初中数学初三月考考试卷全真模拟考试卷考点.doc
初中数学初三月考考试卷模拟考试卷考点.doc

初中数学初三月考考试卷模拟考试卷考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、判断题评卷人得分3.在直角三角形中,任意给出两条边的长可以求第三边的长17.计算:17.如图,海上有一灯塔P,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A点处测得灯塔P在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有触礁的危险?22.如图,在边长为1的正方形组成的网格中,⊿AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).⊿AOB绕点O逆时针旋转90°后得到⊿A1OB1。
(1)点A关于点O中心对称的点的坐标为___________;(2)画出⊿AOB绕点O逆时针旋转90°后得到⊿A1OB1,并写出点B1的坐标;(3)在旋转过程中,点B经过的路径为弧BB1,求弧BB1的长。
23.某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用代码B1、B2、B3表示)中抽取一个,再在三个上机题(题签分别用代码J1、J2、J3表示)中抽取一个进行考试.小亮在看不到题签的情况下,分别从笔试题和上机题中随机地抽取一个题签.(1)用树状图或列表法表示出所有可能的结果;(2)求小亮抽到的笔试题和上机题的题签代码的下标(例如“B1”的下标为“1”)为一个奇数一个偶数的概率.14.如图,在正方形ABCD中AC与BD交于点O,形外有一点E,使∠AED=90°,且DE=3,OE=,则AE=______________.17.计算:(-)-1+(π-)0-3tan30°+|-|19.如图,△ABC内接于⊙O,AB为直径,E为AB延长线上的点,作OD∥BC交EC的延长线于点D,连接AD.(1)求证:AD=CD;(2)若DE是⊙O的切线,CD=3,CE=2,求tanE和cos∠ABC的值.19.计算:.13.如图,AB、AC与⊙O相切于点B、C,∠A=50°,P为⊙O上异于B、C的一个动点,则∠BPC的度数为__________.14.如图,已知反比例函数(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B.若△AOB的面积为1,则k=_____.11.如图,在坡度为1:3的山坡上种树,要求株距(相邻两树间的水平距离)是6米,则斜坡上相邻两树间的坡面距离是______________米(结果保留根号).13.要使二次根式有意义,字母x必须满足的条件是________9.分解因式:ab﹣b2=_____.19.如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)求证:AC·CD=CP·BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.20.解方程和不等式组:⑴ ⑵23.如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿AC以1cm/s的速度向点C移动;同时,点Q从点C出发沿CB以2cm/s的速度向点B移动.当Q运动到B点时,P,Q停止运动.设点P运动的时间为ts.(1)CQ=______________cm,CP=______________cm;(用含t的代数式表示)(2)t为何值时,△PCQ的面积等于5cm2.25.如图,已知抛物线经过点A(-1,0)、B(3,0)、C(0,3)三点.(1)求抛物线的解析式;(2)点M是线段BC上的点(不与B、C重合),过M作MN//y轴交抛物线于N,若点M的横坐标为m,请用m 的代数式表示MN的长;(3)在(2)的条件下,是否存在m,使MN的长度最大?若存在,求m的值,幷求出此时点M和N的坐标;若不存在,说明理由.2.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK 的最小值为()A.1B.C.2D.+14.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )A.AB.BC.CD.D3.方程的根是()A.B.C.,D.,5.如图,已知D、E在△ABC的边上,DE∥BC,∠B=60°,∠AED=40°,则∠A的度数为()A. 100°B. 90°C. 80°D. 70°10.如图,△ABO中,AB⊥OB,OB=,AB=1,把△ABO绕点O旋转150°后得到△A1B1O,则点A1的坐标为A.(﹣1,)B.(﹣1,)或(﹣2,0)C.(,﹣1)或(0,﹣2)D.(,﹣1)2.一元二次方程x2﹣3x+2=“0” 的两根分别是x1、x2,则x1+x2的值是()A.3B.2C.﹣3D.﹣21.“抛一枚均匀硬币,落地后正面朝上”这一事件是( )A.必然事件B.随机事件C.确定事件D.不可能事件11.如果函数是关于x的二次函数,那么k的值是()A.1或2B.0或2C.2D.014.已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是( )A. (A)B. (B)C. (C)D. (D)5.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形。
初中数学初三中考真卷全真模拟考试卷考点.doc

