ⊥平面ABCD(如图2).(1) 求二面角GEFD 的大小;(2) 在线段PB 上确定一点Q ,使PC ⊥平面ADQ ,并给出证明过程.图1图2【解析】 (1) 建立如图所示的空间直角坐标系,则EF →=(0,-1,0),EG →=(1,1,-1). 设平面GEF 的一个法向量为n =(x ,y ,z), 则⎩⎪⎨⎪⎧n ·EF →=-y =0,n ·EG →=x +y -z =0,取n =(1,0,1).又平面EFD 的法向量为m =(1,0,0),所以cos 〈m ,n 〉 =m ·n |m |·|n |=22,所以二面角GEFD 的大小为45°.(2) 设PQ →=λPB →(0<λ<1),则AQ →=AP →+PQ →=(-2+2λ,2λ,2-2λ). 因为AQ ⊥PC ,所以AQ →·PC →=0, 即2×2λ-2(2-2λ)=0,解得λ=12.又AD ⊥PC ,AD ∩AQ =A ,AD ,AQ ⊂平面ADQ , 所以PC ⊥平面ADQ , 故Q 是线段PB 的中点.变式4、如图,在四面体ABOC 中,OC ⊥OA, OC ⊥OB ,∠AOB =120°,且OA =OB =OC =1.(1) 设P 为AC 的中点.在AB 上是否存在一点Q ,使PQ ⊥OA ?若存在,计算ABAQ的值;若不存在,请说明理由.(2) 求二面角OACB 的平面角的余弦值.【解析】 (1) 取O 为坐标原点,分别以OA ,OC 所在的直线为x 轴,z 轴,建立如图所示的空间直角坐标系 Oxyz ,则A(1,0,0),C(0,0,1),B(-12,32,0).因为P 为AC 的中点,所以P ⎝ ⎛⎭⎪⎫12,0,12.设AQ →=λAB →,λ∈(0,1). 因为AB →=⎝ ⎛⎭⎪⎫-32,32,0,所以OQ →=OA →+AQ →=(1,0,0)+λ(-32,32,0)=⎝ ⎛⎭⎪⎫1-32λ,32λ,0,所以PQ →=OQ →-OP →=⎝ ⎛⎭⎪⎫12-32λ,32λ,-12.因为PQ ⊥OA ,所以PQ →·OA →=0,即12-32λ=0,解得λ=13,所以存在点Q ⎝ ⎛⎭⎪⎫12,36,0使得PQ ⊥OA ,且AB AQ =3.(2) 记平面ABC 的法向量为n =(x ,y ,z), 则由n ⊥CA →,n ⊥AB →,且CA →=(1,0,-1), 得⎩⎪⎨⎪⎧x -z =0,-32x +32y =0,故可取n =(1,3,1). 又平面OAC 的法向量为c =(0,1,0),所以cos 〈n ,c 〉=(1,3,1)·(0,1,0)5×1=35,故二面角OACB 的平面角是锐角,记为θ,则 cos θ=155.1、【2018年高考全国Ⅲ卷理数】如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.【答案】(1)见解析;(2.【解析】(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为CD上异于C,D的点,且DC为直径,所以DM⊥CM.又BC CM=C,所以DM⊥平面BMC.而DM⊂平面AMD,故平面AMD⊥平面BMC.(2)以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz.当三棱锥M−ABC体积最大时,M为CD的中点.D A B C M,由题设得(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,1,1)=-==(2,1,1),(0,2,0),(2,0,0)AM AB DA设(,,)x y z =n 是平面MAB 的法向量,则0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.x y z y -++=⎧⎨=⎩ 可取(1,0,2)=n .DA 是平面MCD 的法向量,因此5cos ,5||||DA DA DA ⋅==n n n ,2sin ,5DA =n , 所以面MAB 与面MCD . 2、【2018年高考北京卷理数】如图,在三棱柱ABC −111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G分别为1AA ,AC ,11A C ,1BB 的中点,AB=BC ,AC =1AA =2.(1)求证:AC ⊥平面BEF ; (2)求二面角B−CD −C 1的余弦值; (3)证明:直线FG 与平面BCD 相交. 【答案】(1)见解析;(2)(3)见解析. 【解析】(1)在三棱柱ABC -A 1B 1C 1中,∵CC 1⊥平面ABC , ∴四边形A 1ACC 1为矩形. 又E ,F 分别为AC ,A 1C 1的中点, ∴AC ⊥EF . ∵AB =BC . ∴AC ⊥BE , ∴AC ⊥平面BEF .(2)由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1. 又CC 1⊥平面ABC ,∴EF ⊥平面ABC . ∵BE ⊂平面ABC ,∴EF ⊥BE . 如图建立空间直角坐标系E -xyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1). ∴=(201)=(120)CD CB ,,,,,, 设平面BCD 的法向量为()a b c =,,n , ∴00CD CB ⎧⋅=⎪⎨⋅=⎪⎩n n ,∴2020a c a b +=⎧⎨+=⎩,令a =2,则b =-1,c =-4,∴平面BCD 的法向量(214)=--,,n , 又∵平面CDC 1的法向量为=(020)EB ,,,∴cos =21||||EB EB EB ⋅<⋅>=-n n n .由图可得二面角B -CD -C 1为钝角,所以二面角B -CD -C 1的余弦值为 (3)由(2)知平面BCD 的法向量为(214)=--,,n , ∵G (0,2,1),F (0,0,2), ∴=(021)GF -,,,∴2GF ⋅=-n ,∴n 与GF 不垂直,∴GF 与平面BCD 不平行且不在平面BCD 内, ∴GF 与平面BCD 相交.3、【2018年高考天津卷理数】如图,AD BC ∥且AD =2BC ,AD CD ⊥,EG AD ∥且EG =AD ,CD FG ∥且CD =2FG ,DG ABCD ⊥平面,DA =DC =DG =2.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN CDE ∥平面; (2)求二面角E BC F --的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(1)见解析;(2;(3)3.