空间向量与立体几何典型例题
高中数学——空间向量与立体几何练习题(附答案)

.空间向量练习题1. 如下图,四棱锥 P-ABCD 的底面 ABCD 是边长为 1 的菱形,∠ BCD =60°, E 是 CD的中点, PA ⊥底面 ABCD ,PA =2.〔Ⅰ〕证明:平面 PBE ⊥平面 PAB;〔Ⅱ〕求平面PAD 和平面 PBE 所成二面角〔锐角〕的大小 .如下图,以 A 为原点,建立空间直角坐标系 .那么相关各点的坐标分别是 A 〔 0, 0, 0〕, B 〔 1, 0, 0〕,C(3 ,3,0), D(1 ,3,0), P 〔 0,0, 2〕 , E(1, 3,0).2 22 22〔Ⅰ〕证明因为 BE (0,3,0) ,2平面 PAB 的一个法向量是 n(0,1,0) ,所以 BE 和n 共线 .从而 BE ⊥平面 PAB.又因为 BE平面 PBE ,故平面 PBE ⊥平面 PAB.(Ⅱ)解易知 PB(1,0, 2), BE(0,3,0〕, PA (0,0, 2), AD( 1 ,3,0)22 2n ( x 1 , y 1 , z 1 ) n 1 PB 0,设是平面PBE 的一个法向量,那么由得1n 1 BE 0x 1 0 y 1 2z 1 0,0 x 13y 2 0 z 2 0.所以y 1 0, x 12z 1.故可取 n 1 (2,0,1).2设 n 2( x 2 , y 2 , z 2 )PAD 的 n 2 PA 0, 是 平 面 一个法向量,那么由AD得n 2 00 x 2 0 y 2 2z 2 0,1 3 所以 z2 0, x 23 y 2 .故可取 n 2 ( 3, 1,0).2 x 22 y 2 0 z 20.于是, cosn 1, n 2n 1 n 22 3 15 .n 1 n 2 5 25故平面和平面所成二面角〔锐角〕的大小是15PADPBEarccos..2. 如图,正三棱柱 ABC - A 1B 1C 1 的所有棱长都为 2, D 为 CC 1 中点。
空间向量和立体几何练习题与答案

空间向量和立体几何练习题与答案
1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形就是( )
A.一个圆
B.一个点
C.半圆
D.平行四边形
答案:A
2.在长方体 ABCD-A₁B ₁C ₁D ₁中,下列关于AC₁的表达中错误的 一个就是( )
A. AA₁+A ₁B ₁+A ₁D ₁
B. AB+DD₁
+D ₁C ₁
C. AD+CC₁+D ₁C ₁
D.12(AB 1+CD 1)+A 1C 1
答案:B
3.若a ,b ,c 为任意向量,m ∈R ,下列等式不一定成立的就是( )
A.(a+b)+c=a+(b+c)
B.(a+b)•c=a•c+b•c
C. m(a+b)=ma+mb
D.(a·b)·c=a·(b·c)
答案:D
4.若三点A, B, C 共线,P 为空间任意一点,且PA+αPB=βPC,则α-β的值为( )
A.1
B.-1
C.12
D.-2
答案:B
5.设a=(x,4,3), b=(3,2, z),且a ∥b,则xz 等于( )
A.-4
B.9
C.-9
D.649
答案:B
6.已知非零向量 e ,e₂不共线,如果AB=e₁+e ₂ A C=2e ₂ 8e ₂AD=3e ₁3 ,则四点 A. B C (
) A.一定共圆
B.恰就是空间四边形的四个顶点心
C.一定共面
D.肯定不共面
答案:C。
专题1 空间向量与立体几何练习(三)

专题1空间向量与立体几何练习(三)1.如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中以顶点A 为端点的三条棱长均为1,且它们彼此的夹角都是60︒.(1)求证:1AC DB ⊥;(2)求异面直线1BD 与AC 所成角的余弦值.2.如图四边形ABCD 是边长为3的正方形,DE ⊥平面ABCD ,//,3AF DE DE AF =.(1)求证:AC ⊥平面BDE ;(2)若BE 与平面ABCD 所成角为60︒,求二面角F BE D --的正弦值.3.已知()1,4,2a =- ,()2,2,4b =- .(1)若12c b = ,求cos ,a c <> 的值;(2)若()()3ka b a b +-∥ ,求实数k 的值.4.如图,平行六面体1111ABCD A B C D -的底面是菱形,且1160C CB C CD BCD ∠=∠=∠=︒,12CD CC ==.(1)求1AC 的长;(2)求异面直线1CA 与1DC 所成的角.5.已知向量()1,1,0a = ,()1,0,b c =- ,且a b += (1)求c 的值;(2)若ka b + 与2a b - 互相垂直,求实数k 的值.6.如图,在长方体1111ABCD A B C D -中,1226AD AB AA ===,,E F 分别是1111,A D A B 的中点,CG GE = ,以点A 为坐标原点,建立如图所示的空间直角坐标系A xyz -.(1)写出1,,,C D F G 四点的坐标;(2)求1cos ,CF D G <> .7.如图所示,在棱长为2的正四面体ABCD 中,E ,F 分别是AB ,AD 的中点,求:(1)EF ·BA ;(2)EF ·BD ;(3)AB ·CD .8.