空间向量与立体几何练习题
空间向量和立体几何练习题与答案

空间向量和立体几何练习题与答案
1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形就是( )
A.一个圆
B.一个点
C.半圆
D.平行四边形
答案:A
2.在长方体 ABCD-A₁B ₁C ₁D ₁中,下列关于AC₁的表达中错误的 一个就是( )
A. AA₁+A ₁B ₁+A ₁D ₁
B. AB+DD₁
+D ₁C ₁
C. AD+CC₁+D ₁C ₁
D.12(AB 1+CD 1)+A 1C 1
答案:B
3.若a ,b ,c 为任意向量,m ∈R ,下列等式不一定成立的就是( )
A.(a+b)+c=a+(b+c)
B.(a+b)•c=a•c+b•c
C. m(a+b)=ma+mb
D.(a·b)·c=a·(b·c)
答案:D
4.若三点A, B, C 共线,P 为空间任意一点,且PA+αPB=βPC,则α-β的值为( )
A.1
B.-1
C.12
D.-2
答案:B
5.设a=(x,4,3), b=(3,2, z),且a ∥b,则xz 等于( )
A.-4
B.9
C.-9
D.649
答案:B
6.已知非零向量 e ,e₂不共线,如果AB=e₁+e ₂ A C=2e ₂ 8e ₂AD=3e ₁3 ,则四点 A. B C (
) A.一定共圆
B.恰就是空间四边形的四个顶点心
C.一定共面
D.肯定不共面
答案:C。
空间向量与立体几何单元练习题

《空间向量与立体几何》习题一、选择题(每小题5分,共50分)1.如图,在平行六面体ABCD —A 1B 1C 1D 1中,M 为AC 与BD 的交点.若11B A =a ,11D A =b ,A A 1=c ,则下列向量中与M B 1相等的向量是A .-21a +21b +c B .21a +21b +c C .21a -21b +c D .-21a -21b +c 2.下列等式中,使点M 与点A 、B 、C 一定共面的是A.OC OB OA OM --=23B.OC OB OA OM 513121++=C.0=+++OC OB OA OMD.0=++MC MB MA3.已知空间四边形ABCD 的每条边和对角线的长都等于1,点E 、F 分别是AB 、AD 的中点,则DC EF ⋅等于A.41B.41- C.43 D.43-4.若)2,,1(λ=a ,)1,1,2(-=b ,a 与b 的夹角为060,则λ的值为 A.17或-1 B.-17或1 C.-1 D.15.设)2,1,1(-=OA ,)8,2,3(=OB ,)0,1,0(=OC ,则线段AB 的中点P 到点C 的距离为 A.213 B.253 C.453 D.4536.下列几何体各自的三视图中,有且仅有两个视图相同的是A .①②B .①③C .①④D .②④7.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是①正方体 ②圆锥 ③三棱台 ④正四棱锥A .9πB .10πC .11πD .12π8.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是 A .BD ∥平面CB 1D 1 B .AC 1⊥BDC .AC 1⊥平面CB 1D 1D .异面直线AD 与CB 1所成的角为60°9.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为 A .6 B .552 C .15 D .10 10.⊿ABC 的三个顶点分别是)2,1,1(-A ,)2,6,5(-B ,)1,3,1(-C ,则AC 边上的高BD 长为A.5B.41C.4D.52二、填空题(每小题5分,共20分)11.设)3,4,(x =a ,),2,3(y -=b ,且b a //,则=xy .12.已知向量)1,1,0(-=a ,)0,1,4(=b ,29=+b a λ且0λ>,则λ=________. 13.在直角坐标系xOy 中,设A (-2,3),B (3,-2),沿x 轴把直角坐标平面折成大小为θ的二面角后,这时112=AB ,则θ的大小为 . 14.如图,P —ABCD 是正四棱锥,1111ABCD A B C D -是正方体,其中 2,6AB PA ==,则1B 到平面P AD的距离为 .三、解答题(共80分)俯视图 正(主)视图 侧(左)视图 2 32 215.(本小题满分12分)如图,在四棱锥P-ABCD 中,底面ABCD 是边长为1的正方形,侧棱PA 的长为2,且PA 与AB 、AD 的夹角都等于600,M 是PC 的中点,设c b a ===AP AD AB ,,. (1)试用c b a ,,表示出向量BM ;(2)求BM 的长.16.(本小题满分14分)如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm ).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结'BC ,证明:'BC ∥面EFG ..17.(本小题满分12分)如图,在四面体ABCD 中,CB CD AD BD =⊥,,点E F ,分别是AB BD ,的中点.求证: (1)直线//EF 面ACD ; (2)平面EFC ⊥面BCD .224侧视图正视图624GEFC'B'D'C A B DMPD C BAED CBA P 18.(本小题满分14分)如图,已知点P 在正方体''''D CB A ABCD -的对角线'BD 上,∠PDA=60°.(1)求DP 与'CC 所成角的大小;(2)求DP 与平面D D AA ''所成角的大小.19.(本小题满分14分)已知一四棱锥P -ABCD 的三视图如下,E 是侧棱PC 上的动点.(1)求四棱锥P -ABCD 的体积;(2)是否不论点E 在何位置,都有BD ⊥AE ?证明你的结论; (3)若点E 为PC 的中点,求二面角D -AE -B 的大小.20.(本小题满分14分)如图,已知四棱锥P ABCD -,底面ABCD 为菱形,PA ⊥平面ABCD ,60ABC ∠=o ,E F ,分别是BC PC ,的中点. (1)证明:AE PD ⊥;(2)若H 为PD 上的动点,EH 与平面PAD所成最大角的正切值为2,求二面角E AF C --的余弦值.PBDFA D 'C 'B'A'PD C BA练习题参考答案一、选择题1.)(21111BC BA A A BM B B M B ++=+==c +21(-a +b )=-21a +21b +c ,故选A.2.1),,(=++∈++=⇔z y x R z y x z y x C B A M 且四点共面、、、由于MC MB MA MC MB MA C B A --=⇔=++∴0由于都不正确、、选项.)()()(共面使所以存在y x y x ,,,1,1∴+==-=四点共面,、、、为公共点由于C B A M M ∴故选D. 3.∵的中点分别是AD AB F E ,,,BD EF BD EF 21,21//=∴=∴且,41120cos 1121,210-=⨯⨯⨯>=<=⋅=⋅∴ 故选B .4.B5.B6.D7.D8.D9.D 10.4,cos ==><=,5==,故选A二、填空题 11.9 12.313.作AC ⊥x 轴于C ,BD ⊥x 轴于D ,则++=θθcos 6)180,0,0,2530-=-=⋅=⋅=⋅===0022222120,1800 .21cos ),cos 600(2253)112()(2)(=∴≤≤-=∴--+++=∴⋅+⋅+⋅+++=++=θθθθ由于AC DB DB CD CD AC DB CD AC14.以11B A 为x 轴,11D A 为y 轴,A A 1为z 轴建立空间直角坐标系设平面P AD 的法向量是(,,)m x y z =u r,(0,2,0),(1,1,2)AD AP ==u u u r u u u r Q ,∴02,0=++=z y x y ,取1=z 得(2,0,1)m =-u r,1(2,0,2)B A =-u u u rQ ,∴1B 到平面PAD的距离1B A m d m⋅==u u u r u r u r.三、解答题15.解:(1)∵M 是PC 的中点,∴)]([21)(21AB AP AD BP BC BM -+=+=c b a a c b 212121)]([21++-=-+= (2)2,1,2,1===∴===c b a PA AD AB 由于160cos 12,0,60,00=⋅⋅=⋅=⋅=⋅∴=∠=∠⊥c b c a b a PAD PAB AD AB 由于),(21c b a ++-=BM 由于 23)]110(2211[41)](2[41)(4122222222=+-+++=⋅+⋅-⋅-+++=++-=∴c b c a b a c b a c b a BM 2626的长为,BM BM ∴=∴. 16.解:(1)如图(2)所求多面体体积V V V =-长方体正三棱锥1144622232⎛⎫=⨯⨯-⨯⨯⨯⨯ ⎪⎝⎭2284(cm )3=.(3)证明:在长方体ABCD A B C D ''''-中, 连结AD ',则AD BC ''∥. 因为E G ,分别为AA ',A D ''中点, 所以AD EG '∥, 从而EG BC '∥.又BC '⊄平面EFG ,所以BC '∥面EFG .17.证明:(1)∵E,F 分别是AB BD ,的中点,∴EF 是△ABD 的中位线,∴E F ∥AD ,∵AD ⊂面ACD ,E F ⊄面ACD ,∴直线E F ∥面ACD ;(2)∵AD ⊥BD ,E F ∥AD ,∴E F ⊥BD ,∵CB=CD ,F 是BD的中点,∴CF ⊥BD 又EF ∩CF=F, ∴BD ⊥面EFC , ∵B D ⊂面BCD ,∴面EFC ⊥面BCD .A BC D E F GA 'B 'C 'D '18.解:如图,以D 为原点,DA 为单位长建立空间直角坐标系D xyz -.则(100)DA =u u u r ,,,(001)CC '=u u u u r,,.连结BD ,B D ''. 在平面BB D D ''中,延长DP 交B D ''于H .设(1)(0)DH m m m =>u u u u r,,,由已知60DH DA <>=o u u u u r u u u r ,, 由cos DA DH DA DH DA DH =<>u u u r u u u u r u u u r u u u u r u u u r u u u u rg ,,可得2m =.解得2m =,所以1DH ⎫=⎪⎪⎝⎭u u u u r . (1)因为0011cos 2DH CC ++⨯'<>==u u u u r u u u u r ,, 所以45DH CC '<>=o u u u u r u u u u r,,即DP 与CC '所成的角为45o . (2)平面AA D D ''的一个法向量是(010)DC =u u u r ,,.因为01101cos 2DH DC +⨯<>==u u u u r u u u r ,,所以60DH DC <>=o u u u u r u u u r,,可得DP 与平面AA D D ''所成的角为30o . 19.解:(1)由该四棱锥的三视图可知,该四棱锥P -ABCD 的底面是边长为1的正方形,侧棱PC ⊥底面ABCD ,且PC=2.