【解析】本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.满分13分.依题意,可以建立以D 为原点,分别以DA ,DC ,DG 的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M (0,32,1),N (1,0,2).(1)依题意DC =(0,2,0),DE =(2,0,2).设n 0=(x ,y ,z )为平面CDE 的法向量,则0000DC DE ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即20220y x z =⎧⎨+=⎩,, 不妨令z=–1,可得n 0=(1,0,–1).又MN =(1,32-,1),可得00MN ⋅=n ,又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE .(2)依题意,可得BC =(–1,0,0),(122)BE =-,,,CF =(0,–1,2). 设n =(x ,y ,z )为平面BCE 的法向量,则00BC BE ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即0220x x y z -=⎧⎨-+=⎩,, 不妨令z =1,可得n =(0,1,1). 设m =(x ,y ,z )为平面BCF 的法向量,则00BC CF ⎧⋅=⎪⎨⋅=⎪⎩,,m m 即020x y z -=⎧⎨-+=⎩,, 不妨令z =1,可得m =(0,2,1). 因此有cos<m ,n>=||||⋅=m n m n sin<m ,n.所以,二面角E –BC –F. (3)设线段DP 的长为h (h ∈[0,2]),则点P 的坐标为(0,0,h ),可得(12)BP h =--,,. 易知,DC =(0,2,0)为平面ADGE 的一个法向量,故cos BP DCBP DC BPDC h ⋅<⋅>==,解得h ∈[0,2]. 所以线段DP 的长为3. 4、(2020届山东省烟台市高三上期末)如图,在四棱锥S ABCD -中,ABCD 为直角梯形,//AD BC ,BC CD ⊥,平面SCD ⊥平面ABCD ,SCD ∆是以CD 为斜边的等腰直角三角形,224BC AD CD ===,E 为BS 上一点,且2BE ES =.(1)证明:直线//SD 平面ACE ;(2)求二面角S AC E --的余弦值.【答案】(1)证明见解析 (2)13【解析】(1)连接BD 交AC 于点F ,连接EF ,因为//AD BC ,所以AFD ∆与BCF ∆相似,所以2BF BC FD AD==, 又=2BE BF ES FD=,所以//EF SD , 因为EF ⊂平面ACE ,SD ⊄平面ACE ,所以直线//SD 平面ACE(2)由题,因为平面SCD ⊥平面ABCD ,平面SCD平面ABCD CD =,BC ⊂平面ABCD ,BC CD ⊥,所以BC ⊥平面SCD ,以C 为坐标原点,,CD CB 所在的方向分别为y 轴、z 轴的正方向,与,CD CB 均垂直的方向作为x 轴的正方向,建立如图所示的空间直角坐标系C xyz -,因为224BC AD CD ===,2BE ES =,则(0,0,0)C ,(1,1,0)S ,(0,2,2)A ,224(,,)333E , 所以(0,2,2)CA =,(1,1,0)CS =,224(,,)333CE =, 设平面SAC 的一个法向量为(,,)m x y z =,则00m CA m CS ⎧⋅=⎨⋅=⎩,即00y z x y +=⎧⎨+=⎩, 令1z =,得1x =,1y =-,于是(1,1,1)m =-,设平面EAC 的一个法向量为(,,)n x y z =,则00n CA n CE ⎧⋅=⎨⋅=⎩,即020y z x y z +=⎧⎨++=⎩, 令1z =,得1x =-,1y =-,于是(1,1,1)m =--,设二面角S AC E --的平面角的大小为θ,则1cos 3m nm n θ⋅==, 所以二面角S AC E --的余弦值为135、(2020届山东省潍坊市高三上期中)如图,在棱长均为2的三棱柱111ABCA B C -中,平面1ACB ⊥平面11A ABB ,11AB A B =,O 为1AB 与1A B 的交点.(1)求证:1AB CO ⊥;(2)求平面11ACC A 与平面ABC 所成锐二面角的余弦值.【答案】(1)详见解析;(2)13. 【解析】(1)因为四边形11A ABB 为菱形,所以11A B AB ⊥,又平面1ACB ⊥平面11A ABB ,平面1A CB 平面111A ABB A B =,所以1AB ⊥平面1A CB , 因为CO ⊂平面1A CB ,所以1AB CO ⊥.(2)因为11A B AB =,所以菱形11A ABB 为正方形,在Rt COA ∆中,CO ==在COB ∆中,CO OB ==2CB =,222CO OB CB +=, 所以,CO OB ⊥,又1CO AB ⊥,11A B AB O ⋂=,所以,CO ⊥平面11A ABB ;以O 为坐标原点,以OA ,OB ,OC 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O xyz -.)A,()10,A,(C,()B,设平面11ACC A的一个法向量为()1111,,n x y z=平面ABC的一个法向量为()2222,,n x y z=,则11110,0,⎧=⎪⎨+=⎪⎩令11x=,得()11,1,1=-n,22220,0,⎧+=⎪⎨+=⎪⎩令21x=,得()21,1,1=n,设平面11ACC A与平面ABC所成锐二面角为α,则21121cos33α⋅===n nn n,所以平面11ACC A与平面ABC所成锐二面角的余弦值为13.6、(2020届山东省日照市高三上期末联考)如图,扇形AOB的半径为2,圆心角120AOB∠=,点C为弧AB上一点,PO⊥平面AOB且PO=,点M PB∈且2BM MP=,PA∥平面MOC.(1)求证:平面MOC ⊥平面POB ;(2)求平面POA 和平面MOC 所成二面角的正弦值的大小.