如图所示,在正方体1111ABCD A B C D -中,化简向量表达式:(1)AB CD BC DA +++ ;(2)1111AA B C D D ++ ;(3)1111AA B C D D CB +++ .9.已知空间三点()4,0,4A -,()2,2,4B -,()3,2,3C -,设a AB = ,b BC =r u u u r .(1)求a ,b ;(2)求a 与b 的夹角.10.如图所示,已知在三棱锥A BCD -中,向量AB a = ,AC b = ,AD c =uuu r r ,已知M 为BC 的中点,试用a 、b 、c 表示向量DM .参考答案:1.(1)证明见解析【分析】(1)根据平面向量转化基底,以及加减运算和数量积的运算性质,得到10AC DB ⋅= ,即可证得1AC DB ⊥;(2)根据平面向量转化基底,求出1BD 、AC 、1AC BD ⋅ ,再利用夹角公式即可求解.【详解】(1)证明:∵以顶点A 为端点的三条棱长均为1,且它们彼此的夹角都是60︒,∴11111cos602AA AB AA AD AD AB ⋅=⋅=⋅=⨯⨯︒= ,∴()()1111111()()AC DB AA A B B C AB AD AA AB AD AB AD ⋅=++⋅-=++⋅- 22110AA AB AA AD AB AB AD AD AB AD =⋅-⋅+-⋅+⋅-= ,∴1AC DB ⊥.(2)∵111BD AD DD AB AD AA AB ==+-+- ,AC AB BC AB AD =+=+ ,∴1BD ==||AC ==== ,()11()BD AC AD AA AB AB AD ⋅=+-⋅+ 12211111122AD AB AA AB AA AD =+⋅-++⋅=-+= ,∴111cos ,6BD AC BD AC BD AC⋅==⋅ ,∴异面直线1BD与AC 所成角的余弦值为6.2.(1)证明见解析【分析】(1)由已知可得DE AC ⊥且AC BD ⊥,由线面垂直的判定定理即可得到证明;(2)以D 为原点,DA 方向为x 轴,DC 方向为y 轴,DE 方向为z 轴建立空间直角坐标系,利用已知条件求出平面BDE 的一个法向量和平面BEF 的一个法向量,利用向量的夹角公式计算即可.【详解】(1)因为DE ⊥平面ABCD ,AC ⊂平面ABCD ,所以DE AC⊥因为四边形ABCD 是正方形,所以AC BD⊥又因为BD DE D ⋂=,BD ⊂平面BDE ,DE ⊂平面BDE ,所以AC ⊥平面BDE(2)DE ⊥ 底面ABCD ,,⊂DA DC 平面ABCD ,,DE DA DE DC ∴⊥⊥,四边形ABCD 是正方形,DA DC∴⊥故DA ,DC ,DE 两两垂直,建立如图所示的空间直角坐标系D xyz -,因为BE 与平面ABCD 所成角为60 ,DE ⊥ 平面ABCD ,且垂足为D ,故60DBE ∠=,所以DE DB=又3,3AD DE AF ==,所以BD DE AF ===所以(3,0,0)A ,(3,3,0)B,F,E ,(0,3,0)C ,所以(0,,(3,0,BF EF =-=- 设平面BEF 的一个法向量(),,m x y z = ,则3030m BF y m EF x ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,令z =(4,m = 因为AC ⊥平面BDE ,所以CA 为平面BDE 的一个法向量,()3,3,0CA =- .所以cos ,13m CA m CA m CA ⨯+-⨯+⋅〈〉===,所以sin ,m CA〈〉=所以二面角F BE D --3.(1)42-(2)13-【分析】(1)利用空间向量夹角公式的坐标运算直接求解;(2)根据两向量的共线定理,利用坐标运算求解.【详解】(1)由已知可得()11,1,22c b ==- ,()1,4,2a =- ,∴114122cos ,42a c a c a c⨯-+⨯+-⨯⋅<>==- .(2)()2,42,24ka b k k k +=-+-+ ,()37,2,14a b -=-- ,∵()()3ka b a b +-∥ ,∴存在实数m 使得()3ka b m a b +=- ,∴27k m -=,422k m +=-,2414k m -+=-,联立解得13k =-.4.(1)1AC =(2)90°.【分析】(1)因为1,,CD CB CC 三组不共线,则可以作为一组基底,用基底表示向量1AC uuu r ,平方即求得模长.(2)求出两条直线1CA 与1DC 的方向向量,用向量夹角余弦公式即可.【详解】(1)设CD a =uu u r r ,CB b =uu r r ,1CC c =uuu r r ,{},,a b c 构成空间的一个基底.因为()11()AC CC CD CB c a b =-+=-+ ,所以()22211AC AC c a b ⎡⎤==-+⎣⎦222222c a b a c b c a b=++-⋅-⋅+⋅ 12222cos608=-⨯⨯⨯︒=,所以1AC =(2)又1CA a b c =++ ,1DC c a =- ,所以()()11CA DC a b c c a ⋅=++⋅- 220c a b c a b =-+⋅-⋅= ∴11CA DC ⊥ ∴异面直线1CA 与1DC 所成的角为90°.5.