∴1233P ABCD ABCD V S PC -=⋅=Y(2)不论点E 在何位置,都有BD ⊥AE证明如下:连结AC ,∵ABCD 是正方形,∴BD ⊥AC∵PC ⊥底面ABCD 且BD ⊂平面ABCD ∴BD ⊥PC又AC PC C =I ∴BD ⊥平面PAC∵不论点E 在何位置,都有AE ⊂平面PAC ∴不论点E 在何位置,都有BD ⊥AE(3)解法1:在平面DAE 内过点D 作DG ⊥AE 于G ,连结BG∵CD=CB,EC=EC ,∴Rt ECD ∆≌Rt ECB ∆,∴ED=EB ∵AD=AB ,∴△EDA ≌△EBA ,∴BG ⊥EA ∴DGB ∠为二面角D -EA -B 的平面角 ∵BC ⊥DE ,AD ∥BC ,∴AD ⊥DE在R t△ADE 中AD DE DG AE ⋅==BG在△DGB 中,由余弦定理得212cos 222-=⋅-+=∠BG DG BD BG DG DGBzyxEDC BAP∴DGB ∠=23π,∴二面角D -AE -B 的大小为23π. 解法2:以点C 为坐标原点,CD 所在的直线为x轴建立空间直角坐标系如图示:则(1,0,0),(1,1,0),(0,1,0),(0,0,1)D A B E ,从而(1,0,1),(0,1,0),(1,0,0),(0,1,1)DE DA BA BE =-===-u u u r u u u r u u u r u u u r设平面ADE 和平面ABE 的法向量分别为 (,,),(',',')m a b c n a b c ==u r r由法向量的性质可得:0,0a c b -+==,'0,''0a b c =-+=令1,'1c c ==-,则1,'1a b ==-,∴(1,0,1),(0,1,1)m n ==--u r r设二面角D -AE -B 的平面角为θ,则1cos 2||||m n m n θ⋅==-⋅u r r u u r r∴23πθ=,∴二面角D -AE -B 的大小为23π. 20.(1)证明:由四边形ABCD 为菱形,60ABC ∠=o ,可得ABC △为正三角形. 因为E 为BC 的中点,所以AE BC ⊥.又BC AD ∥,因此AE AD ⊥.因为PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以PA AE ⊥. 而PA ⊂平面PAD ,AD ⊂平面PAD 且PA AD A =I , 所以AE ⊥平面PAD .又PD ⊂平面PAD , 所以AE PD ⊥.(2)解:设2AB =,H 为PD 上任意一点,连接AH EH ,. 由(1)知AE ⊥平面PAD ,则EHA ∠为EH 与平面PAD 所成的角. 在Rt EAH △中,3AE =, 所以当AH 最短时,EHA ∠最大, 即当AH PD ⊥时,EHA ∠最大. 此时36tan 2AE EHA AH AH ∠===, 因此2AH =.又2AD =,所以45ADH ∠=o , 所以2PA =.解法一:因为PA ⊥平面ABCD ,PA ⊂平面PAC , 所以平面PAC ⊥平面ABCD .过E作EO AC⊥于O,则EO⊥平面PAC,过O作OS AF⊥于S,连接ES,则ESO∠为二面角E AF C--的平面角,在Rt AOE△中,sin30EO AE==og3cos302AO AE==og,又F是PC的中点,在Rt ASO△中,sin454SO AO==og,又SE===Rt ESO△中,cos SOESOSE∠===,.解法二:由(1)知AE AD AP,,两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系,又E F,分别为BC PC,的中点,所以(000)10)0)(020)A B C D-,,,,,,,,,,1(002)0)12P E F⎫⎪⎪⎝⎭,,,,,,,,所以10)12AE AF⎫==⎪⎪⎝⎭u u u r u u u r,,,,.设平面AEF的一法向量为111()x y z=,,m,则AEAF⎧=⎪⎨=⎪⎩u u u rgu u u rg,,mm因此1111122x y z=++=⎪⎩,.取11z=-,则(021)=-,,m,因为BD AC⊥,BD PA⊥,PA AC A=I,所以BD⊥平面AFC,故BDu u u r为平面AFC的一法向量.又(0)BD=u u u r,,所以cosBDBDBD<>===u u u ru u u r gu u u rg,mmm因为二面角E AF C--为锐角,所以所求二面角的余弦值为5.B。
高二数学空间向量与立体几何测试题

高二数学 空间向量与立体几何测试题第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在下列命题中:①若a 、b 共线,则a 、b 所在的直线平行;②若a 、b 所在的直线是异面直线,则a 、b 一定不共面;③若a 、b 、c 三向量两两共面,则a 、b 、c 三向量一定也共面;④已知三向量a 、b 、c ,则空间任意一个向量p 总可以唯一表示为p =x a +y b +z c .其中正确命题的个数为 ( ) A .0 B.1 C. 2 D. 3 2.在平行六面体ABCD -A 1B 1C 1D 1中,向量1D A 、1D C 、11C A 是 ( )A .有相同起点的向量B .等长向量C .共面向量D .不共面向量3.若向量λμλμλ且向量和垂直向量R b a n b a m ∈+=,(,、则)0≠μ ( ) A .//B .⊥C .也不垂直于不平行于,D .以上三种情况都可能4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共面,则实数λ等于( ) A.627 B. 637 C. 647 D. 6575.直三棱柱ABC —A 1B 1C 1中,若CA =a ,CB =b ,1CC =c , 则1A B = ( )A.+-a b cB. -+a b cC. -++a b cD. -+-a b c6.已知a +b +c =0,|a |=2,|b |=3,|c |=19,则向量a 与b 之间的夹角><b a ,为( )A .30°B .45°C .60°D .以上都不对7.若a 、b 均为非零向量,则||||⋅=a b a b 是a 与b 共线的 ( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分又不必要条件8.已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为( )A .2B .3C .4D .59.已知的数量积等于与则35,2,23+-=-+=( )EM GDCBA10.已知(1,2,3)OA =,(2,1,2)OB =,(1,1,2)OP =,点Q 在直线OP 上运动,则当QA QB ⋅ 取得最小值时,点Q 的坐标为( )A .131(,,)243B .123(,,)234C .448(,,)333D .447(,,)333第Ⅱ卷(非选择题,共100分)二、填空题(本大题共6小题,每小题5分,共30分) 11.若A(m +1,n -1,3),B(2m ,n ,m -2n ),C(m +3,n -3,9)三点共线,则m +n = .12.12、若向量 ()()1,,2,2,1,2a b λ==-,,a b 夹角的余弦值为89,则λ等于__________.13.在空间四边形ABCD 中,AC 和BD 为对角线,G 为△ABC 的重心,E 是BD 上一点,BE =3ED ,以{AB ,AC ,AD }为基底,则GE = .14.已知a,b,c 是空间两两垂直且长度相等的基底,m=a+b,n=b-c ,则m,n 的夹角为 。
第一章空间向量与立体几何-章节综合训练

章节综合训练[文档副标题][日期]世纪金榜[公司地址]单元质量评估(120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知向量a=(1,,2),b=(2,-1,k),且a与b互相垂直,则k的值是( )A.-1B.C.1D.-2.若a,b,c是空间任意三个向量,λ∈R,下列关系中,不成立的是( )A.a+b=b+aB.λ(a+b)=λa+λbC.(a+b)+c=a+(b+c)D.b=λa3如图,空间四边形ABCD中,E,F分别是BC,CD的中点,则++等于( )A. B. C. D.4.若A(1,-2,1),B(4,2,3),C(6,-1,4),则△ABC的形状是( )A.不等边锐角三角形B.直角三角形C.钝角三角形D.等边三角形5.已知平面α的一个法向量为n1=(-1,-2,-1),平面β的一个法向量n2=(2,4,2),则不重合的平面α与平面β( )A.平行B.垂直C.相交但不垂直D.不确定6.若a=e1+e2+e3,b=e1+e2-e3,c=e1-e2+e3,d=e1+2e2+3e3,d=αa+βb+γc,则α,β,γ分别为( )A.,-1,-B.,1,C.-,1,-D.,1,-7.(2013·吉安高二检测)已知直线l1的方向向量a=(2,4,x),直线l2的方向向量b=(2,y,2),若|a|=6,且a⊥b,则x+y的值是( )A.1或-3B.-1或3C.-3D.18.已知A(1,-1,2),B(2,3,-1),C(-1,0,0),则△ABC的面积是( )A. B. C. D.9.下列命题正确的是( )A.若=+,则P,A,B三点共线B.若{a,b,c}是空间的一个基底,则{a+b,b+c,a+c}构成空间的另一个基底C.(a·b)·c=|a|·|b|·|c|D.△ABC为直角三角形的充要条件是·=010.如图所示,四边形ABCD为矩形,AB=3,BC=1,EF∥BC且AE=2EB,G为BC的中点,K 为△ADF的外心.沿EF将矩形折成一个120°的二面角A-EF-B,则此时KG的长是( )A.1B.3C.D.11.如图所示,在棱长为1的正方体ABCD-A1B1C1D1中,E,F分别为棱AA1,BB1的中点,G为棱A1B1上的一点,且A1G=λ(0≤λ≤1),则点G到平面D1EF的距离为( )A. B. C. D.12.如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的正弦值为( )A. B. C. D.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知向量a=(λ+1,0,2λ),b=(6,2μ-1,2),若a∥b,则λ与μ的值分别是、.14.若A(0,2,),B(1,-1,),C(-2,1,)是平面α内的三点,设平面α的法向量为n=(x,y,z),则x∶y∶z= .15.平面α,β,γ两两相互垂直,且它们相交于一点O,P点到三个面的距离分别是1cm,2 cm,3cm,则PO的长为cm.16.如图,平面PAD⊥平面ABCD,四边形ABCD为正方形,∠PAD=90°,且PA=AD=2,E,F分别是线段PA,CD的中点,则异面直线EF与BD所成角的余弦值为.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5),(1)求以向量,为一组邻边的平行四边形的面积S.(2)若向量a分别与向量,垂直,且|a|=,求向量a的坐标.18.(12分)如图所示,在直三棱柱ABC-A1B1C1中,底面是等腰直角三角形,∠ACB= 90°,侧棱AA1=2,CA=2,D是CC1的中点,试问在线段A1B上是否存在一点E(不与端点重合)使得点A1到平面AED的距离为?19.(12分)在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1E⊥AD1.(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.20.(12分)如图所示,在棱长为1的正方体ABCD-A'B'C'D'中,E,F分别是D'D,DB的中点,G在棱CD上,CG=CD,H为C'G的中点.(1)求证:EF⊥B'C.(2)求EF,C'G所成角的余弦值.(3)求FH的长.21.(12分)如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=PA.点O,D分别是AC,PC的中点,OP⊥底面ABC.(1)求证:OD∥平面PAB.