【答案】(1)见证明;(2) 4【解析】(1)如图,连接AB 交OC 于点N ,连接MN ,PA ∥平面MOC ,∴PA ∥MN ,2BM MP =,2BN NA ∴=,2OA OB ==,120AOB ∠=,AB ∴=,BN ∴=,又30OBA ∠=,∴在BON △中,根据余弦定理得ON =, 222ON OB BN ∴+=,90BON ∴∠=,ON OB ∴⊥, 又PO ⊥平面AOB ,ON OP ∴⊥,ON ∴⊥平面POB , 又ON ⊂平面MOC ,∴平面MOC ⊥平面POB(2)由(1)得,,OC OB OP OC OP OB ⊥⊥⊥,如图建立空间直角坐标系O xyz -, 5OP =,2OA OB OC ===,∴OP =,(3,1,0)OA =-,(2,0,0)OC =,(0,2,0)OB =,点M PB ∈且2BM MP =,2(0,3OM ∴=, 设平面POA 的法向量为1111(,,)x y z =n ,则1100n OP n OA ⎧⋅=⎪⎨⋅=⎪⎩,即11100y =-=, 令11x =,得1y =10z =,∴1(13,0)=n ,设平面MOC 的法向量为2222(,,)x y z =n ,则2200n OC n OM ⎧⋅=⎪⎨⋅=⎪⎩,即222202033x y z =⎧⎪⎨+=⎪⎩,即22200x y =⎧⎪⎨+=⎪⎩,令21z =,得2y =,20x =,∴2(0,=n ,设平面POA 和平面MOC 所成二面角的大小为θ,则|cos |4θ==,sin 4θ∴=, ∴平面POA 和平面MOC所成二面角的正弦值的大小为4。
空间向量在立体几何中的应用(重点知识+高考真题+模拟精选)

空间向量在⽴体⼏何中的应⽤(重点知识+⾼考真题+模拟精选)空间向量在⽴体⼏何中的应⽤【重要知识】⼀、求平⾯法向量的⽅法与步骤:1、选向量:求平⾯的法向量时,要选取两个相交的向量,如AC AB ,2、设坐标:设平⾯法向量的坐标为),,(z y x n =3、解⽅程:联⽴⽅程组=?=?0AC n AB n ,并解⽅程组4、定结论:求出的法向量中三个坐标不是具体的数值,⽽是⽐例关系。
设定某个坐标为常数得到其他坐标⼆、利⽤向量求空间⾓: 1、求异⾯直线所成的⾓:设b a ,为异⾯直线,点C A ,为a 上任意两点,点D B ,为b 上任意两点,b a ,所成的⾓为θ,则BDAC BD AC ??=θcos【注】由于异⾯直线所成的⾓θ的范围是:?≤设直线l 的⽅向向量为a ,平⾯α的法向量为n ,直线l 与平⾯α所成的⾓为θ,a 与n所成的⾓为?,则na n a ??==?θcos sin【注】由于直线与平⾯所成的⾓θ的范围是:?≤≤?900θ,因此0sin ≥θ 3、求⼆⾯⾓:设21,n n 分别为平⾯βα,的法向量,⼆⾯⾓βα--l 为θ,则>=<21,n n θ或><-21,n n π,其中212121,cos n n n n n n ??>=<三、利⽤向量求空间距离: 1、求点到平⾯的距离设平⾯α的法向量为n ,,α?A α∈B ,则点A 到平⾯α的距离为nn AB ?2、求两条异⾯直线的距离设21,l l 是两条异⾯直线,n 是公垂线段AB 的⽅向向量,D C ,分别为21,l l 上的任意两点,则21l l 与的距离为nn CD AB ?=【重要题型】1、(2012⼴东,理)如图所⽰,在四棱锥ABCD P -中,底⾯ABCD 为矩形,ABCD PA 平⾯⊥,点E 在线段PC 上,BDE PC 平⾯⊥(1)证明:PAC BD 平⾯⊥(2)若2,1==AD PA ,求⼆⾯⾓A PC B --的正切值2、(2013⼴东,理)如图①,在等腰三⾓形ABC 中,?=∠90A ,6=BC ,E D ,分别是AB AC ,上的点,2==BE CD ,O 为BC 的中点。
空间向量在立体几何中的应用和习题(含答案)

空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则 ①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥α ⇔a ⊥u ⇔a ·u =0;④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ; ⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l -β 在二面角的棱上任取一点O ,在两个半平面分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α -l -β 的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角α -l -β 的两个面与棱l 垂直的异面直线,则二面角α -l -β 的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面α ,β 的法向量,则〈m 1,m 2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2PA 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2PA 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤:(1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明. 例2 已知体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行. 解法一:设体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG ,∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是 b =(b 1,b 2,b 3). 由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.例3 在体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为θ ,则,52||||cos ==⋅CN AM CNAM θ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a aD ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a aa C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a aa AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0). 