(1)2c =±(2)75k =【分析】(1)求出()0,1,b a c += ,根据向量模长公式列出方程,求出2c =±;(2)分2c =与2c =-两种情况,根据向量垂直列出方程,求出实数k 的值.【详解】(1)()()()01,0,1,1,0,1,b c a c =-++= ,所以a b +== 2c =±;(2)当2c =时,()()()01,0,2,,1,,2k b k k k a k +=--=+ ,()()()2202,21,0,2,,23,a b -=-=-- ,因为ka b + 与2a b - 互相垂直,所以()231220k k -+-=,解得:75k =,当2c =-时,()()()210,1,2,,0,,ka k k k b k +=-+---= ,()()()2202,21,0,2,,23,a b -=-=-- 因为ka b + 与2a b - 互相垂直,所以()231220k k -+-=,解得:75k =,综上:75k =.6.(1)()3,6,0C ,()10,6,3D ,3,0,32F ⎛⎫ ⎪⎝⎭,393,,222G ⎛⎫ ⎪⎝⎭21【分析】(1)根据线段长度、中点坐标公式可求得点对应的坐标;(2)利用向量夹角的坐标运算可直接求得结果.【详解】(1)1226AD AB AA === ,13AB AA ∴==,则()3,6,0C ,()10,6,3D ,3,0,32F ⎛⎫ ⎪⎝⎭,()0,3,3E ,CG GE = ,G ∴为CE 中点,393,,222G ⎛⎫∴ ⎝⎭.(2)由(1)得:3,6,32CF ⎛⎫=-- ⎪⎝⎭ ,1333,,222D G ⎛⎫=-- ⎪⎝⎭,1119999424cos ,22CF D G CF D G CF D G -+-⋅∴<>=⋅⨯ .7.(1)1(2)2(3)0【分析】分别将EF ,BD ,CD 转化为AB ,AC ,AD 后根据数量积定义计算即可.【详解】(1)在正四面体ABCD 中,||||2,cos ,60BD BA BD BA ==〈〉=111||||cos ,22cos 601222EF BA BD BA BD BA BD BA ⋅=⋅=⋅〈〉=⨯⨯︒= (2)211||222EF BD BD BD BD ⋅=⋅== (3)()AB CD AB AD AC AB AD AB AC ⋅=⋅-=⋅-⋅=||||cos ,||||cos ,AB AD AB AD AB AC AB AC ⋅⋅〈〉-⋅〈〉在正四面体ABCD 中,||||||AB AD AC == ,cos ,cos ,AB AD AB AC 〈〉=〈〉故0AB CD ⋅=8.(1)0(2)AD(3)0【分析】(1)(2)(3)结合图形,根据空间向量的线性运算直接化简可得.【详解】(1)0AB CD BC DA AB BC CD DA AC CD DA AD AD +++=+++=++=-= (2)由图知,1111B C A D = 所以1111111111AA B C D D AA A D D D AD D D AD++=++=+= (3)由图知,CB DA =所以由(2)可得11110AA B C D D CB AD DA AD AD +++=+=-= 9.(1)(2)2π3【分析】(1)(2)由空间向量的坐标运算求解,【详解】(1)由题意得所以()2,2,0a AB == ,所以a == 因为()2,2,4B -,()3,2,3C -,所以()1,0,1b BC ==--r u u u r ,所以b ==r (2)由(1)可知1cos ,2a b a b a b⋅==-⋅ ,又[],0,πa b ∈ ,所以2π,3a b = ,即a 与b 的夹角为2π3.10.()122DM a b c =+- 【分析】利用空间向量的线性运算的几何表示运算即得.【详解】∵M 为BC 的中点,∴()12AM AB AC =+uuu r uu u r uuu r ,∴()()11222DM AM AD AB AC AD a b c =-=+-=+- .。
23个立体几何与空间向量专题(PDF版)

4
, OA
P O M A D B
图 10
F E B A G D C
图 11
H
C
Q
例 11 、如图 11 所示,在三棱锥 P ABQ 中, PB 平面 ABQ , BA BP BQ , D, C , E , F 分别是 AQ, BQ, AP , BP 的中点, AQ 2BD , PD 与 EQ 交于 G , PC 与 FQ 交于点 H , 连接 GH ⑴求证: AB / /GH ; ⑵求二面角 D GH E 的余弦值 cos . 例 12 、如图 12 ,在三棱柱 ABC A1 B1C1 中,侧棱 AA1 底面 ABC , AB AC 2 AA1 ,
S E F A
图8
G C
图9
B
例 9 、如图 9,在三棱锥 S ABC 中,平面 SAB 平面 SBC , AB BC , AS AB ,过 A 作
AF SB ,垂足为 F ,点 E , G 分别是棱 SA, SC 的中点.