(2)求直线OD与平面PBC所成角的正弦值.22.(12分)(能力挑战题)已知四棱锥P-ABCD中,PA⊥平面ABCD,且PA=4PQ=4,底面为直角梯形,∠CDA=∠BAD=90°,AB=2,CD=1,AD=,M,N分别是PD,PB的中点.(1)求证:MQ∥平面PCB.(2)求截面MCN与底面ABCD所成二面角的大小.(3)求点A到平面MCN的距离.答案解析1.【解析】选D.a·b=2-+2k=0,∴k=-.2.【解析】选D.由向量的运算律知,A,B,C均正确,对于D,当a=0,b≠0时,不成立.3.【解析】选C.++=++=.4.【解析】选A.=(3,4,2),=(5,1,3),=(2,-3,1).由·>0,得A为锐角;由·>0,得C为锐角;由·>0,得B为锐角,且||≠||≠||,所以△ABC为不等边锐角三角形.5.【解析】选A.∵n2=-2n1,∴n2∥n1,故α∥β.6.【解析】选A.由d=αa+βb+γc=α(e1+e2+e3)+β(e1+e2-e3)+γ(e1-e2+e3)=(α+β+γ)e1+(α+β-γ)e2+(α-β+γ)e3=e1+2e2+3e3.∴解得α=,β=-1,γ=-.7.【解析】选A.根据|a|=6,可得x=±4,当x=4时,y=-3,当x=-4时,y=1,所以x+y=1或-3.8.【解析】选C.易知=(1,4,-3),=(-2,1,-2),∴||=,||=3,cos<,>==,∴sin<,>==,∴S△ABC=||·||sin<,>=.9.【解析】选B.P,A,B三点共面不一定共线,故A错误;由数量积公式知C错误;△ABC为直角三角形时可能·=0,也可能·=0,或·=0,故D错误.10.【解析】选D.由题意知K为AF的中点,取EF的中点H,连接KH,GH易证明∠KHG即为二面角A-EF-B的平面角,在△KHG中,由KH=HG=1,∠KHG=120°,可解得KG=.11.【解题指南】可以根据几何的有关性质转化为点A1到直线D1E的距离,利用三角形的面积可求;或建立空间直角坐标系,利用平面的法向量来求.【解析】选D.方法一:∵A1B1∥EF,G在A1B1上,∴G到平面D1EF的距离即为A1到平面D1EF的距离,也就是A1到D1E的距离.∵D1E=,∴由三角形面积可得h==.方法二:以AB,AD,AA的方向作为x轴,y轴,z轴的正方向建立空间直角坐标系,1则E(0,0,),F(1,0,),D1(0,1,1),G(λ,0,1),∴=(1,0,0),=(0,1,),=(-λ,1,0),设平面EFD1的一个法向量是n=(x,y,z),则解得取y=1,则n=(0,1,-2).∴点G到平面EFD1的距离是:h===.12.【解析】选 D.如图建立空间直角坐标系,则B(2,2,0),D1(0,0,1),C1(0,2,1),∴=(0,0,1),=(2,2,0),=(-2,0,1).设平面BB1D1D的一个法向量n=(x,y,z),由可得∴可取n=(1,-1,0).cos<n,>===,∴BC1与平面BB1D1D所成角的正弦值为.13.【解析】∵a∥b,∴存在实数k,使得a=k b,即(λ+1,0,2λ)=k(6,2μ-1,2),∴解得k=λ=,μ=.答案:14.【解析】=(1,-3,-),=(-2,-1,-),∵∴∴x∶y∶z=y∶y∶(-y)=2∶3∶(-4).答案:2∶3∶(-4)15.【解析】如图所示,建立空间直角坐标系,不妨设O(0,0,0),P(1,2,3),∴|OP|==(cm).答案:16.【解析】∵=-,=-++=-++,∴·= (-)·(-++)=4-2=2.||2=(-++)2=6,∴||=,||=2,∴cos<,>= ==,即异面直线EF与BD所成角的余弦值为.答案:【一题多解】如图所示,建立空间直角坐标系Axyz,∴E(0,0,1),F(1,2,0),B(2,0,0),D(0,2,0),∴=(1,2,-1),=(-2,2,0),∴cos<,>==,∴异面直线EF与BD所成角的余弦值为.17.【解析】(1)∵=(-2,-1,3),=(1,-3,2),∴cos∠BAC==,∴∠BAC=60°,∴S=||||sin 60°=7. (2)设a=(x,y,z),则a⊥⇒-2x-y+3z=0,a⊥⇒x-3y+2z=0,|a|=⇒x2+y2+z2=3,解得x=y=z=1或x=y=z=-1,∴a=(1,1,1),或a=(-1,-1,-1).18.【解析】存在.以CA,CB,CC1所在的直线为x轴,y 轴和z轴,建立如图所示的空间直角坐标系,则A(2,0,0),A1(2,0,2),D(0,0,1),B(0,2,0),设=λ,λ∈(0,1),则E(2λ,2(1-λ),2λ).又=(-2,0,1),=(2(λ-1),2(1-λ),2λ),设n=(x,y,z)为平面AED的法向量,则即取x=1,则y=,z=2,即n=(1,,2).由于d==,∴=,又λ∈(0,1),解得λ=,∴当点E为A1B的中点时,A1到平面AED的距离为.【拓展提升】探索性问题的解法在立体几何中,经常会遇到点、线、面处在什么位置时结论成立,或某一结论成立时需要具备什么条件,或某一结论在某一条件下,某个元素在某个位置时是否成立等类似的问题.这些问题都属探索性问题,解决这些问题仅凭几何手段有时会十分困难,我们借助向量将“形”转化为“数”,把点、线、面的位置数量化,通过对代数式的运算就可得出相应的结论.这样可以使许多几何问题进行类化,公式化,使问题的解决变得有“法”可依,有路可寻.19.【解析】以A为原点,,,的方向分别为x轴、y轴、z轴的正方向建立空间直角坐标系.设AB=a,则A(0,0,0),D(0,1,0),D1(0,1,1),E(,1,0),B1(a,0,1),(1)=(0,1,1),=(-,1,-1),∵·=-×0+1×1+(-1)×1=0,∴B1E⊥AD1.(2)假设在棱AA1上存在一点P(0,0,z0),使得DP∥平面B1AE,此时=(0,-1,z0),又设平面B1AE的法向量为n=(x,y,z).∵n⊥平面B1AE,=(a,0,1),=(,1,0),∴n⊥,n⊥,得取x=1,得平面B1AE的一个法向量n=(1,-,-a),要使DP∥平面B1AE,只需n⊥,有-az0=0,解得:z0=.∴AP=,∴在棱AA1上存在点P,使得DP∥平面B1AE,且P为AA1的中点.20.【解题指南】要证明EF⊥B'C,只需要证明·=0;要求EF,C'G所成角的余弦值,只要求出,所成角的余弦值;要求FH的长,只要求出|即可. 【解析】(1)设=a,=b,=c,则c·b=b·a=c·a=0,|a|2=a2=1,|b|2=b2=1,|c|2=c2=1.∵=+=-c+(a-b)=(a-b-c),=-=b-c,∴·=(a-b-c)·(b-c)=(c2-b2)=×(1-1)=0.∴EF⊥B'C.(2)∵=(a-b-c),=+=-c-a,∴·=(a-b-c)·(-c-a)=(-a2+c2)=,||2=(a-b-c)2=(a2+b2+c2)=,||2=(-c-a)2=c2+a2=,∴||=,||=,cos<,>==,∴EF,C'G所成角的余弦值为.(3)∵=+++=(a-b)+b+c+=(a-b)+b+c+(-c-a)=a+b+c, ∴||2=(a+b+c)2=a2+b2+c2=,∴FH的长为.21.【解析】方法一:(1)∵O,D分别为AC,PC的中点,∴OD∥PA.又PA⊂平面PAB,OD⊄平面PAB,∴OD∥平面PAB.(2)设PA=2a,∵AB⊥BC,OA=OC,∴OA=OB=OC= a.又∵OP⊥平面ABC,∴PA=PB=PC=2a.取BC中点E,连接PE,则BC⊥平面POE.作OF⊥PE于F,连接DF,则OF⊥平面PBC.∴∠ODF是OD与平面PBC所成的角.∵PA=2a,OA=a,∴OP= a.又∵OE=,∴OF= a.在Rt△ODF中,sin∠ODF==,∴OD与平面PBC所成角的正弦值为.方法二:∵OP⊥平面ABC,OA=OC,AB=BC,∴OA⊥OB,OA⊥OP,OB⊥OP.以O为原点,建立空间直角坐标系Oxyz(如图), 设AB=a,则A(a,0,0),B(0,a,0),C(-a,0,0).设OP=h,则P(0,0,h).(1)∵D为PC的中点,∴=(-a,0,h).又=(a,0,-h),∴=-.∴∥,又PA⊂平面PAB,OD⊄平面PAB,∴OD∥平面PAB.(2)∵PA=2a,∴h=a,∴=(-a,0,a).可求得平面PBC的一个法向量n=(-1,1,), ∴cos<,n>==.设OD与平面PBC所成的角为θ,则sinθ=|cos<,n>|=.∴OD与平面PBC所成角的正弦值为.22.【解析】方法一:以A为原点,以AD,AB,AP所在直线分别为x轴,y轴,z轴建立空间直角坐标系Axyz,由AB=2,CD=1,AD=,PA=4PQ=4,M,N分别是PD,PB的中点,可得A(0,0,0),B(0,2,0),C(,1,0),D(,0,0),P(0,0,4),Q(0,0,3),M(,0,2),N(0,1,2).(1)=(,-1,0),=(0,2,-4),=(-,0,1).设平面PBC的法向量为n0=(x,y,z),则有:n0⊥⇒(x,y,z)·(,-1,0)=0⇒x-y=0,n0⊥⇒(x,y,z)·(0,2,-4)= 0⇒2y-4z=0,令z=1,则x=,y=2⇒n0=(,2,1).∴·n0=(-,0,1)·(,2,1)=0,又MQ⊄平面PCB,∴MQ∥平面PCB.(2)设平面的MCN的法向量为n=(x',y',z'),又=(-,-1,2),=(-,0,2),则有:n⊥⇒(x',y',z')·(-,-1,2)=0⇒-x'-y'+2z'=0,n⊥⇒(x',y',z')·(-,0,2)=0⇒-x'+2z'=0,令z'=1,则x'=,y'=1⇒n=(,1,1).又=(0,0,4)为平面ABCD的一个法向量.∴cos<n,>===,又截面MCN与底面ABCD所成二面角为锐二面角,∴截面MCN与底面ABCD所成二面角的大小为.(3)∵=(-,-1,0),∴所求的距离d=CAnn==.方法二:(1)取AP的中点E,连接ED,则ED∥CN,依题有Q为EP的中点,所以MQ∥ED,所以MQ∥CN,又MQ⊄平面PCB,CN⊂平面PCB,∴MQ∥平面PCB.(2)易证:平面MEN∥底面ABCD,所以截面MCN与平面MEN所成的二面角即为平面MCN与底面ABCD所成的角, 因为PA⊥平面ABCD,所以PA⊥平面MEN,过E作EF⊥MN,垂足为F,连接QF,则由三垂线定理可知QF⊥MN,由(1)可知M,C,N,Q四点共面,所以∠QFE为截面MCN与平面MEN所成的二面角的平面角.在Rt△MEN中,ME=,NE=1,MN=,故EF=,所以:tan∠QFE=,∠QFE=.即所求二面角大小为.(3)因为EP的中点为Q,且平面MCN与PA交于点Q,所以点A到平面MCN的距离是点E到平面MCN的距离的3倍,由(2)知:MN⊥平面QEF,则平面MCNQ⊥平面QEF且交线为QF,作EH⊥QF,垂足为H,则EH⊥平面MCNQ,故EH即为点E到平面MCN的距离.在Rt△EQF中,EF=,∠QFE=,故EH=,即原点A到平面MCN的距离是.关闭Word文档返回原板块。
专题1 空间向量与立体几何练习(三)