设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,AC ⊥BC ,PA =AC =1,2=BC ,求二面角A-PB -C 的平面角的余弦值.解法二图解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵PA =AC =1,PA ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA∴⋅=>=<33||||,cos DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面PAB 的法向量是a =(a 1,a 2,a 3),平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.练习一、选择题:1.在体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C)5(D)222.体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30° (B)45° (C)60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β 所成的角分别是θ 和ϕ,AB 在α ,β 的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n (B)θ >ϕ,m <n (C)θ <ϕ,m <n(D)θ <ϕ,m >n二、填空题:5.在体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______. 6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.4题图 7题图 9题图 8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,PA ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______.三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值. 10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.练习答案一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.54 8.42三、解答题:9题图 10题图 11题图 9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==4214||||),cos(111C A C A C A n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为θ ,,3π,21||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面β 过点C 作CO ⊥PQ 于点O ,连结OB .∵α ⊥β ,α ∩β =PQ ,∴CO ⊥α . 又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥α ,∴∠CAO 是CA 和平面α 所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面β 的一个法向量. 设二面角B -AC -P 的平面角为θ ,∴,55||||cos 2121==⋅⋅n n n n θ即二面角B -AC -P 平面角的余弦值是⋅55。
空间向量与立体几何练习题(带答案)

空间向量与立体几何练习题(带答案)一、选择题1.若空间向量a与b不相等,则a与b一定()A.有不同的方向B.有不相等的模C.不可能是平行向量D.不可能都是零向量【解析】若a=0,b=0,则a=b,这与已知矛盾,故选D.【答案】D图2-1-72.如图2-1-7所示,已知平行六面体ABCD-A1B1C1D1,在下列选项中,CD→的相反向量是()A.BA→B.A1C1→C.A1B1→D.AA1→【解析】由相反向量的定义可知,A1B1→是CD→的相反向量.【答案】C图2-1-83.在如图2-1-8所示的正三棱柱中,与〈AB→,AC→〉相等的是() A.〈AB→,BC→〉B.〈BC→,CA→〉C.〈C1B1→,AC→〉D.〈BC→,B1A1→〉【解析】∵B1A1→=BA→,∴〈BA→,BC→〉=〈AB→,AC→〉=〈BC→,B1A1→〉=60°,故选D.【答案】D4.在正三棱锥A-BCD中,E、F分别为棱AB,CD的中点,设〈EF→,AC→〉=α,〈EF→,BD→〉=β,则α+β等于()A.π6B.π4C.π3D.π2【解析】如图,取BC的中点G,连接EG、FG,则EG∥AC,FG∥BD,故∠FEG=α,∠EFG=β.∵A-BCD是正三棱锥,∴AC⊥BD.∴EG⊥FG,即∠EGF=π2.∴α+β=∠FEG+∠EFG=π2.【答案】D5.如图2-1-9所示,正方体ABCD-A1B1C1D1中,以顶点为向量端点的所有向量中,直线AB的方向向量有()图2-1-9A.8个B.7个C.6个D.5个【解析】与向量AB→平行的向量就是直线AB的方向向量,有AB→,BA→,A1B1→,B1A1→,C1D1→,D1C1→,CD→,DC→,共8个,故选A.【答案】A二、填空题6.在正方体ABCD-A1B1C1D1中,若E为A1C1的中点,则向量CE→和BD→的夹角为________.【解析】∵BD→为平面ACC1A1的法向量,而CE在平面ACC1A1中,∴BD→⊥CE→.∴〈BD→,CE→〉=90°.【答案】90°7.下列命题正确的序号是________.①若a∥b,〈b,c〉=π4,则〈a,c〉=π4.②若a,b是同一个平面的两个法向量,则a=B.③若空间向量a,b,c满足a∥b,b∥c,则a∥c.【解析】①〈a,c〉=π4或3π4,①错;②a∥b;②错;③当c=0时,推不出a∥c,③错;④由于异面直线既不平行也不重合,所以它们的方向向量不共线,④对.【答案】④8.在棱长为1的正方体中,S表示所有顶点的集合,向量的集合P={a|a =P1P2→,P1,P2∈S},则在集合P中模为3的向量的个数为________.【解析】由棱长为1的正方体的四条体对角线长均为3知:在集合P 中模为3的向量的个数为8.【答案】8三、解答题图2-1-109.