求证:⑴平面 EFG / / 平面 ABC ; ⑵ BC SA .
⑴求二面角 B AD F 的大小 ; ⑵求直线 BD 与 EF 所成的角 的余弦值 cos .
P A
D
E
A B
C C O 图1
D O F B 图2 E C
例 2 、如图 2,四面体 ABCD 中, O, E 分别是 BD, BC 的中点, CA CB CD BD 2 ,
23 个立体几何与空间向量专题--tobeenough
23 个立体几何与空间向量专题(修正版)—tobeenough
P 的直径,AD 与两圆所在的平面均垂直,AD 8 . 例 1、 如图 1 所示,AF 、 DE 分别是 O 、
空间向量与立体几何试题与答案

空间向量与立体几何测试题1.已知向量),2,3(),1,,(z b y x a ==,且b a //,则yz xz +的值是( ) (A )6 (B )5 (C )4 (D )32.已知向量)2,0,1(),1,1,0(=-=b a ,若向量b a k +与向量-互相垂直,则k 的值是( ) (A )23 (B )2 (C )45 (D )47 3.下面命题正确的个数是( ) ①若23p x y =+,则p 与x 、y 共面;②若23MP MA MB =+,则M 、P 、A 、B 共面;③若0OA OB OC OD +++=,则A 、B 、C 、D 共面;④若151263OP OA OB OC =+-,则P 、A 、B 、C 共面; (A )1 (B )2 (C )3 (D )44.已知(1,2,3)OA =,(2,1,2)OB =,(1,1,2)OP =,点Q 在直线OP 上运动,则当QA QB ⋅取得最小值时,点Q 的坐标为( )(A )448(,,)333 (B )123(,,)234(C ) 131(,,)243 (D )447(,,)333 5.如图,以等腰直角三角形斜边BC 上的高AD 为折痕,把ABD ∆和ACD ∆折成互相垂直①0≠⋅AC BD ;②60=∠BAC ;③三棱锥ABC D -是正三棱锥;④平面ADC 的法向量和平面ABC 的法向量互相垂直. 其中正确的是( )(A )①② (B )②③ (C )③④ (D )①④CC6.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共 面,则实数λ等于( ) (A )627 (B )637 (C )647 (D )6577.正方体1111D C B A ABCD -的棱长为1,E 是11B A 的中点,则E 到平面11D ABC 的距离( ) (A )23 (B )33 (C )21 (D )22 8. 如图,正方体1111ABCD A BC D -,则下列四个命题: ①P 在直线1BC 上运动时,三棱锥1A D PC -的体积不变; ②P 在直线1BC 上运动时,直线AP 与平面ACD 1所成角的大小不变; ③P 在直线1BC 上运动时,二面角1P AD C --的大小不变;④M 是平面1111A B C D 上到点D 和1C 距离相等的点,则M 点的轨迹是过1D 点的直线 其中真命题的编号是( )(A )①③④ (B )③④ (C )①③ (D )①②③9. 已知空间三点)1,1,0(),0,1,1(),0,0,0(B A O -, 在直线OA 上有一点H满足OA BH ⊥,则点H 的坐标为 .10. 如图,在正方体1111ABCD A BC D -中,M 、N 分别是CD 、1CC 的中 点,则异面直线1A M 与DN 所成角的大小是____________。
空间向量立体几何(绝对经典)

例1:已知平行六面体ABCD-A 1B 1C 1D 1,化简下列向量表达式,并标出化简结果的向量。
(如图)A BCD A 1B 1C 1D 1G1)1(AA AD AB ++1111)1(AC CC AC AA AC AA AD AB =+=+=++解M 始点相同的三个不共面向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所示向量推论:如果 为经过已知点A且平行已知非零向量 的直线,那么对任一点O,点P在直线 上的充要条件是存在实数t,满足等式OP=OA+t 其中向量叫做直线的方向向量.ll aaOABP a若P为A,B中点,则()12=+ OP OA OB2.共面向量定理:如果两个向量 不共线,则向量 与向量 共面的充要条件是存在实数对 使, a b yx , p ,a b OM a b A B A 'Pp p xa yb =+ 推论:空间一点P位于平面MAB内的充要条件是存在有序实数对x,y使或对空间任一点O,有=+MP xMA yMB =++ OP OM xMA yMB 注意:空间四点P 、M 、A 、B 共面⇔存在唯一实数对,,x y MP xMA yMB =+ ()使得(1)OP xOM yOA zOB x y z ⇔=++++= 其中,例1:已知m,n 是平面α内的两条相交直线,直线l 与α的交点为B ,且l ⊥m ,l ⊥n ,求证:l ⊥α。