专题1空间向量与立体几何练习(三)1.如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中以顶点A 为端点的三条棱长均为1,且它们彼此的夹角都是60︒.(1)求证:1AC DB ⊥;(2)求异面直线1BD 与AC 所成角的余弦值.2.如图四边形ABCD 是边长为3的正方形,DE ⊥平面ABCD ,//,3AF DE DE AF =.(1)求证:AC ⊥平面BDE ;(2)若BE 与平面ABCD 所成角为60︒,求二面角F BE D --的正弦值.3.已知()1,4,2a =- ,()2,2,4b =- .(1)若12c b = ,求cos ,a c <> 的值;(2)若()()3ka b a b +-∥ ,求实数k 的值.4.如图,平行六面体1111ABCD A B C D -的底面是菱形,且1160C CB C CD BCD ∠=∠=∠=︒,12CD CC ==.(1)求1AC 的长;(2)求异面直线1CA 与1DC 所成的角.5.已知向量()1,1,0a = ,()1,0,b c =- ,且a b += (1)求c 的值;(2)若ka b + 与2a b - 互相垂直,求实数k 的值.6.如图,在长方体1111ABCD A B C D -中,1226AD AB AA ===,,E F 分别是1111,A D A B 的中点,CG GE = ,以点A 为坐标原点,建立如图所示的空间直角坐标系A xyz -.(1)写出1,,,C D F G 四点的坐标;(2)求1cos ,CF D G <> .7.如图所示,在棱长为2的正四面体ABCD 中,E ,F 分别是AB ,AD 的中点,求:(1)EF ·BA ;(2)EF ·BD ;(3)AB ·CD .8.如图所示,在正方体1111ABCD A B C D -中,化简向量表达式:(1)AB CD BC DA +++ ;(2)1111AA B C D D ++ ;(3)1111AA B C D D CB +++ .9.已知空间三点()4,0,4A -,()2,2,4B -,()3,2,3C -,设a AB = ,b BC =r u u u r .(1)求a ,b ;(2)求a 与b 的夹角.10.如图所示,已知在三棱锥A BCD -中,向量AB a = ,AC b = ,AD c =uuu r r ,已知M 为BC 的中点,试用a 、b 、c 表示向量DM .参考答案:1.(1)证明见解析【分析】(1)根据平面向量转化基底,以及加减运算和数量积的运算性质,得到10AC DB ⋅= ,即可证得1AC DB ⊥;(2)根据平面向量转化基底,求出1BD 、AC 、1AC BD ⋅ ,再利用夹角公式即可求解.【详解】(1)证明:∵以顶点A 为端点的三条棱长均为1,且它们彼此的夹角都是60︒,∴11111cos602AA AB AA AD AD AB ⋅=⋅=⋅=⨯⨯︒= ,∴()()1111111()()AC DB AA A B B C AB AD AA AB AD AB AD ⋅=++⋅-=++⋅- 22110AA AB AA AD AB AB AD AD AB AD =⋅-⋅+-⋅+⋅-= ,∴1AC DB ⊥.(2)∵111BD AD DD AB AD AA AB ==+-+- ,AC AB BC AB AD =+=+ ,∴1BD ==||AC ==== ,()11()BD AC AD AA AB AB AD ⋅=+-⋅+ 12211111122AD AB AA AB AA AD =+⋅-++⋅=-+= ,∴111cos ,6BD AC BD AC BD AC⋅==⋅ ,∴异面直线1BD与AC 所成角的余弦值为6.2.(1)证明见解析【分析】(1)由已知可得DE AC ⊥且AC BD ⊥,由线面垂直的判定定理即可得到证明;(2)以D 为原点,DA 方向为x 轴,DC 方向为y 轴,DE 方向为z 轴建立空间直角坐标系,利用已知条件求出平面BDE 的一个法向量和平面BEF 的一个法向量,利用向量的夹角公式计算即可.【详解】(1)因为DE ⊥平面ABCD ,AC ⊂平面ABCD ,所以DE AC⊥因为四边形ABCD 是正方形,所以AC BD⊥又因为BD DE D ⋂=,BD ⊂平面BDE ,DE ⊂平面BDE ,所以AC ⊥平面BDE(2)DE ⊥ 底面ABCD ,,⊂DA DC 平面ABCD ,,DE DA DE DC ∴⊥⊥,四边形ABCD 是正方形,DA DC∴⊥故DA ,DC ,DE 两两垂直,建立如图所示的空间直角坐标系D xyz -,因为BE 与平面ABCD 所成角为60 ,DE ⊥ 平面ABCD ,且垂足为D ,故60DBE ∠=,所以DE DB=又3,3AD DE AF ==,所以BD DE AF ===所以(3,0,0)A ,(3,3,0)B,F,E ,(0,3,0)C ,所以(0,,(3,0,BF EF =-=- 设平面BEF 的一个法向量(),,m x y z = ,则3030m BF y m EF x ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,令z =(4,m = 因为AC ⊥平面BDE ,所以CA 为平面BDE 的一个法向量,()3,3,0CA =- .所以cos ,13m CA m CA m CA ⨯+-⨯+⋅〈〉===,所以sin ,m CA〈〉=所以二面角F BE D --3.(1)42-(2)13-【分析】(1)利用空间向量夹角公式的坐标运算直接求解;(2)根据两向量的共线定理,利用坐标运算求解.【详解】(1)由已知可得()11,1,22c b ==- ,()1,4,2a =- ,∴114122cos ,42a c a c a c⨯-+⨯+-⨯⋅<>==- .(2)()2,42,24ka b k k k +=-+-+ ,()37,2,14a b -=-- ,∵()()3ka b a b +-∥ ,∴存在实数m 使得()3ka b m a b +=- ,∴27k m -=,422k m +=-,2414k m -+=-,联立解得13k =-.4.(1)1AC =(2)90°.【分析】(1)因为1,,CD CB CC 三组不共线,则可以作为一组基底,用基底表示向量1AC uuu r ,平方即求得模长.(2)求出两条直线1CA 与1DC 的方向向量,用向量夹角余弦公式即可.【详解】(1)设CD a =uu u r r ,CB b =uu r r ,1CC c =uuu r r ,{},,a b c 构成空间的一个基底.因为()11()AC CC CD CB c a b =-+=-+ ,所以()22211AC AC c a b ⎡⎤==-+⎣⎦222222c a b a c b c a b=++-⋅-⋅+⋅ 12222cos608=-⨯⨯⨯︒=,所以1AC =(2)又1CA a b c =++ ,1DC c a =- ,所以()()11CA DC a b c c a ⋅=++⋅- 220c a b c a b =-+⋅-⋅= ∴11CA DC ⊥ ∴异面直线1CA 与1DC 所成的角为90°.5.(1)2c =±(2)75k =【分析】(1)求出()0,1,b a c += ,根据向量模长公式列出方程,求出2c =±;(2)分2c =与2c =-两种情况,根据向量垂直列出方程,求出实数k 的值.【详解】(1)()()()01,0,1,1,0,1,b c a c =-++= ,所以a b +== 2c =±;(2)当2c =时,()()()01,0,2,,1,,2k b k k k a k +=--=+ ,()()()2202,21,0,2,,23,a b -=-=-- ,因为ka b + 与2a b - 互相垂直,所以()231220k k -+-=,解得:75k =,当2c =-时,()()()210,1,2,,0,,ka k k k b k +=-+---= ,()()()2202,21,0,2,,23,a b -=-=-- 因为ka b + 与2a b - 互相垂直,所以()231220k k -+-=,解得:75k =,综上:75k =.6.(1)()3,6,0C ,()10,6,3D ,3,0,32F ⎛⎫ ⎪⎝⎭,393,,222G ⎛⎫ ⎪⎝⎭21【分析】(1)根据线段长度、中点坐标公式可求得点对应的坐标;(2)利用向量夹角的坐标运算可直接求得结果.【详解】(1)1226AD AB AA === ,13AB AA ∴==,则()3,6,0C ,()10,6,3D ,3,0,32F ⎛⎫ ⎪⎝⎭,()0,3,3E ,CG GE = ,G ∴为CE 中点,393,,222G ⎛⎫∴ ⎝⎭.(2)由(1)得:3,6,32CF ⎛⎫=-- ⎪⎝⎭ ,1333,,222D G ⎛⎫=-- ⎪⎝⎭,1119999424cos ,22CF D G CF D G CF D G -+-⋅∴<>=⋅⨯ .7.(1)1(2)2(3)0【分析】分别将EF ,BD ,CD 转化为AB ,AC ,AD 后根据数量积定义计算即可.【详解】(1)在正四面体ABCD 中,||||2,cos ,60BD BA BD BA ==〈〉=111||||cos ,22cos 601222EF BA BD BA BD BA BD BA ⋅=⋅=⋅〈〉=⨯⨯︒= (2)211||222EF BD BD BD BD ⋅=⋅== (3)()AB CD AB AD AC AB AD AB AC ⋅=⋅-=⋅-⋅=||||cos ,||||cos ,AB AD AB AD AB AC AB AC ⋅⋅〈〉-⋅〈〉在正四面体ABCD 中,||||||AB AD AC == ,cos ,cos ,AB AD AB AC 〈〉=〈〉故0AB CD ⋅=8.(1)0(2)AD(3)0【分析】(1)(2)(3)结合图形,根据空间向量的线性运算直接化简可得.【详解】(1)0AB CD BC DA AB BC CD DA AC CD DA AD AD +++=+++=++=-= (2)由图知,1111B C A D = 所以1111111111AA B C D D AA A D D D AD D D AD++=++=+= (3)由图知,CB DA =所以由(2)可得11110AA B C D D CB AD DA AD AD +++=+=-= 9.(1)(2)2π3【分析】(1)(2)由空间向量的坐标运算求解,【详解】(1)由题意得所以()2,2,0a AB == ,所以a == 因为()2,2,4B -,()3,2,3C -,所以()1,0,1b BC ==--r u u u r ,所以b ==r (2)由(1)可知1cos ,2a b a b a b⋅==-⋅ ,又[],0,πa b ∈ ,所以2π,3a b = ,即a 与b 的夹角为2π3.10.()122DM a b c =+- 【分析】利用空间向量的线性运算的几何表示运算即得.【详解】∵M 为BC 的中点,∴()12AM AB AC =+uuu r uu u r uuu r ,∴()()11222DM AM AD AB AC AD a b c =-=+-=+- .。
空间向量与立体几何测试试卷

空间向量与立体几何测试试卷空间向量与立体几何测试试卷一、选择题(每题2分,共20分)1.设向量a=(1,2,3),向量b=(4,5,6),则a·b的结果为:A. 4B. 14C. 32D. 562.设向量a=(1,2,3),向量b=(4,5,6),则a×b的结果为:A. (1,-2,1)B. (-1,2,-1)C. (1,2,1)D. (-1,-2,-1)3.已知向量a=(1,2,3),向量b=(4,5,6),则向量a+b的结果为:A. (5,7,9)B. (5,6,7)C. (4,7,9)D. (4,6,8)4.已知向量a=(1,2,3),向量b=(4,5,6),则向量a-b的结果为:A. (3,3,3)B. (-3,-3,-3)C. (-3,-1,1)D. (3,1,-1)5.已知向量a=(1,2,3),向量b=(4,5,6),则向量a·(a+b)的结果为:A. 42B. 56C. 70D. 846.设向量a=(1,2,3),向量b=(4,5,6),则向量a×(a+b)的结果为:A. (14,-28,14)B. (-14,28,-14)C. (14,28,14)D. (-14,-28,-14)7.设向量a=(1,2,3),向量b=(4,5,6),则向量|a|的结果为:A. √6B. √14C. √26D. √468.设向量a=(1,2,3),向量b=(4,5,6),则向量|b|的结果为:A. √14B. √26C. √38D. √509.设向量a=(1,2,3),向量b=(4,5,6),则向量a×b的模长为:A. √6B. √14C. √26D. √3810.设向量a=(1,2,3),向量b=(4,5,6),则向量a·b的模长为:A. 14B. 26C. 38D. 50二、填空题(每题3分,共30分)1.向量(2,3,4)与向量(-1,2,-3)的夹角为______度。