如图2-1-10所示,在长、宽、高分别为AB=3、AD=2、AA1=1的长方体ABCD-A1B1C1D1的八个顶点的两点为始点和终点的向量中,(1)单位向量共有多少个?(2)试写出模为5的所有向量;(3)试写出与AB→相等的所有向量.【解】(1)由于长方体的高为1,所以长方体4条高所对应的AA1→,A1A→,BB1→,B1B→,CC1→,C1C→,DD1→,D1D→这8个向量都是单位向量,而其他向量的模均不为1,故单位向量共8个.(2)由于这个长方体的左右两侧的对角线长均为5,故模为5的向量有AD1→,D1A→,A1D→,DA1→,BC1→,C1B→,B1C→,CB1→共8个.(3)与向量AB→相等的所有向量(除它自身之外)共有A1B1→,DC→及D1C1→3个.图2-1-1110.如图2-1-11所示,正四棱锥S-ABCD中,O为底面中心,求平面SBD的法向量与AD→的夹角.【解】∵正四棱锥底面为正方形,∴BD⊥AC,SO⊥AC又∵BD∩SO=O∴AC⊥平面SBD.∴AC→为平面SBD的一个法向量.∴〈AC→,AD→〉=45°.图2-1-1211.如图2-1-12,四棱锥P—ABCD中,PD⊥平面ABCD,底面ABCD 为正方形且PD=AD,E、F分别是PC、PB的中点.(1)试以F为起点作直线DE的一个方向向量;(2)试以F为起点作平面PBC的一个法向量.【解】(1)取AD的中点M,连接MF,连接EF,∵E、F分别是PC、PB的中点,∴EF綊12BC,又BC綊AD,∴EF綊12AD,则由EF綊DM知四边形DEFM是平行四边形,∴MF∥DE,∴FM→就是直线DE的一个方向向量.(2)∵PD⊥平面ABCD,∴PD⊥BC,又BC⊥CD,∴BC⊥平面PCD,∵平面PCD,∴DE⊥BC,又PD=CD,E为PC中点,∴DE⊥PC,从而DE⊥平面PBC,∴DE→是平面PBC的一个法向量,由(1)可知FM→=ED→,∴FM→就是平面PBC的一个法向量.。
空间向量和立体几何练习题与答案

空间向量和立体几何练习题与答案
1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形就是( )
A.一个圆
B.一个点
C.半圆
D.平行四边形
答案:A
2.在长方体 ABCD-A₁B ₁C ₁D ₁中,下列关于AC₁的表达中错误的 一个就是( )
A. AA₁+A ₁B ₁+A ₁D ₁
B. AB+DD₁
+D ₁C ₁
C. AD+CC₁+D ₁C ₁
D.12(AB 1+CD 1)+A 1C 1
答案:B
3.若a ,b ,c 为任意向量,m ∈R ,下列等式不一定成立的就是( )
A.(a+b)+c=a+(b+c)
B.(a+b)•c=a•c+b•c
C. m(a+b)=ma+mb
D.(a·b)·c=a·(b·c)
答案:D
4.若三点A, B, C 共线,P 为空间任意一点,且PA+αPB=βPC,则α-β的值为( )
A.1
B.-1
C.12
D.-2
答案:B
5.设a=(x,4,3), b=(3,2, z),且a ∥b,则xz 等于( )
A.-4
B.9
C.-9
D.649
答案:B
6.已知非零向量 e ,e₂不共线,如果AB=e₁+e ₂ A C=2e ₂ 8e ₂AD=3e ₁3 ,则四点 A. B C (
) A.一定共圆
B.恰就是空间四边形的四个顶点心
C.一定共面
D.肯定不共面
答案:C。
空间向量在立体几何中的应用__夹角的计算习题详细答案解析

【巩固练习】 一、选择题1. 设平面内两个向量的坐标分别为(1,2,1),(-1,1,2),则下列向量中是平面的法向量的是( )A. (-1,-2,5)B. (-1,1,-1)C. (1, 1,1)D. (1,-1,-1)2. 如图,1111—ABCD A B C D 是正方体,1111114A B B E =D F =,则1BE 与1DF 所成角的余弦值是( ) A .1715 B .21 C .178 D .23 3. 如图,111—A B C ABC 是直三棱柱,90BCA ∠=︒,点11D F 、分别是1111A B AC 、的中点,若1BC CA CC ==,则1BD 与1AF 所成角的余弦值是( )A .1030B .21 C .1530 D .1015 4. 若向量(12)λ=a ,,与(212)=-b ,,的夹角的余弦值为89,则λ=( )A .2B .2-C .2-或255D .2或255-5. 在三棱锥P ABC -中,AB BC ⊥,12AB=BC=PA ,点O D 、分别是AC PC 、的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值( )A .621 B .338 C .60210D .302106.(2015秋 湛江校级期末)在正四棱锥S —ABCD 中,O 为顶点在底面内的投影,P 为侧棱SD 的中点,且SO=OD ,则直线BC 与平面PAC 的夹角是( )A .30°B .45°C .60°D .75°7. 在三棱锥P ABC -中,AB BC ⊥,1==2AB BC PA ,点O D 、分别是AC PC 、的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值是( )A .216B .833C .21060D .21030二、填空题8.若平面α的一个法向量为()330=n ,,,直线l 的一个方向向量为()111=b ,,,则l 与α所成角的余弦值为 _.9.正方体1111ABCD A B C D -中,E F 、分别为1AB CC 、的中点,则异面直线EF 与11A C 所成角的大小是______.10. 已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为 .11. 如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ︒==∠=,则平面BDF 和平面ABD 的夹角余弦值是_______.三、解答题12. 如图,点P 在正方体1111ABCD A B C D -的对角线1D B 上,∠60PDA =︒.(Ⅰ)求DP 与1C C 所成角的大小;(Ⅱ)求DP 与平面11A ADD 所成角的大小.13. 如图,四棱锥F ABCD -的底面ABCD 是菱形,其对角线2AC =,2BD AE ,CF 都与平面ABCD 垂直,1AE =, 2CF =,求平面ABF 与平面ADF 的夹角大小.14. 