n mg g m n αl l 证明:在α内作不与m、n重合的任一条直线g,在l、m、n、g上取非零向量l、m、n、g ,因m与n相交,得向量m、n 不平行,由共面向量定理可知,存在唯一的有序实数对(x,y),使g =x m +y n ,l ·g =x l ·m +y l ·n∵ l ·m =0,l ·n =0∴ l ·g =0∴ l⊥g∴ l⊥g这就证明了直线l垂直于平面α内的任一条直线,所以l⊥α巩固练习:利用向量知识证明三垂线定理αa A O P ().,0,,,,0,0,PA a PA a a OA a PO a PA OAy PO x PA y x OA PO OA PO a OA a OA a PO a PO PO aa ⊥⊥∴=⋅+⋅=⋅∴+==⋅∴⊥=⋅∴⊥∴⊥即使有序实数对定理可知,存在唯一的不平行,由共面向量相交,得又又而上取非零向量证明:在αPA a OAa a PA OA PA PO ⊥⊥⊂求证:且内的射影,在是的垂线,斜线,分别是平面已知:,,ααα复习:2. 向量的夹角:a bO ABabθ0a b π≤≤ ,a b ,向量 的夹角记作:a b 与a b = ||||cos ,a b a b 1.空间向量的数量积:111222(,,),(,,)a x y z b x y z == 设121212x x y y z z =++cos ||||a ba b a b =,121212222222111222++=++⋅++x x y y z z x y z x y z 5.向量的模长:2222||a a x y z ==++ (,,)a x y z = 设4.有关性质:(1)两非零向量111222(,,),(,,)a x y zb x y z == 1212120x x y y z z ++=0a b a b ⊥⇔=⇔ (2)||||||a b a b ≤ ||||,a b a b a b =⇒ 同方向||||,a b a b a b =-⇒ 反方向注意:此公式的几何意义是表示长方体的对角线的长度。
空间向量与立体几何经典例题

空间向量与立体几何经典例题空间向量与立体几何经典例题空间向量和立体几何是高中数学中的重要内容,它们是解决三维空间中几何问题的基础。
在此,我们将介绍一些经典的例题,帮助读者更好地理解和掌握这两个概念。
例题1:已知平面ABCD的四个顶点坐标为A(1,2,3),B(-1,1,-3),C(4,0,2)和D(2,-1,1),求平面ABCD的法向量和面积。
解答:首先,我们可以通过向量的定义求得平面ABCD的法向量。
假设向量AB为a,向量AC为b,则平面ABCD的法向量N可以表示为N = a × b,其中×表示向量的叉乘运算。
由于a = B - A = (-1,1,-6)和b = C - A = (3,-2,-1),我们可以得到N = a × b = (7,19,5)。
其次,我们可以使用向量的叉乘运算和向量的模运算求得平面ABCD 的面积。
假设向量AB为a,向量AC为b,则平面ABCD的面积可以表示为S = 1/2 * |a × b|,其中|a × b|表示向量a × b的模。
带入已知数据计算可得,S = 1/2 * |(7,19,5)| = 1/2 * √(7^2 + 19^2 + 5^2) = 1/2 * √(1255)。
因此,平面ABCD的法向量为N = (7,19,5),面积为S = 1/2 * √(1255)。
例题2:已知四面体ABCD的四个顶点坐标为A(1,2,3),B(-1,1,-3),C(4,0,2)和D(2,-1,1),求四面体ABCD的体积。
解答:首先,我们可以通过向量的定义求得四面体ABCD的体积。
假设向量AB为a,向量AC为b,向量AD为c,则四面体ABCD的体积V 可以表示为V = 1/6 * |a · (b × c)|,其中·表示向量的点乘运算,×表示向量的叉乘运算,|a · (b × c)|表示向量a · (b ×c)的模。
空间向量在立体几何中的应用和习题(含答案)[1]
![空间向量在立体几何中的应用和习题(含答案)[1]](https://img.taocdn.com/s3/m/363fbb3f050876323012127c.png)
空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量: ①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则 ①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥α ⇔a ⊥u ⇔a ·u =0; ④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ; ⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l -β 在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α -l -β 的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角α -l -β 的两个面内与棱l 垂直的异面直线,则二面角α -l -β 的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面α ,β 的法向量,则<m 1,m 2>与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2P A 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2P A 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤:(1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明. 