初中数学初三中考真卷全真模拟考试卷考点姓名:_____________ 年级:____________ 学号:______________一、判断题2.当x与y乘积一定时,y就是x的反比例函数,x也是y的反比例函数20.射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第一次第二次第三次第四次第五次第六次平均成绩中位数甲108981099______________乙107101098______________9.5(1)完成表中填空①______________;②______________;(2)请计算甲六次测试成绩的方差;(3)若乙六次测试成绩的方差为,你认为推荐谁参加比赛更合适,请说明理由.(注:方差公式.)14.解方程:19.计算:22.为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天,在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:“限塑令”实施后,塑料购物袋使用后的处理方式统计表处理方式直接丢弃直接做垃圾袋再次购物使用其它选该项的人数占总人数的百分比5%35%49%11%请你根据以上信息解答下列问题:(1)补全图1,“限塑令”实施前,如果每天约有2 000人次到该超市购物.根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋?(2)补全图2,并根据统计图和统计表说明,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对环境保护带来积极的影响.17.计算:-(3.14-)0+(1-cos30°)×()-225.如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断与AC·CD 的大小关系;(2)求∠ABD 的度数.15.计算:.22.解方程时,我们可以将看成一个整体,设=,则原方程可化为,解得.当=1时,=1,解得x=0,当=2时,=2,解得x=1,所以原方程的解为.请利用这种方法解方程:.20.黄冈百货商店服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六•一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利1200元,那么每件童装应降价多少元?8.请你画出把下列矩形的面积两等分的直线,并且根据你所画的直线回答下列问题.⑴在一个矩形中,把此矩形面积两等分的直线最多有多少条?它们必须都经过哪个点?⑵你认为还有具有这个性质的四边形吗?如果有,请你找出来.⑶你认为具有此性质的四边形应该具有什么特征的四边形呢?24.如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.12.用适当的方法解下列方程:(1)(x+1)(x﹣2)=x+1;(2)14.如图所示,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为______________.15.已知⊙O的半径为10,弦AB∥CD,AB=12,CD=16,则AB和CD的距离为_____.10.如图,一个长方形铁皮的长是宽的2倍,四角各截去一个正方形,制成高是5cm,容积是500cm2的无盖长方体容器,那么这块铁皮的长为______________,宽为 _____.8.如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )A.B.C.D.7.如图所示,该几何体的俯视图是( )A.AB.BC.CD.D15.我们知道方程的解是,,现给出另一个方程,它的解是A.,B.,C.,D.,1.下面轴对称图形中对称轴最多的是A.矩形B.圆C.等边三角形D.正六边形6.如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C 的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间的函数关系可用图象表示为()A.B.C.D.3.如图,△ABC绕点C按顺时针旋转15°到△DEC,若点A恰好在DE上,AC⊥DE,则∠BAE的度数为()A.150B.550C.650D.7l日加工零件数45678人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6。
初中数学初三月考考试卷模拟考试卷考点_1.doc

初中数学初三月考考试卷模拟考试卷考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、计算题16.(7分)计算:.20.(8分)某学校体育看台的侧面如图中阴影部分所示,看台有四级高度相等的小台阶,已知看台高为1.6米,现要做一个不锈钢的扶手AB及两根与FG垂直且长度均为0.8米的不锈钢架杆AD和8C(杆子的底端分别为D、C),且∠DAB=66.5°(cos66.5°≈0.4).(1)求点D与点C的高度差DH;(2)求所用不锈钢材料的总长度(即AD+AB+BC的长).17.计算:.19.计算:.20.东营市某中学校团委开展“关爱残疾儿童”爱心捐书活动,全校师生踊跃捐赠各类书籍共3000本.为了了解各类书籍的分布情况,从中随机抽取了部分书籍分四类进行统计:A.艺术类;B.文学类;C.科普类;D.其他,并将统计结果绘制成如图所示的两幅不完整的统计图.评卷人得分(1)这次统计共抽取_____本书籍,扇形统计图中的m=______,∠α的度数是_____(2)请将条形统计图补充完整;(3)估计全校师生共捐赠了多少本文学类书籍.20.解方程: .21.某商店将每件进价为元的商品按每件元售出,每天可售出件,后来经过市场调查发现,这种商品每件的销售价每降低元其销售量就增加件,则应将每件降价为多少元时,才能使每天利润为元.24.如图,平行四边形ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于的一元二次方程的两个根,且OA>OB(1)求cos∠ABC的值。