如图(1),在Rt△ABC 中,∠C =90°,BC =3,AC =6,D E ,分别是AC ,AB 上的点,且DE ∥BC ,2DE =,将△ADE 沿DE 折起到△1A DE 的位置,使1A C CD ,如图(2).(1)求证:1A C ⊥平面BCDE ;(2)若M 是1A D 的中点,求CM 与平面1A BE 所成角的大小;(3)线段BC 上是否存在点P ,使平面1A DP 与平面1A BE 垂直?说明理由.15.(2016 浙江理)如图,在三棱台ABC-DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE =EF =FC =1,BC =2,AC =3.(Ⅰ)求证:EF ⊥平面ACFD ;(Ⅱ)求二面角B-AD-F 的平面角的余弦值.【答案与解析】 1.【答案】B【解析】排除法.平面的法向量与平面内任意直线的方向向量垂直,即它们的数量积为零.排除A ,C ,D ,选项为B.2.【答案】A【解析】设正方体的棱长为1,以D 为原点建立如图所示的空间直角坐标系D-xyz ,则1131(1,1,0),(1,,1),(0,0,0),(0,,1)44B E D F .所以,131(1,,1)(1,1,0)(0,,1)44BE =-=-,111(0,,1)(0,0,0)(0,,1)44DF =-=,1174BE =,1174DF =, 11111500()114416BE DF ⋅=⨯+-⨯+⨯=.所以,111111cos ,151516.17171744BE DF BE DF BE DF ⋅<>=⋅==⋅因此,1BE 与1DF 所成的角的余弦值是1517. 3.【答案】A【解析】如图所示,以C 为原点建立的空间直角坐标系, 则()()()()()1111,0,0,0,1,0,0,0,1,1,0,1,0,1,1,A B C A B 由中点公式可知,11111101222D F ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,,,,,11111101222BD AF ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,,,,, ,111-1304cos 103524BD AF +==,.4.【答案】C【解析】由cos =a b a b a b ,可得,25510840λλ+= ,即()()25520λλ+= , 即2=λ 或255=λ. 5.【答案】D 【解析】().22214214,0,0,0,,0,,0,000.,0,222244OP ABC OA OC AB BC OA OB OA OP OB OP O OP z O xyz AB a A a B a C a P D a a ⊥==∴⊥⊥⊥-=⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 平面,,, ,,以为原点,射线为非负轴,建立空间直角坐标系如图,设,则,,,,214,0,,4411,1,,7210cos ,.30210sin cos ,,30210.30OD a a PBC n OD n OD n OD nOD PBC OD n OD PBC θθ⎛⎫∴=- ⎪ ⎪⎝⎭⎛⎫=- ⎪ ⎪⎝⎭⋅∴〈〉==⋅=〈〉=∴可求得平面的法向量 设与平面所成的角为,则 与平面所成角的余弦值为6.【答案】A【解析】如图,以O 为坐标原点,以OA 为x 轴,OB 为y 轴,以OS 为z 轴,建立空间直角坐标系O —xyz 。
高三数学一轮专题复习空间向量在立体几何中的应用(有详细答案)

空间向量在立体几何中的应用1. (选修21P97习题14改编>若向量a=(1,λ,2>,b=(2,-1,2>且a与b的夹角的余弦值为错误!,则λ=________.答案:-2或错误!2. (选修21P89练习3>已知空间四边形OABC,点M、N分别是OA、BC的中点,且错误!=a, 错误!=b, 错误!=c,用a,b,c表示向量错误!=________.b5E2RGbCAP答案:错误!(b+c-a>3. (选修21P101练习2改编>已知l∥α,且l的方向向量为(2,m,1>,平面α的法向量为错误!,则m=________.p1EanqFDPw答案:-84. (选修21P86练习3改编>已知a=(2,-1,3>,b=(-1,4,-2>,c=(7,5,λ>,若a、b、c三个向量共面,则实数λ等于________.DXDiTa9E3d答案:错误!5. (选修21P110例4改编>在正方体ABCDA1B1C1D1中,点E为BB1的中点,则平面A1ED与平面ABCD所成的锐二面角的余弦值为________.RTCrpUDGiT答案:错误!1. 直线的方向向量与平面的法向量(1> 直线l上的向量e以及与e共线的向量叫做直线l的方向向量.(2> 如果表示非零向量n的有向线段所在直线垂直于平面α,那么称向量n垂直于平面α,记作n⊥α.此时把向量n叫做平面α的法向量.5PCzVD7HxA2. 线面关系的判定直线l1的方向向量为e1=(a1,b1,c1>,直线l2的方向向量为e2=(a2,b2,c2>,平面α的法向量为n1=(x1,y1,z1>,平面β的法向量为n2=(x2,y2,z2>.jLBHrnAILg (1> 如果l1∥l2,那么e1∥e2e2=λe1a2=λa1,b2=λb1,c2=λc1.(2> 如果l1⊥l2,那么e1⊥e2e1·e2=0a1a2+b1b2+c1c2=0.(3> 若l1∥α,则e1⊥n1e1·n1=0a1x1+b1y1+c1z1=0.(4> 若l1⊥α,则e1∥n1e1=kn1a1=kx1,b1=ky1,c1=kz1.(5> 若α∥β,则n1∥n2n1=kn2x1=kx2,y1=ky2,z1=kz2.(6> 若α⊥β,则n1⊥n2n1·n2=0x1x2+y1y2+z1z2=0.3. 利用空间向量求空间角(1> 两条异面直线所成的角①范围:两条异面直线所成的角θ的取值范围是错误!.xHAQX74J0X②向量求法:设直线a、b的方向向量为a、b,其夹角为φ,则有cosθ=|cosφ|.(2> 直线与平面所成的角①范围:直线和平面所成的角θ的取值范围是错误!.LDAYtRyKfE②向量求法:设直线l的方向向量为a,平面的法向量为u,直线与平面所成的角为θ,a与u的夹角为φ,则有sinθ=|cosφ|或cosθ=sinφ.Zzz6ZB2Ltk(3> 二面角①二面角的取值范围是[0,π].