例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行. 解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4), ∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG ,∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是 b =(b 1,b 2,b 3). 由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为θ ,则,52||||cos ==⋅CN AM CN AM θ ∴异面直线AM 和CN 所成角的余弦值是⋅52解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a aa C 取A 1B 1的中点D ,则)2,2,0(a a D ,连接AD ,C 1D .则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a aa C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a aa AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0). 设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC 【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2=BC ,求二面角A -PB -C 的平面角的余弦值.解法二图解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵P A =AC =1,P A ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E∴)21,22,21(),43,42,41(---=--=DC EA ∴⋅=>=<33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面P AB 的法向量是a =(a 1,a 2,a 3),平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.练习一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C )5(D )222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30° (B)45° (C )60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A )31 (B)32 (C )33 (D)32 4.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β 所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n (B )θ >ϕ,m <n (C)θ <ϕ,m <n(D)θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______. 6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.4题图 7题图 9题图 8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______. 三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值. 10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.练习答案一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.548.42三、解答题:9题图 10题图 11题图9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==4214||||),cos(111C A C A C A n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为θ ,,3π,21||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面β 内过点C 作CO ⊥PQ 于点O ,连结OB .∵α ⊥β ,α ∩β =PQ ,∴CO ⊥α . 又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥α ,∴∠CAO 是CA 和平面α 所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面β 的一个法向量. 设二面角B -AC -P 的平面角为θ ,∴,55||||cos 2121==⋅⋅n n n n θ即二面角B -AC -P 平面角的余弦值是⋅55。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