(2)若E为轴上的点,且,求出点E的坐标,并判断△AOE与△DAO是否相似?请说明理由。
19.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交弧AC于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=2时,求出四边形ACDE的面积.10.如图,点M是函数y=x与y=的图象在第一象限内的交点,OM=4,则k的值为________.15.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是____.16.已知点(x1,y1)(x2,y2)(x3,y3)都在函数y=3x-7的图像上,若数据x1、x2、x3的方差为3,则另一组数据y1、y2、y3的方差为________.19.如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(3,4),C(2,2)(正方形网格中每个小正方形的边长都是1).△A1B1C1是以B为位似中心的△ABC的位似图形,且△A1B1C1与△ABC位似比为2,则点C1的坐标是_______,△A1B1C1的面积是_________.10.已知圆锥的母线长5,底面半径为3,则圆锥的侧面积为___________7.如图,一次函数y=kx+b的图象与反比例函数y=的图象在第一象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6.(1)求函数y=和y=kx+b的解析式;(2)已知直线AB与x轴相交于点C,在第一象限内,求反比例函数y=的图象上一点P,使得S△POC=9.21.某校对学生课外数阅读状况进行了一次问卷调查,并根据调查结果绘制了中学生每学期阅读课外书籍数量的统计图(不完整).设表示阅读书籍的数量(为正整数,单位:本),其中A:1≤≤2;B:3≤≤4;C:5≤≤6;D:≥7.请你根据两幅图提供的信息解答下列问题:⑴ 本次共调查了多少名学生?⑵ 补全条形统计图,并判断中位数在哪一组;⑶ 计算扇形统计图中扇形D的圆心角的度数.20.有专家指出:人为型空气污染(如汽车尾气排放等)是雾霾天气的重要成因.某校为倡议“每人少开一天车,共建绿色家园”,想了解学生上学的交通方式.九年级(8)班的5名同学联合设计了一份调查问卷.对该校部分学生进行了随机调查.按A(骑自行车)、B(乘公交车)、C(步行)、D(乘私家车)、E (其他方式)设置选项,要求被调查同学从中单选.并将调查结果绘制成条形统计图1和扇形统计图2,根据以上信息,解答下列问题:(1)本次接受调查的总人数是______________人,扇形统计图中“骑自行车”所在扇形的圆心角度数是______________度,请补全条形统计图;(2)已知这5名学生中有2名女同学,要从这5名学生中任选两名同学汇报调查结果.请用列表法或画树状图的方法,求出恰好选出1名男生和1名女生的概率.13.正方形ABCD中,点P是AD上的一动点(与点D、点A不重合),DE⊥CP,垂足为E,EF⊥BE与DC交于点F.【小题1】求证:△DEF∽△CEB;【小题2】当点P运动到DA的中点时,求证:点F为DC的中点.3.关于x的方程3x2-2x+m=0的一个根是﹣1,则m的值为().A.5B.﹣5C.1D.﹣14.如图所示,四边形ABCD内接于⊙O,F是弧CD上一点,且弧DF=弧BC,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为( )A. 45°B. 50°C. 55°D. 60°2.将抛物线y=x2-4x-4向左平移3个单位,再向上平移5个单位,得到抛物线的表达式为()A.y=(x+1)2-13B.y=(x-5)2-3C.y=(x-5)2-13D.y=(x+1)2-312.如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是()A.①③B.②③C.②④D.②③④4.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠BOD等于()A.20°B.30°C.40°D.60°4.读大学的小慧准备网购一双鞋子,在登录支付宝的时候忘记了自己的密码,她只记得密码的前五位,后三位由5,1,2这三个数字组成,但具体顺序忘记了,她第一次就输入正确密码的概率是( )A.B.C.D.13.如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为( )A.πB.2πC.D.4π1.抛物线y=-x2的图象一定经过( )A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限12.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为()A.B.C.D.1.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9B.(x﹣2)2=9C.(x+2)2=1D.(x﹣2)2=1。