最新人教版高中数学选修一第一单元《空间向量与立体几何》测试题(含答案解析)

一、选择题1.在棱长为1的正方体1111ABCD A B C D -中,,M N 分别为111,BD B C 的中点,点P 在正方体的表面上运动,且满足MP CN ⊥,则下列说法正确的是( )A .点P 可以是棱1BB 的中点 B .线段MP 的最大值为32C .点P 的轨迹是正方形D .点P 轨迹的长度为2+52.如图,在三棱锥O ABC -中,点D 是棱AC 的中点,若OA a =,OB b =,OC c =,则BD 等于( )A .1122a b c -+ B .a b c +- C .a b c -+D .1122a b c -+- 3.在空间直角坐标系中,已知()1,2,3A ,()1,0,4B ,()3,0,5C ,()4,1,3D -,则直线AD 与BC 的位置关系是( ) A .平行B .垂直C .相交但不垂直D .无法判定4.如图,在四面体O ABC -中,1G 是ABC 的重心,G 是1OG 上的一点,且12OG GG =,若OG xOA yOB zOC =++,则(,,)x y z 为( )A .111(,, )222B .222(, , )333C .111(, , )333D .222(,, )9995.已知(),(3,0,1),(131,2,3,1),55a b c =-==--给出下列等式:①a b c a b c ++=--;②()()a b c a b c +⋅=⋅+;③2222()a b c b c a =++++ ④()()a b c a b c ⋅⋅=⋅⋅.其中正确的个数是 A .1个B .2个C .3个D .4个6.在底面为锐角三角形的直三棱柱111ABC A B C -中,D 是棱BC 的中点,记直线1B D 与直线AC 所成角为1θ,直线1B D 与平面111A B C 所成角为2θ,二面角111C A B D --的平面角为3θ,则( ) A .2123,θθθθ<<B .2123 ,θθθθ><C .2123 ,θθθθD .2123 ,θθθθ>>7.已知1e ,2e 是夹角为60的两个单位向量,则12a e e =+与122b e e =-的夹角是( ) A .60B .120C .30D .908.如图,平行六面体中1111ABCD A B C D -中,各条棱长均为1,共顶点A 的三条棱两两所成的角为60°,则对角线1BD 的长为( )A .1B .2C .3D .29.在空间直角坐标系O xyz -中,(0,0,0),(22,0,0),(0,22,0)O E F ,B 为EF 的中点,C 为空间一点且满足||||3CO CB ==,若1cos ,6EF BC <>=,,则OC OF ⋅=( ) A .9B .7C .5D .310.棱长为1的正四面体ABCD 中,点E ,F 分别是线段BC ,AD 上的点,且满足13BE BC =,14AF AD =,则AE CF ⋅=( )A .1324-B .12-C .12D .132411.如图所示,直三棱柱111ABC A B C -的侧棱长为3,底面边长11111A C B C ==,且11190A C B ∠=,D 点在棱1AA 上且12AD DA =,P 点在棱1C C 上,则1PD PB ⋅的最小值为( )A .52B .14-C .14D .52-12.已知在四面体ABCD 中,点M 是棱BC 上的点,且3BM MC =,点N 是棱AD 的中点,若MN x AB y AC z AD =++其中,,x y z 为实数,则x y z ++的值是( )A .12B .12-C .-2D .213.以下四个命题中正确的是( )A .空间的任何一个向量都可用其他三个向量表示B .若{},,a b c 为空间向量的一组基底,则{},,a b b c c a +++构成空间向量的另一组基底 C .ABC ∆为直角三角形的充要条件是0AB AC ⋅= D .任何三个不共线的向量都可构成空间向量的一个基底二、填空题14.三棱锥O ABC -中,OA 、OB 、OC 两两垂直,且OA OB OC ==.给出下列四个命题:①()()223OA OB OCOA ++=;②()0BC CA CO ⋅-=;③()OA OB +和CA 的夹角为60;④三棱锥O ABC -的体积为()16AB AC BC ⋅. 其中所有正确命题的序号为______________.15.在长方体1111ABCD A B C D -中,2AB =,11BC AA ==,则11D C 与平面11A BC 所成角的正弦值为______________.16.在空间直角坐标系中, ()()()2,1,1,3,4,,2,7,1,A B C AB CB 若λ-⊥,则λ=____ 17.ABC ∆的三个顶点分别是(1,1,2)A -,(5,6,2)B -,(1,3,1)C -,则AC 边上的高BD 长为__________.18.在空间直角坐标系O xyz -中,已知(1,0,2)A -,(0,1,1)B -,点,C D 分别在x 轴,y 轴上,且AD BC ⊥,那么CD →的最小值是______.19.已知向量()2,1,3a =-,31,,2b k ⎛⎫=-- ⎪⎝⎭,若向量a 、b 的夹角为钝角,则实数k 的取值范围是__________.20.如图,在空间四边形OABC 中,M ,N 分别为OA 、BC 的中点,点G 在线段MN 上,且3MG GN =,用向量OA 、OB 、OC 表示向量OG ,设OG x OA y OB z OC =⋅+⋅+⋅,则x 、y 、z 的和为______.21.若平面α,β的法向量分别为(4,0,3)u =,(1,1,0)v =-,则这两个平面所成的锐角的二面角的余弦值为________.22.已知(2,1,3)a →=-,(4,2,)b x →=-,(1,,2)c x →=-,若a b c →→→⎛⎫+⊥ ⎪⎝⎭,是x =________.23.如图,在平行六面体1111ABCD A B C D -中,以顶点A 为顶点的三条棱的长均为2,且两两所成角均为60°,则1||AC =__________.24.如图,在正四棱锥V ABCD -中,二面角V BC D --为60°,E 为BC 的中点.已知F 为直线VA 上一点,且F 与A 不重合,若异面直线BF 与VE 所成角为60°,则VFVA=_____________.25.如图,在三棱柱111ABC A B C -中,AB ,AC ,1AA 两两互相垂直,122AA AB AC ==,M ,N 是线段1BB ,1CC 上的点,平面AMN 与平面ABC 所成(锐)二面角为3π,当1B M 最小时,AMB ∠=__________.26.已知四棱柱111ABCD A BC D -的底面ABCD 是矩形,5AB =,3AD =,14AA =,1160BAA DAA ∠=∠=︒,则1AC =________.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,根据MP CN ⊥,确定点P 的轨迹,在逐项判断,即可得出结果. 【详解】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系, 因为该正方体的棱长为1,,M N 分别为111,BD B C 的中点, 则()0,0,0D ,111,,222M ⎛⎫ ⎪⎝⎭,1,1,12N ⎛⎫⎪⎝⎭,()0,1,0C , 所以1,0,12CN ⎛⎫= ⎪⎝⎭,设(),,P x y z ,则111,,222MP x y z ⎛⎫=--- ⎪⎝⎭,因为MP CN ⊥, 所以1110222x z ⎛⎫-+-= ⎪⎝⎭,2430x z +-=,当1x =时,14z =;当0x =时,34z =; 取11,0,4E ⎛⎫ ⎪⎝⎭,11,1,4F ⎛⎫ ⎪⎝⎭,30,1,4G ⎛⎫ ⎪⎝⎭,30,0,4H ⎛⎫ ⎪⎝⎭,连接EF ,FG ,GH ,HE ,则()0,1,0EF GH ==,11,0,2EH FG ⎛⎫==- ⎪⎝⎭, 所以四边形EFGH 为矩形,则0EF CN ⋅=,0EH CN ⋅=,即EF CN ⊥,EH CN ⊥, 又EFEH E =,且EF ⊂平面EFGH ,EH ⊂平面EFGH ,所以CN ⊥平面EFGH , 又111,,224EM ⎛⎫=-⎪⎝⎭,111,,224MG ⎛⎫=- ⎪⎝⎭,所以M 为EG 中点,则M ∈平面EFGH ,所以,为使MP CN ⊥,必有点P ∈平面EFGH ,又点P 在正方体的表面上运动, 所以点P 的轨迹为四边形EFGH , 因此点P 不可能是棱1BB 的中点,即A 错; 又1EF GH ==,5EH FG ==,所以EF EH ≠,则点P 的轨迹不是正方形;且矩形EFGH 的周长为2222+⨯=+C 错,D 正确; 因为点M 为EG 中点,则点M 为矩形EFGH 的对角线交点,所以点M 到点E 和点G的距离相等,且最大,所以线段MP ,故B 错. 故选:D. 【点睛】关键点点睛:求解本题的关键在于建立适当的空间直角坐标系,利用空间向量的方法,由MP CN ⊥,求出动点轨迹图形,即可求解.2.A解析:A 【分析】利用空间向量的加法和减法法则可得出BD 关于a 、b 、c 的表达式. 【详解】()11112222OD OA AD OA AC OA OC OA OA OC =+=+=+-=+, 因此,11112222BD OD OB OA OB OC a b c =-=-+=-+. 故选:A. 【点睛】本题考查利用基底表示空间向量,考查计算能力,属于中等题.3.B解析:B 【分析】根据题意,求得向量AD 和BC 的坐标,再结合空间向量的数量积的运算,即可得到两直线的位置关系,得到答案. 【详解】由题意,点()1,2,3A ,()1,0,4B ,()3,0,5C ,()4,1,3D -, 可得()3,1,6AD =--,()2,0,1BC =, 又由()()2310610AD BC ⋅=⨯+-⨯+-⨯=, 所以AD BC ⊥,所以直线AD 与BC 垂直. 故选:B . 【点睛】本题主要考查了空间向量的数量积的运算及其应用,其中解答中熟记空间向量的坐标运算,以及空间向量的数量积的运算是解答本题的关键,着重考查了推理与运算能力,属于基础题.4.D解析:D 【分析】根据空间向量线性运算进行计算,用,,OA OB OC 表示出OG . 【详解】因为E 是BC 中点,所以1()2OE OB OC =+, 1G 是ABC 的重心,则123AG AE =, 所以122()33AG AE OE OA ==-, 因为12OG GG = 所以112224()()3339OG OG OA AG OA OE OA ==+=+-2422222()9999999OA OE OA OB OC OA OB OC =+=++=++, 若OG xOA yOB zOC =++,则29x y z ===. 故选:D . 【点睛】本题考查空间的向量的线性运算,掌握向量线性运算的运算法则是解题关键.5.D解析:D 【详解】由题设可得197(,3,)55a b c ++=,则63525a b c ++== 923(,1,)55a b c --=-,63525a b c --=,则①正确;因1346()(4,2,2)(,1,)205555a b c +⋅=⋅--=-+-=, 1481424()(1,2,3)(,1,)205555a b c ⋅+=⋅-=+-=,故②正确;又因2635127()255a b c ++==,而22235714,10,255a b c ====, 所以22271272455a b c ++=+=,即③正确; 又3030a b ⋅=+-=,则()0a b c ⋅⋅=,而330055b c ⋅=-++=,故()0a b c ⋅⋅=,也即④正确. 