eirbng空间向量与立体几何典型例题一、选择题:1.(2008全国Ⅰ卷理)已知三棱柱的侧棱与底面边长都相等,在底面111ABC A BC-1A 内的射影为的中心,则与底面所成角的正弦值等于( C )ABC ABC△1AB ABCA.B C D.13231.解:C.由题意知三棱锥为正四面体,设棱长为,则,棱柱的高1A ABC-a1AB=(即点到底面的距离),故与1A O===1B ABC1AB底面所成角的正弦值为ABC11A OAB=另解:设为空间向量的一组基底,的两两间的夹角为1,,AB AC AA1,,AB AC AA60长度均为,平面的法向量为,a ABC111133OA AA AB AC=--11AB AB AA=+21112,3OA AB a OA⋅==则与底面所成角的正弦值为1AB ABC1111OA ABA O AB⋅=二、填空题:1.(2008全国Ⅰ卷理)等边三角形与正方形有一公共边,二面角ABC ABDE AB,分别是的中点,则所成角的余C AB D--M N,AC BC,EM AN,弦值等于.611.答案:.设,作162AB=CO ABDE⊥面,,则,为二面角OH AB⊥CH AB⊥CHO∠C AB D--,结合等边三角形cos1CH OH CH CHO==⋅∠=ABC与正方形可知此四棱锥为正四棱锥,则ABDE AN EM==,11(),22AN AC AB EM AC AE=+=-11()()22AN EM AB AC AC AE⋅=+⋅-=12故所成角的余弦值EM AN,16AN EMAN EM⋅=另解:以为坐标原点,建立如图所示的直角坐标系,O则点,(1,1,0),(1,1,0),(1,1,0),A B E C----,1111(,(,2222M N ---则31131(,(,,22222AN EM AN EM AN EM ==-⋅===故所成角的余弦值.EM AN ,16AN EM AN EM ⋅= 三、解答题:1.(2008安徽文)如图,在四棱锥中,底面四边长为1的 菱形,O ABCD -ABCD , , ,为的中点。
4ABC π∠=OA ABCD ⊥、、2OA =M OA (Ⅰ)求异面直线AB 与MD 所成角的大小;(Ⅱ)求点B 到平面OCD 的距离。
1.方法一(综合法)(1)CD ‖A B ,为异面直线与所成的角(或其补角)MDC ∠∴AB MD 作连接,AP CD P ⊥、MP⊥⊥、、ABCD 、∵O A ∴C D M P ,4ADP π∠=∵∴D P=MD ==∵1cos ,23DP MDP MDC MDP MD π∠==∠=∠=∴所以 与所成角的大小为AB MD 3π(2)点A 和点B 到平面OCD 的距离相等,AB 、、∵∴‖O C D ,连接OP,过点A 作 于点Q ,AQ OP ⊥,,,AP CD OA CD CD OAP ⊥⊥⊥、、∵∴,AQ OAP AQ CD ⊂⊥、、∵∴又 ,,AQ OP AQ OCD ⊥⊥、、∵∴线段AQ 的长就是点A 到平面OCD 的距离,OP ====∵AP DP ==,所以点B 到平面OCD 的距离为23OA AP AQ OP ===A ∴23方法二(向量法)作于点P,如图,分别以AB,AP,AO AP CD ⊥轴建立坐标系(0,0,0),(1,0,0),((0,0,2),A B P D O M(1)设与所成的角为,AB MD θ(1,0,0),(1)AB MD ==- ∵ ,1cos ,23AB MD AB MD πθθ===⋅ A ∴∴与所成角的大小为∴AB MD 3π(2) 2),(2)OP OD =-=-∵设平面OCD 的法向量为,则∴(,,)n x y z =0,0n OP n OD ==A A 即 2020y z x y z -=⎪+-=⎪⎩取,解得z =(0,n =设点B 到平面OCD 的距离为,则为在向量上的投影的绝对值,d d OB(0,n =, .(1,0,2)OB =-∵23OB n d n ⋅==∴所以点B 到平面OCD 的距离为232.(2008安徽理)如图,在四棱锥中,底面四边长为1的菱形,O ABCD -ABCD , , ,为的中点,为的中点。
4ABC π∠=OA ABCD ⊥、、2OA =M OA N BC (Ⅰ)证明:直线;MN OCD 、、‖(Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离。
2. 方法一(综合法)(1)取OB 中点E ,连接ME ,NEME CD ME CD∴ 、‖A B ,A B ‖‖又,NE OC MNE OCD ∴ 、、、、‖‖MN OCD∴、、‖ (2)CD ‖A B , 为异面直线与所成的角(或MDC ∠∴AB MD 其补角)作连接,AP CD P ⊥、MP⊥⊥、、ABCD 、∵O A ∴C D M P ,4ADP π∠=∵∴D P=MD ==1cos,23DPMDP MDC MDPMDπ∠==∠=∠=∴所以与所成角的大小为AB MD3π(3)点A和点B到平面OCD的距离相等,连接OP,过点A作AB、、∵∴‖O C D,于点Q,AQ OP⊥,,,AP CD OA CD CD OAP AQ CD⊥⊥⊥⊥、、∵∴∴又,线段AQ的长就是点A到平面OCD的距离,AQ OP AQ OCD⊥⊥、、∵∴OP====∵AP DP==,所以点B到平面OCD的距离为23OA APAQOP===A∴23方法二(向量法)作于点P,如图,分别以AB,AP,AO所在直线为轴建立坐标系AP CD⊥,,x y z, (0,0,0),(1,0,0),((0,0,2),(0,0,1),(1A B P D O M N(1)(11),2),(2)MN OP OD=-=-=-设平面OCD的法向量为,则(,,)n x y z=0,n OP n=A A即2020y zx y z-=⎪+-=⎪⎩取,解得z=(0,n=(11)(0,0MN n=-=A A∵MN OCD∴、、‖(2)设与所成的角为,AB MDθ(1,0,0),(1)AB MD==-∵,与所成角的大小为1cos,23AB MDAB MDπθθ===⋅A∴∴AB MD3π(3)设点B到平面OCD的交流为,则为在向量上的投影的绝对值,d d OB(0,n=由, 得.