②二面角的向量求法:(ⅰ> 若AB、CD分别是二面角αlβ的两个面内与棱l垂直的异面直线,则二面角的大小就是向量AB与CD的夹角(如图①>.dvzfvkwMI1(ⅱ> 设n1、n2分别是二面角αlβ的两个面α、β的法向量,则向量n1与n2的夹角(或其补角>的大小就是二面角的平面角的大小(如图②③>.rqyn14ZNXI题型1 空间向量的基本运算例1 如图,在平行六面体ABCDA1B1C1D1中,M为A1C1与B1D1的交点.若错误!=a,错误!=b,错误!=c,则错误!=________.EmxvxOtOco答案:-错误!a+错误!b+c错误!已知空间三点A(-2,0,2>,B(-1,1,2>,C(-3,0,4>.设a=错误!,b=错误!.SixE2yXPq5(1> 求a和b的夹角θ;(2>若向量ka+b与ka-2b互相垂直,求k的值.题型2 空间中的平行与垂直例2 如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=错误!,AF=1,M是线段EF的中点.6ewMyirQFL求证:(1> AM∥平面BDE;(2> AM⊥平面BDF.错误!如右图,在棱长为a的正方体ABCDA1B1C1D1中,G为△BC1D的重心,(1> 试证:A1、G、C三点共线;(2> 试证:A1C⊥平面BC1D;题型3 空间的角的计算例3(2018·苏锡常镇二模>如图,圆锥的高PO=4,底面半径OB=2,D为PO的中点,E为母线PB的中点,F为底面圆周上一点,满足EF⊥DE.kavU42VRUs(1> 求异面直线EF与BD所成角的余弦值;(2> 求二面角OOFE的正弦值.错误!(2018·江苏卷>如图所示,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.y6v3ALoS89(1> 求异面直线A1B与C1D所成角的余弦值;(2> 求平面ADC1与平面ABA1所成二面角的正弦值.1. 设A1、A2、A3、A4、A5是空间中给定的5个不同的点,则使错误!+错误!+错误!+错误!+错误!=0成立的点M的个数为________.M2ub6vSTnP答案:1 个2. (2018·连云港模拟>若平面α的一个法向量为n=(4,1,1>,直线l的一个方向向量为a=(-2,-3,3>,则l与α所成角的正弦值为________.0YujCfmUCw答案:错误!3. (2018·新课标全国卷Ⅱ>如图所示,直三棱柱ABCA1B1C1中,D、E分别是AB、BB1的中点,AA1=AC=CB=错误!AB.eUts8ZQVRd(1> 证明:BC1∥平面A1CD;(2> 求二面角DA1CE的正弦值.4. (2018·重庆>如图所示,四棱锥PABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=错误!,F为PC的中点,AF⊥PB.sQsAEJkW5T(1> 求PA的长;(2> 求二面角B-AF-D的正弦值.5. (2018·连云港调研>在三棱锥SABC中,底面是边长为2错误!的正三角形,点S在底面ABC上的射影O恰是AC的中点,侧棱SB和底面成45°角.GMsIasNXkA(1> 若D为侧棱SB上一点,当错误!为何值时,CD⊥AB;(2> 求二面角S-BC-A的余弦值大小.1. 在直四棱柱ABCD错误!-A1B1C1D1中,AA1=2,底面是边长为1的正方形,E、F分别是棱B1B、DA的中点.TIrRGchYzg(1> 求二面角D1错误!-AE-错误!C的大小;7EqZcWLZNX(2> 求证:直线BF∥平面AD1E.2. (2018·苏州调研>三棱柱ABC-A1B1C1在如图所示的空间直角坐标系中,已知AB=2,AC=4,A1A=3.D是BC的中点.lzq7IGf02E(1> 求直线DB1与平面A1C1D所成角的正弦值;(2> 求二面角B1-A1D-C1的正弦值.3. (2018·南通二模>如图,在三棱柱ABCA1B1C1中,A1B⊥平面ABC,AB⊥AC,且AB=AC=A1B=2.zvpgeqJ1hk(1> 求棱AA1与BC所成的角的大小;(2> 在棱B1C1上确定一点P,使二面角P-AB-A1的平面角的余弦值为错误!.NrpoJac3v1 4. (2018广东韶关第二次调研>如图甲,在平面四边形ABCD中,已知∠A=45°,∠C=90°,∠ADC=105°,AB=BD,现将四边形ABCD沿BD折起,使平面ABD⊥平面BDC(如图乙>,设点E、F分别为棱AC、AD的中点.1nowfTG4KI(1> 求证: DC⊥平面ABC;(2> 求BF与平面ABC所成角的正弦值;(3> 求二面角B-EF-A的余弦值.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
空间向量在立体几何中的应用

空间向量在立体几何中的应用一、选择题1.(2010全国卷2理)(11)与正方体1111ABC D A B C D -的三条棱A B 、1C C 、11A D 所在直线的距离相等的点(A )有且只有1个 (B )有且只有2个 (C )有且只有3个 (D )有无数个 【答案】D【解析】直线上取一点,分别作垂直于于则分别作,垂足分别为M ,N ,Q ,连PM ,PN ,PQ ,由三垂线定理可得,PN ⊥PM ⊥;PQ ⊥AB ,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ ,即P 到三条棱AB 、CC 1、A 1D 1.所在直线的距离相等所以有无穷多点满足条件,故选D.2.(2010辽宁理)(12) (12)有四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是(A)( (B)(1,+(D) (0,)【答案】A【命题立意】本题考查了学生的空间想象能力以及灵活运用知识解决数学问题的能力。