故选:D .6.A解析:A 【分析】以A 为坐标原点,建立空间直角坐标系,写出点的坐标,分别求出直线的方向向量以及平面的法向量,通过向量法即可求得各个角度的余弦值,再结合余弦函数的单调性即可判断. 【详解】由题可知,直三棱柱111ABC A B C -的底面为锐角三角形,D 是棱BC 的中点, 设三棱柱111ABC A B C -是棱长为2的正三棱柱,以A 为原点,在平面ABC 中,过A 作AC 的垂线为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,则1(0,0,2)A ,1(3,1,2)B ,(0,2,0)C ,33,02D ⎫⎪⎪⎝⎭,(0,0,0)A , (0,2,0)AC =,131,22B D ⎛⎫=- ⎪ ⎪⎝⎭,11(3,1,0)A B =,因为直线1B D 与直线AC 所成的角为1θ,10,2πθ⎛⎤∈ ⎥⎝⎦,111||cos ||||25θ⋅∴==⋅B D AC B D AC ,因为直线1B D 与平面111A B C 所成的角为2θ,20,2πθ⎡⎤∈⎢⎥⎣⎦, 平面111A B C 的法向量()0,0,1n =,121||sin ||5∣θ⋅∴==⋅B D n B D n ,222cos 155θ⎛⎫∴=-= ⎪⎝⎭,设平面11A B D 的法向量(,,)m a b c =,则11130312022m A Ba b m B D a b c ⎧⋅=+=⎪⎨⋅=-+-=⎪⎩, 取a =33,3,2m ⎛⎫=--⎪⎝⎭, 因为二面角111C A B D --的平面角为3θ, 由图可知,其为锐角,33||2cos ||57m n m n θ⋅∴===⋅∣,231cos cos cos θθθ>>, 由于cos y θ=在区间(0,)π上单调递减,故231θθθ<<, 则2123,θθθθ<<. 故选:A . 【点睛】本题考查利用向量法研究空间中的线面角以及二面角,属综合基础题.7.B解析:B 【分析】利用平面向量的数量积公式先求解a b ⋅,再计算a 与b ,根据数量积夹角公式,即可求解. 【详解】由题意得:()()12122a b e e e e ⋅=+⋅-221122132111222e e e e =-⋅-=-⨯⨯-=-,2222121122()21a e e e e e e a ==+=++==⋅2222112122(2)4?41b b e e e e e e ==-=+-=-=设,a b 夹角为312,cos ,018032a b a bθθθ-⋅===-︒≤≤︒⋅,∴120θ=.故选:B. 【点睛】本题考查利用平面向量的数量积计算向量的夹角问题,难度一般,准确运用向量的数量积公式即可.8.B解析:B 【分析】在平行六面体中1111ABCD A B C D -中,利用空间向量的加法运算得到11BD BA BB BC =++,再根据模的求法,结合各条棱长均为1,共顶点A 的三条棱两两所成的角为60°,由()()2211BD BA BB BC=++222111222BA BB BC BA BB BC BA BB BC =+++⋅+⋅+⋅求解.【详解】在平行六面体中1111ABCD A B C D -中,因为各条棱长均为1,共顶点A 的三条棱两两所成的角为60°,所以111111cos120,11cos6022BA BB BA BC BC BB ⋅=⋅=⨯⨯=-⋅=⨯⨯=, 所以11BD BA BB BC =++, 所以()()2211BD BA BB BC =++,222111222BA BB BC BA BB BC BA BB BC =+++⋅+⋅+⋅,113+22+2222⎛⎫=⨯-⨯⨯= ⎪⎝⎭,所以12BD =故选:B 【点睛】本题主要考查空间向量的运算以及向量模的求法,还考查了运算求解的能力,属于中档题.9.D解析:D 【分析】利用中点坐标公式可得点B 的坐标,设(,,)C x y z ,利用||||3CO CB ==,1cos ,6EF BC <>=可解出点C 的纵坐标,最后利用数量积的坐标运算可得OC OF ⋅的值. 【详解】设(,,)C x y z ,(2,2,0)B ,(,,)OC x y z =,()BC x y z =,(EF =-,由(()1cos ,436EF BC x y z EF BC EF BC⋅-⋅-===⋅⋅,整理可得:2x y -=-,由||||3CO CB ==化简得x y +=以上方程组联立得x y =,则()(,,)3OC OF x y z =⋅==. 故选:D. 【点睛】本题主要考查了空间直角坐标系下向量数量积的运算,解题关键是掌握向量数量积运算的基础知识,考查了分析能力和计算能力,属于中档题.10.A解析:A 【分析】设AB a =,AC b =,AD c =,以这3个向量为空间中的基底,将AE CF ⋅转化为基底的数量积运算,即可得答案. 【详解】设AB a =,AC b =,AD c =, 由题意可得121()333AE AB BE a b a a b =+=+-=+,14CF c b =-, 则211334AE CF a b c b ⎛⎫⎛⎫⋅=+⋅- ⎪ ⎪⎝⎭⎝⎭2121163123a c a b b c b =⋅-⋅+⋅- 11211111316232122324=⨯-⨯+⨯-⨯=-. 故选:A. 【点睛】本题考查空间向量基本定理的运用、数量积运算,考查空间想象能力和运算求解能力,求解时注意基底思想的运用.11.B解析:B 【分析】由题易知1,,AC BC CC 两两垂直,以C 为坐标原点,建立如图所示的空间直角坐标系,设()03PC a a =≤≤,可知()0,0,P a ,进而可得1,PD PB 的坐标,然后求得1PD PB ⋅的表达式,求出最小值即可.由题意可知,1,,AC BC CC 两两垂直,以C 为坐标原点,建立如图所示的空间直角坐标系,则()10,1,3B ,()1,0,2D ,设()03PC a a =≤≤,则()0,0,P a , 所以()1,0,2P a D =-,()10,1,3a PB =-,则()()2151002324a a a PD PB ⎛⎫=++--=-- ⎪⎝⋅⎭, 当52a =时,1PD PB ⋅取得最小值14-. 故选:B.【点睛】本题考查两个向量的数量积的应用,考查向量的坐标运算,考查学生的计算求解能力,属于中档题.12.B解析:B 【分析】利用向量运算得到131442MN AB AC AD =--+得到答案. 【详解】()3113142442MN MB BA AN AB AC AB AD AB AC AD =++=--+=--+ 故12x y z ++=- 故选:B 【点睛】本题考查了空间向量的运算,意在考查学生的计算能力.13.B解析:B根据空间向量基底的定义:任何三个不共面的向量都可构成空间向量的一组基底,逐一分析A ,B ,D 可判断这三个结论的正误;根据向量垂直的充要条件,及直角三角形的几何特征,可判断C 的真假. 【详解】对A ,空间的任何一个向量都可用其他三个不共面的向量表示,A 中忽略三个基底不共面的限制,故A 错误;对B ,若{},,a b c 为空间向量的一组基底,则,,a b c 三个向量互不共面;则,,a b b c c a +++,也互不共面,故{,,}a b b c c a +++可又构成空间向量的一组基底,故B 正确;对C ,0AB AC ABC ⋅=⇔∆的A ∠为直角ABC ⇒∆为直角三角形,但ABC ∆为直角三角形时,A ∠可能为锐角,此时0AB AC ⋅>,故C 错误;对D ,任何三个不共面的向量都可构成空间向量的一组基底,三个向量不共线时可能共面,故D 错误; 故选:B . 【点睛】本题以命题的真假判断为载体考查空间向量的基底概念、向量垂直的充要条件,考查对概念的理解与应用,属基础题.二、填空题14.①②③【分析】设以点为坐标原点所在直线分别为轴建立空间直角坐标系利用空间向量数量积的坐标运算可判断①②③④的正误【详解】设由于两两垂直以点为坐标原点所在直线分别为轴建立空间直角坐标系如下图所示:则对解析:①②③ 【分析】设OA OB OC a ===,以点O 为坐标原点,OA 、OB 、OC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量数量积的坐标运算可判断①②③④的正误.【详解】设OA OB OC a ===,由于OA 、OB 、OC 两两垂直,以点O 为坐标原点,OA 、OB 、OC 所在直线分别为x 、y 、z 轴建立空间直角坐标系, 如下图所示:则()0,0,0O、(),0,0A a 、()0,,0B a 、()0,0,C a .对于①,(),,OA OB OC a a a ++=,所以,()()22233OA OB OC a OA ++==,①正确;对于②,(),0,0CA CO OA a -==,()0,,BC a a =-,则()0BC CA CO ⋅-=,②正确;对于③,(),,0OA OB a a +=,(),0,CA a a =-,()()221cos ,22OA OB CA a OA OB CA OA OB CAa+⋅<+>===+⋅, 0,180OA OB CA ≤<+>≤,所以,()OA OB +和CA 的夹角为60,③正确;对于④,(),,0AB a a =-,(),0,AC a a =-,()0,,BC a a =-,则2AB AC a ⋅=,所以,()223122666a a AB AC BC BC a ⋅===,而三棱锥O ABC -的体积为3111326V OA OB OC a =⨯⋅⋅=,④错误. 故答案为:①②③. 【点睛】关键点点睛:在立体几何中计算空间向量的相关问题,可以选择合适的点与直线建立空间直角坐标系,利用空间向量的坐标运算即可.15.【详解】如图建立空间直角坐标系则所以设平面的一个法向量为由题可得令可得设与平面所成角为则故直线与平面所成角的正弦值为故答案为:解析:13【详解】如图,建立空间直角坐标系D xyz -,则1(0,0,1)D ,1(0,2,1)C ,1(1,0,1)A ,(1,2,0)B ,所以11(0,2,0)DC =,设平面11A BC 的一个法向量为(,,)n x y z =, 由题可得111(,,)(1,2,0)20(,,)(0,2,1)20n AC x y z x y n A B x y z y z ⎧⋅=⋅-=-+=⎪⎨⋅=⋅-=-=⎪⎩,令1y =,可得(2,1,2)n =, 设11D C 与平面11A BC 所成角为θ, 则11111121sin cos ,233D C n D C n D C nθ⋅====⨯⋅, 故直线11D C 与平面11A BC 所成角的正弦值为13. 故答案为:13.16.【分析】利用空间向量的结论将垂直的问题转化为向量数量积等于零的问题然后利用向量的数量积坐标运算计算的值即可【详解】又即解得故答案为【点睛】本题主要考查空间向量的应用向量垂直的充分必要条件等知识意在考 解析:3±【分析】利用空间向量的结论将垂直的问题转化为向量数量积等于零的问题,然后利用向量的数量积坐标运算计算λ的值即可. 【详解】()()()2,1,1,3,4,,2,7,1A B C λ-, ∴AB ()1,3,1,λ=+CB ()1,3,1λ=--,又,AB CB ⊥0AB CB ∴⋅=,即()()()1133110λλ⨯+⨯-++-=,解得3λ=±, 故答案为3±. 