所以点B到平面OCD的距离为(1,0,2)OB=-23OB ndn⋅==23 3.(2008北京文)如图,在三棱锥P-ABC中,AC=BC=2,∠ACB=90°,AP =BP =AB ,PC ⊥AC .(Ⅰ)求证:PC ⊥AB ;(Ⅱ)求二面角B -AP -C 的大小.3.解法一:(Ⅰ)取AB 中点D ,连结PD ,CD .∵AP =BP ,∴PD ⊥AB .∵AC =BC .∴CD ⊥AB .∵PD ∩CD =D .∴AB ⊥平面PCD .∵PC 平面PCD ,⊂∴PC ⊥AB .(Ⅱ)∵AC =BC ,AP =BP ,∴△APC ≌△BPC .又PC ⊥AC ,∴PC ⊥BC.又∠ACB=90°,即AC ⊥BC ,且AC ∩PC =C ,∴AB =BP ,∴BE ⊥AP .∵EC 是BE 在平面PAC 内的射影,∴CE ⊥AP .∴∠BEC 是二面角B -AP-C 的平面角.在△BCE 中,∠BCE =90°,BC=2,BE =,623=AB ∴sin ∠BEC =.36=BE BC ∴二面角B -AP -C 的大小为aresin.36解法二:(Ⅰ)∵AC =BC ,AP =BP ,∴△APC ≌△BPC .又PC ⊥AC .∴PC ⊥BC.∵AC ∩BC =C ,∴PC ⊥平面ABC .∵AB 平面ABC ,⊂∴PC ⊥AB .(Ⅱ)如图,以C 为原点建立空间直角坐标系C-xyz.则C (0,0,0),A (0,2,0),B (2,0,0).设P (0,0,t ),∵|PB |=|AB |=2,2∴t =2,P (0,0,2).取AP 中点E ,连结BE ,CE .∵|AC |=|PC |,|AB |=|BP |,n ga re ∴CE ⊥AP ,BE ⊥AP .∴∠BEC 是二面角B-AP -C 的平面角.∵E (0,1,1),),1,1,2(),1,1,0(--=--=EB EC ∴cos ∠.33622=⋅EBEC ∴二面角B-AP-C 的大小为arccos.334.(2008北京理)如图,在三棱锥中,,,P ABC -2AC BC ==90ACB ∠=,.AP BP AB ==PC AC ⊥(Ⅰ)求证:;PC AB ⊥(Ⅱ)求二面角的大小;B AP C --(Ⅲ)求点到平面的距离.C APB 4.解法一:(Ⅰ)取中点,连结.AB D PD CD ,,AP BP = .PD AB ∴⊥,AC BC = .CD AB ∴⊥,PD CD D = 平面.AB ∴⊥PCD 平面,PC ⊂ PCD .PC AB ∴⊥(Ⅱ),,AC BC = AP BP =.APC BPC ∴△≌△又,PC AC ⊥.PC BC ∴⊥又,即,且,90ACB ∠=AC BC ⊥AC PC C = 平面.BC ∴⊥PAC 取中点.连结.AP E BE CE ,,.AB BP = BE AP ∴⊥是在平面内的射影,EC BE PAC .CE AP ∴⊥是二面角的平面角.BEC ∴∠B AP C --在中,,,,BCE △90BCE ∠=2BC =BE AB ==.sin BC BEC BE ∴∠==二面角的大小为.∴B AP C --(Ⅲ)由(Ⅰ)知平面,AB ⊥PCD 平面平面.∴APB ⊥PCD 过作,垂足为.C CH PD ⊥H 平面平面,APB PCD PD =AC B DPA CBE PA BD PHll平面.CH∴⊥APB的长即为点到平面的距离.CH∴C APB由(Ⅰ)知,又,且,PC AB⊥PC AC⊥AB AC A=平面.PC∴⊥ABC平面,CD⊂ABC.PC CD∴⊥在中,,Rt PCD△12CD AB==PD PB==..2PC∴==PC CDCHPD∴==A点到平面∴C APB解法二:(Ⅰ),,AC BC=AP BP=.APC BPC∴△≌△又,PC AC⊥.PC BC∴⊥,AC BC C=平面.PC∴⊥ABC平面,AB⊂ABC.PC AB∴⊥(Ⅱ)如图,以为原点建立空间直角坐标系.C C xyz-则.(000)(020)(200)C A B,,,,,,,,设.(00)P t,,,PB AB==,.2t∴=(002)P,,取中点,连结.AP E BE CE,,,AC PC=AB BP=,.CE AP∴⊥BE AP⊥是二面角的平面角.BEC∴∠B AP C--,,,(011)E,,(011)EC=--,,(211)EB=--,,.cosEC EBBECEC EB∴∠===AA二面角的大小为.∴B AP C--(Ⅲ),AC BC PC==在平面内的射影为正的中心,且的长为点到平面的距C∴APB APB△H CH C APB离.如(Ⅱ)建立空间直角坐标系.C xyz-,2BH HE=点的坐标为..∴H222333⎛⎫⎪⎝⎭,,CH∴=y点到平面∴C APB 5. (2008福建文) 如图,在四棱锥中,侧面PAD ⊥底面ABCD,侧棱,底面ABCD 为直角梯形,其中BC ∥AD,AB ⊥CD,AD=2AB=2BC=2,O 为AD 中点。