【解析】根据条件,四根长为2的直铁条与两根长为a 的直铁条要组成三棱镜形的铁架,有以下两种情况:(1)地面是边长为2的正三角形,三条侧棱长为2,a ,a ,如图,此时a可以取最大值,可知AD=,SD=,则有<2+,即228a <+=,即有(2)构成三棱锥的两条对角线长为a,其他各边长为2,如图所示,此时a>0;综上分析可知a∈(+3.(2010全国卷2文)(11)与正方体ABCD—A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点(A)有且只有1个(B)有且只有2个(C)有且只有3个(D)有无数个【答案】D【解析】:本题考查了空间想象能力∵到三条两垂直的直线距离相等的点在以三条直线为轴,以正方体边长为半径的圆柱面上,∴三个圆柱面有无数个交点,4.(2010全国卷2文)(8)已知三棱锥S A B C-中,底面ABC为边长等于2的等边三角形,S A垂直于底面ABC,S A=3,那么直线A B与平面S B C所成角的正弦值为(A)4(B)4(C)4 (D)34【答案】D【解析】:本题考查了立体几何的线与面、面与面位置关系及直线与平面所成角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则 ①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥α ⇔a ⊥u ⇔a ·u =0;④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ; ⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l -β 在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α -l -β 的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角α -l -β 的两个面内与棱l 垂直的异面直线,则二面角α -l -β的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面α ,β 的法向量,则〈m 1,m 2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2P A 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2P A 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤:(1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明. 例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行. 解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG ,∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是 b =(b 1,b 2,b 3). 由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为θ ,则,52||||cos ==⋅CN AM CNAM θ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a aD ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a aa C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a aa AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0). 设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2=BC ,求二面角A-PB -C 的平面角的余弦值.解法二图解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵P A =AC =1,P A ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA∴⋅=>=<33||||,cos DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面P AB 的法向量是a =(a 1,a 2,a 3),平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.练习一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30° (B)45° (C)60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β 所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n (B)θ >ϕ,m <n (C)θ <ϕ,m <n(D)θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______. 6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______. 7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.4题图 7题图 9题图 8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______. 三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值. 10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.练习答案一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.548.42三、解答题:9题图 10题图 11题图9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==4214||||),cos(111C A C A C A n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为θ ,,3π,21||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面β 内过点C 作CO ⊥PQ 于点O ,连结OB .∵α ⊥β ,α ∩β =PQ ,∴CO ⊥α . 又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥α ,∴∠CAO 是CA 和平面α 所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面β 的一个法向量. 设二面角B -AC -P 的平面角为θ ,∴,55||||cos 2121==⋅⋅n n n n θ即二面角B -AC -P 平面角的余弦值是⋅55。