【点睛】本题主要考查空间向量的应用,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.17.5【解析】分析:设则的坐标利用求得即可得到即可求解的长度详解:设则所以因为所以解得所以所以点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加减或数乘运算(2)解析:5 【解析】分析:设AD AC λ=,则,OD BD 的坐标,利用BD AC ⊥,求得45λ=-,即可得到 912(4,,)55BD =-,即可求解BD 的长度. 详解:设AD λAC =,则()()()OD OA λAC 1,1,2λ0,4,31,14λ,23λ=+=-+-=-+-,所以()BD OD OB 4,54λ,3λ=-=-+-,因为BD AC ⊥, 所以()BD AC 0454λ9λ0⋅=+++=,解得4λ5=-, 所以912BD 4,,55⎛⎫=- ⎪⎝⎭,所以(22912BD 5⎫⎛⎫=-=.点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.18.【分析】设0则由知所以由此能求出其最小值【详解】设001-即(当时取最小值)故答案为:【点睛】方法点睛:求最值常用的方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法要根据已知【分析】设(C x ,0,0),(0D ,y ,0),则(1,,2)AD y →=-,(,1,1)BC x →=-,由20AD BC x y →→=--=,知2x y =+.所以||CD →【详解】设(C x ,0,0),(0D ,y ,0), (1A -,0,2),(0B ,1,-1),∴(1,,2)AD y →=-,(,1,1)BC x →=-,AD BC ⊥,∴20AD BC x y →→=--=,即2x y =+.(,,0)CD x y →=-,∴||CD →=2.(当1y =-时取最小值)【点睛】方法点睛:求最值常用的方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法.要根据已知条件灵活选择方法求解.19.【分析】根据向量夹角为钝角可知且解不等式可求得结果【详解】由题意可知:且解得:且即本题正确结果:【点睛】本题考查向量夹角的相关问题的求解易错点是忽略夹角为的情况造成出现增根解析:1311,,222⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭【分析】根据向量夹角为钝角,可知cos ,0a b <><且cos ,1a b <>≠-,解不等式可求得结果. 【详解】 由题意可知:132cos ,014k a b a b a b--⋅<>==<⋅且13cos ,1ka b --<>=≠-解得:132k >-且12k ≠,即1311,,222k ⎛⎫⎛⎫∈-+∞ ⎪ ⎪⎝⎭⎝⎭本题正确结果:1311,,222⎛⎫⎛⎫-+∞ ⎪ ⎪⎝⎭⎝⎭【点睛】本题考查向量夹角的相关问题的求解,易错点是忽略夹角为π的情况,造成出现增根.20.【分析】利用向量的加法公式得出再由得出的值即可得出的和【详解】即故答案为:【点睛】本题主要考查了用空间基底表示向量属于中档题解析:78【分析】利用向量的加法公式得出111222MN OA OB OC =-++,再由1324OG OM MG OA MN =+=+,得出,,x y z 的值,即可得出,,x y z 的和.【详解】MN MA AB BN =++11111()22222OA OB OA OC OB OA OB OC =+-+-=-++ 13131112424222OG OM MG OA MN OA OA OB OC ⎛⎫∴=+=+=+-++ ⎪⎝⎭813388OA OB OC =++ 133,,888x y z ∴===即78x y z ++= 故答案为:78【点睛】本题主要考查了用空间基底表示向量,属于中档题.21.【分析】直接利用空间向量的数量积求解两个平面的二面角的大小即可【详解】解:两个平面的法向量分别为则这两个平面所成的锐二面角的大小是这两个平面所成的锐二面角的余弦值为故答案为:【点睛】本题考查空间二面【分析】直接利用空间向量的数量积求解两个平面的二面角的大小即可. 【详解】解:两个平面α,β的法向量分别为(4,0,3)u →=,(1,1,0)v →=-, 则这两个平面所成的锐二面角的大小是θ,2cos a ba bθ→→→→===这两个平面所成的锐二面角的余弦值为5.故答案为:5. 【点睛】本题考查空间二面角的求法,空间向量的数量积的应用,考查计算能力.22.-4【分析】由题可知可得运用向量数量积的坐标运算即可求出【详解】解:根据题意得解得:故答案为:【点睛】本题考查空间向量垂直的数量积关系运用空间向量数量积的坐标运算考查计算能力解析:-4【分析】由题可知,a b c →→→⎛⎫+⊥ ⎪⎝⎭,可得0a b c →→→⎛⎫+= ⎪⎝⎭,运用向量数量积的坐标运算,即可求出x . 【详解】解:根据题意得, ()2,1,3a b x →→+=-+ a b c →→→⎛⎫+⊥ ⎪⎝⎭, ∴22(3)0a b c x x →→→⎛⎫+=--++= ⎪⎝⎭, 解得:4x =-.故答案为:4-.【点睛】本题考查空间向量垂直的数量积关系,运用空间向量数量积的坐标运算,考查计算能力. 23.【分析】设且利用数量积运算即得解【详解】设故答案为:【点睛】本题考查了空间向量的模长数量积运算考查了学生空间想象数学运算能力属于中档题 解析:【分析】设1,,AB a AD b AA c===,且1|||++|AC a b c =,利用数量积运算即得解. 【详解】设1,,||||||2,,,60o AB a AD b AA c a b c a b a c c b ===∴===<>=<>=<>=, 222221|||++|||||||22224AC a b c a b c a b a c c b ==+++⋅+⋅+⋅=||26AC ∴=故答案为:【点睛】本题考查了空间向量的模长,数量积运算,考查了学生空间想象,数学运算能力,属于中档题.24.11【分析】由题意建立空间直角坐标系由二面角的定义得出从而写出的坐标由向量共线的性质设利用向量的加法得出由异面直线与所成角利用向量法得出的值从而得出的值【详解】取的中点G 与的交点为以O 为坐标原点分别 解析:11【分析】由题意建立空间直角坐标系,由二面角的定义得出60OEV ∠=︒,从而写出,,,V E B A 的坐标,由向量共线的性质设(1)VF VA λλ=≠,利用向量的加法得出BF ,由异面直线BF 与VE 所成角,利用向量法得出λ的值,从而得出VF VA 的值. 【详解】 取AB 的中点G ,AC 与DB 的交点为O ,以O 为坐标原点,分别以,,OG OE OV 为,,x y z 轴的正方向,建立空间直角坐标系O xyz -,设2AB =因为二面角V BC D --为60°,所以60OEV ∠=︒则()()()()0,0,3,0,1,0,1,1,0,1,1,0V E B A -()()()1,1,3,1,1,3,0,1,3VA VB VE =--=-=-.设(1)VF VA λλ=≠,则()1,1,33BF VF VB λλλ=-=----+从而22||cos ,cos 60||||24(1)(1)BF VE BF VE BF VE λλ⋅===︒-++ 整理得210110λλ+-=,解得1λ=(舍),11λ=-故11VF VA=. 故答案为:11【点睛】本题主要考查了已知面面角,线线角求参数,属于中档题.25.【分析】根据题意建立空间直角坐标系设出的长写出各个点的坐标求得平面与平面的法向量利用法向量及二面角大小求得的等量关系即可判断当取最小时各自的长即可求得的正切值进而求得的大小【详解】因为三棱柱中两两互 解析:6π【分析】根据题意,建立空间直角坐标系,设出,CN BM 的长,写出各个点的坐标,求得平面AMN 与平面ABC 的法向量,利用法向量及二面角大小,求得,CN BM 的等量关系.即可判断当1B M 取最小时,CN BM 各自的长.即可求得AMB ∠的正切值,进而求得AMB ∠的大小.【详解】因为三棱柱111ABC A B C -中,AB ,AC ,1AA 两两互相垂直,建立如下图所示的空间直角坐标系:122AA AB AC ==,M ,N 是线段1BB ,1CC 上的点可设,,1BM a CN b AB ===,则12,1AA AB ==所以()()0,0,0,1,0,0A B ,()()1,0,,0,1,M a N b则()()1,0,,0,1,AM a AN b ==设平面AMN 的法向量为(),,m x y z =则00AM m AN m ⎧⋅=⎨⋅=⎩,代入可得00x az y bz +=⎧⎨+=⎩,令1z =代入解得x a y b =-⎧⎨=-⎩ 所以(),,1m a b =--平面ABC 的法向量()0,0,1n =由题意可知平面AMN 与平面ABC 所成(锐)二面角为3π 则由平面向量数量积定义可知22cos31m n m n a b π⋅==⋅++ 化简可得223a b += 1B M 最小值,即a 取得最大值,当0b =时,a 取得最大值为3a = 所以3tan 3AB AMB MB ∠=== 所以6AMB π∠=故答案为:6π 【点睛】本题考查了空间向量在立体几何中的应用,由法向量法结合二面角求值,属于中档题. 26.【分析】根据两边平方化简得到得到答案【详解】故故故答案为:【点睛】本题考查了空间向量的运算意在考查学生的计算能力【分析】根据11AC AB AD AA =++,两边平方化简得到182AC =.【详解】11AC AB AD AA =++ 故2222211111222AC AB AD AA AB AD AA AB AD AB AA AD AA =++=+++⋅+⋅+⋅ 222113452432458222=+++⨯⨯⨯+⨯⨯⨯=,故182AC =【点睛】本题考查了空间向量的运算,意在考查学生的计算能力.。
(完整版)空间向量与立体几何测试题及答案

高中 数学选修(2-1)空间向量与立体几何测试题一、选择题1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形是( )A.一个圆 B.一个点 C.半圆 D.平行四边形 答案:A2.在长方体1111ABCD A B C D -中,下列关于1AC 的表达中错误的一个是( ) A.11111AA A B A D ++ B.111AB DD D C ++ C.111AD CC D C ++D.11111()2AB CD AC ++答案:B3.若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 答案:D4.若三点,,A B C 共线,P 为空间任意一点,且PA PB PC αβ+=,则αβ-的值为( ) A.1 B.1- C.12D.2-答案:B5.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4- B.9 C.9- D.649答案:B6.已知非零向量12e e ,不共线,如果1222122833e e e e e e =+=+=-,,AB AC AD ,则四点,,,A B C D ( )A.一定共圆B.恰是空间四边形的四个顶点心 C.一定共面 D.肯定不共面7.如图1,空间四边形ABCD 的四条边及对 角线长都是a ,点E F G ,,分别是AB AD CD ,, 的中点,则2a 等于( )A.2BA AC · B.2AD BD ·C.2FGCA ·D.2EFCB · 答案:B8.若123123123=++=-+=+-,,a e e e b e e e c e e e ,12323d e e e =++,且x y z =++d a b c ,则,,x y z 的值分别为( ) A.51122--,, B.51122-,,C.51122--,,D.51122,,答案:A9.若向量(12)λ=,,a 与(212)=-,,b 的夹角的余弦值为89,则λ=( ) A.2 B.2- C.2-或255D.2或255-答案:C10.已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,,则顶点D 的坐标为( )A.7412⎛⎫- ⎪⎝⎭,, B.(241),, C.(2141)-,, D.(5133)-,,答案:D11.在正方体1111ABCD A B C D -中,O 为AC BD ,的交点,则1C O 与1A D 所成角的( ) A.60° B.90° C.3arccos3D.3arccos6答案:D12.给出下列命题:①已知⊥a b ,则()()a b c c b a b c ++-=···;②,,,A B M N 为空间四点,若BA BM BN ,,不构成空间的一个基底,那么A B M N ,,,共面;③已知⊥a b ,则,a b 与任何向量都不构成空间的一个基底; ④若,a b 共线,则,a b 所在直线或者平行或者重合. 正确的结论的个数为( )A.1 B.2 C.3 D.4 答案:C13.已知(315)(123)==-,,,,,a b ,向量c 与z 轴垂直,且满足94==-,··c a c b ,则c = . 答案:2221055⎛⎫-⎪⎝⎭,,14.已知,,A B C 三点不共线,O 为平面ABC 外一点,若由向量1253OP OA OB OC λ=++确定的点P 与A B C ,,共面,那么λ= . 答案:21515.已知线段AB ⊥面α,BC α⊂,CD BC ⊥,DF ⊥面α于点F ,30DCF ∠=°,且D A ,在平面α的同侧,若2AB BC CD ===,则AD 的长为 . 答案:2216.在长方体1111ABCD A B C D -中,1B C 和1C D 与底面所成的角分别为60°和45°,则异面直线1B C 和1C D 所成角的余弦值为 . 答案:64三、解答题17.设123423223325=-+=+-=-+-=++,,,a i j k a i j k a i j k a i j k ,试问是否存在实数λμν,,,使4123a a a a λμν=++成立?如果存在,求出λμν,,;如果不存在,请写出证明.答案:解:假设4123a a a a λμν=++成立.1234(211)(132)(213)(325)a a a a =-=-=--=,,,,,,,,,,,∵, (22323)(325)λμνλμνλμν+--++--=,,,,∴. 22332235λμνλμνλμν+-=⎧⎪-++=⎨⎪--=⎩,,,∴解得213λμν=-⎧⎪=⎨⎪=-⎩,,. 所以存在213v λμ=-==-,,使得412323a a a a =-+-. 理由即为解答过程.为2a ,求1AC 与侧面18.如图2,正三棱柱111-ABC A B C 的底面边长为a ,侧棱长11ABB A 所成的角.解:建立如图所示的空间直角坐标系,则113(000)(00)(002)222⎛⎫-⎪ ⎪⎝⎭,,,,,,,,,,,aA B a A a C a a . 由于(100)=-,,n 是面11ABB A 的法向量,1111312cos 6023aAC AC AC a AC ===⇒=,,·°n n n n.故1AC 与侧面11ABB A 所成的角为30°.19.如图3,直三棱柱111ABC A B C -中,底面是等腰直角三角形,90ACB ∠=°,侧棱12AA D E =,,分别是1CC 与1A B 的中点,点E 在平面ABD 上的射影是ABD △的重心G ,求点1A 到平面AED 的距离.解:建立如图所示的空间直角坐标系,设2CA a =, 则1221(200)(020)(001)(202)(1)333a a A a B a D A a E a a G ⎛⎫⎪⎝⎭,,,,,,,,,,,,,,,,,.从而2(021)333a a GE BD a ⎛⎫==- ⎪⎝⎭,,,,,.由0GE BD GEBD ⊥⇒=·,得1a =, 则1(202)(200)(111)A A E ,,,,,,,,.自1A 作1A H ⊥面AED 于M ,并延长交xOy 面于H ,设(0)H x y ,,,则1(22)A H x y =--,,. 又(201)AD =-,,,(111)AE =-,,. 由112(2)20(2)20A H AD x A H AE x y ⊥---=⎧⎧⇒⎨⎨⊥--+-=⎩⎩,,11x y =⎧⇒⎨=⎩,,得(110)H ,,.又1111cos A M A A A A A M =,·111426cos 2326A AA A A H ==⨯=,·.20.已知正方体1111ABCD A B C D -的棱长为2,P Q ,分别是BC CD ,上的动点,且2PQ =,确定P Q ,的位置,使11QB PD ⊥.解:建立如图所示的空间直角坐标系,设BP t =, 22那么211(202)(022)(20)(22(2)20)B D P t Q t ---,,,,,,,,,,,,从而21(2(2)22)QB t =---,,,1(222)PD t =--,,, 由11110QB PD QB PD ⊥⇒=·, 即222(2)2(2)401t t t -----+=⇒=. 故P Q ,分别为BC CD ,的中点时,11QB PD ⊥.21.如图4,在底面是直角梯形的四棱锥S ABCD -中,90ABC ∠=°,SA ⊥面ABCD ,112SA AB BC AD ====,,求面SCD 与面SBA 所成二面角的正切值. 解:建立如图所示的空间直角坐标系,则1(000)(100)(110)00(001)2A B C D S ⎛⎫-- ⎪⎝⎭,,,,,,,,,,,,,,. 延长CD 交x 轴于点F ,易得(100)F ,,,作AE SF ⊥于点E ,连结DE ,则DEA ∠即为面SCD 与面SBA 所成二面角的平面角.又由于SA AF =且SA AF ⊥,得11022E ⎛⎫ ⎪⎝⎭,,,那么102EA ⎛⎫=-- ⎪⎝⎭,,12,111222ED ⎛⎫=-- ⎪⎝⎭,,,从而6cos 3EA ED EA ED EA ED ==,·, 因此2tan 2EAF ED =,. 故面SCD 与面SBA 所成二面角的正切值为22.22.平行六面体1111ABCD A B C D -的底面ABCD 是菱形,且11C CB C CD BCD ∠=∠=∠,试问:当1CDCC 的值为多少时,1A C ⊥面1C BD ?请予以证明.解:欲使1A C ⊥面1C BD ,只须11AC C D ⊥,且11AC C B ⊥. 欲证11AC C D ⊥,只须证110CA C D =·, 即11()()0CA AA CD CC +-=·, 也就是11()()0CD CB CC CD CC ++-=·, 22由于1C CB BCD ∠=∠,显然,当1CD CC =时,上式成立; 同理可得,当1CD CC =时,11AC C B ⊥. 因此,当11CDCC =时,1A C ⊥面1C BD .一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间向量与立体几何单元检测题
一、选择题:
1、若a ,b ,c 是空间任意三个向量, R λ∈,下列关系式中,不成立的是( )
A 、a b b a +=+
B 、()
a b a b λλλ+=+ C 、()()
a b c a b c ++=++ D 、b a λ=
2、已知向量a =(1,1,0),则与a 共线的单位向量( ) A 、(1,1,0) B 、(0,1,0) C 、(
22,2
2,0) D 、(1,1,1) 3、若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 4、设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4-
B.9
C.9-
D.
649
5、若向量(12)λ=,,a 与(212)=-,,b 的夹角的余弦值为8
9
,则λ=( ) A.2
B.2-
C.2-或
2
55
D.2或255
-
6、已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,,
则D 的坐标为( ) A.7412
⎛⎫
- ⎪⎝⎭
,
, B.(241),, C.(2141)-,, D.(5133)-,,
7、在正方体1111ABCD A B C D -中,O 为AC BD ,的交点,则1C O 与1A D 所成角的( )
A.60°
B.90°
C. D. 8、正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点,则E 到平面11ABC D 的距离是( )
C.12
9、ABCD 为正方形,P 为平面ABCD 外一点,2PD AD PD AD ⊥==,,二面角
P AD C --为60°,则P 到AB 的距离为( )
A.22 B.3 C.2 D.7
10、如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( )。
A .
63 B .552 C .155 D .10
5
二、填空题:
11、若向量a 与b 的夹角为60°,4=b ,(2)(3)72a b a b +-=-,则a = 。
12、已知,a b 均为单位向量,它们的夹角为60︒,那么3a b += 。
13、已知,,A B C 三点不共线,O 为平面ABC 外一点,若由向量
12
53
OP OA OB OC λ=++确定的点P 与A
B C ,,共面,那么λ= 。
14、在长方体1111ABCD A B C D -中,1B C 和1C D 与底面所成的角分别为60°和45°,则异面直线1B C 和1C D 所成角的余弦值为 。
15、直三棱柱ABC —A 1B 1C 1中,∠ACB=90°,15==BC AC ,AA 1=6,E 为AA 1的中点,则平面EBC 1与平面ABC 所成的二面角的大小为_____ ___。
三、解答题:
16、如图,在四棱锥P-ABCD 中,底面ABCD 是边长为1的正方形,侧棱PA 的长为2,且PA 与AB 、AD 的夹角都等于600,M 是PC 的中点,设c b a ===AP AD AB ,,。
(1)试用c b a ,,表示出向量BM ; (2)求BM 的长。
M
P
D
C
B
A
17、设空间两个不同的单位向量()()1122,,0,,,0a x y b x y == 与向量()1,1,1c =的夹
角都等于45︒。
(1)求11x y +和11x y ⋅的值; (2)求,a b 的大小。
18、如图,已知直四棱柱1111ABCD A B C D -中,12AA =,底面ABCD 是直角梯形,ADC ∠是直角,421AB CD AB AD DC ===,,,∥,求异面直线1BC 与DC 所成角的大小。
19、如图,直三棱柱ABC —A 1B 1C 1中,∠ACB=90°,AC=AA 1=1,,AB 1与
A 1
B 相交于点D ,M 为B 1
C 1的中点。
(1)求证:C
D ⊥平面BDM ;
(2)求平面B 1BD 与平面CBD 所成二面角的大小。
20、如图,在四棱锥P —ABCD 中,底面ABCD 为正方形,PD ⊥平面ABCD ,且PD=AB=a ,E 为PB 的中点。
(1)求异面直线PD 与AE 所成的角的大小;
(2)在平面PAD 内求一点F ,使得EF ⊥平面PBC ; (3)在(2)的条件下求二面角F —PC —E 的大小。
21、平行六面体1111ABCD A B C D -的底面ABCD 是菱形,且11C CB C CD BCD ∠=∠=∠,试问:当
1
CD
CC 的值为多少时,1A C ⊥面1C BD ?请予以证明。