初中数学初三月考考试卷模拟考试题考点.doc

初中数学初三月考考试卷模拟考试题考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、计算题17.解方程:20.如图,在平面直角坐标系xOy中,一次函数y=3x+2的图象与y轴交于点A,与反比例函数y=(k≠0)在第一象限内的图象交于点B,且点B的横坐标为1.过点A作AC⊥y轴交反比例函数y=(k≠0)的图象于点C,连接BC.(1)求反比例函数的表达式.(2)求△ABC的面积.22.小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是______________.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)16.(1)计算:(3﹣π)0﹣2﹣2+2sin30°;(2)计算:.18.画出下面立体图的三视图评卷人得分20.已知:如图,在△ABC中,AB=AC=13,BC=24,点P、D分别在边BC、AC上,AP2=AD•AB,(1)∽;(2)求∠APD的正弦值.19.(1)请用树状图列举出三次传球的所有可能情况;(2)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?16.先化简,然后从的范围内选一个合适的整数作为的值代入求值。
16.计算(1)(2)18.《孙子算经》是我国古代重要的数学著作,成书于约一千五百年前,其中有道歌谣算题:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问杆长几何?”歌谣的意思是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五,同时立一根一尺五的小标杆,它的影长五寸(提示:仗和尺是古代的长度单位,1丈=10尺,1尺=10寸),可以求出竹竿的长为________尺.9.一组数据85,80,x,90,它的平均数是85,x的值是_____ .16.如图,AC与AB切⊙O于C、B两点,过BC弧上一点D作⊙O切线交AC于E,交AB于F,若EF⊥AB,AE=5,EF=4,则BF =___________.4.关于x的一元二次方程(a-1)x2+(2a+1)x+a=0有两个不相等的实数根,则a的取值范围是___ 9.如图,将一块三角板和半圆形量角器按图中方式叠放,三角板一边与量角器的零刻度线所在直线重合,重叠部分的量角器弧()对应的圆心角(∠AOB)为120°,OC的长为2cm,则三角板和量角器重叠部分的面积为______________.10.如图所示的四个图形为两个圆或相似的正多边形,其中是位似图形的个数为( )A.1个B.2个C.3个D.4个1.方程的二次项系数和一次项系数分别为( )A.3和4B.3和-4C.3和-1D.3和15.下列各组线段的长度成比例的是()A.6cm、2cm、1cm、4cmB.4cm、5cm、6cm、7cmC.3cm、4cm、5cm、6cmD.6cm、3cm、8cm、4cm3.若是关于的一元二次方程的一个根,则的值是()A.B.C.D.无法确定10.下列运算正确的是()A.2a5﹣3a5=a5B.a2•a3=a6C.a7÷a5=a2D.(a2b)3=a5b36.估计+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间4.已知△ABC∽△A′B′C′且,则S△A′B′C′∶S△ABC为( )A.1∶2B.2∶1C.1∶4D.4∶12.如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,点A在边B′C上,则∠B′的大小为()A.42°B.48°C.52°D.58°4.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E 处,点B落在点D处,则B、D两点间的距离为()A. B.2 C.3 D.210..已知一个多边形的内角和是900°,则这个多边形是( )A.五边形B.六边形C.七边形D.八边形22.已知,如图,点B、C、D在⊙O上,四边形OCBD是平行四边形.(1)求证:;(2)若⊙O的半径为2,求的长.23.如图,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.已知:AB, CD【小题1】求作此残片所在的圆(不写作法,保留作图痕迹)【小题2】求(1)中所作圆的半径7.如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物是否需要挪走,并说明理由.21.一个不透明的口袋中装有4个完全相同的小球,分别标有数字1、2、3、4,另有一个可以自由旋转的圆盘.被分成面积相等的3个扇形区,分别标有数字1、2、3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.(1)用树状图或列表法求出小颖参加比赛的概率;(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.。
初中数学初三月考考试卷模拟考试卷考点.doc

初中数学初三月考考试卷模拟考试卷考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、判断题17.在同一平面内,到三角形三边所在直线距离相等的点只有一个19.(1)计算:.(2)先化简,再求值:,其中m是二次函数顶点的纵坐标.21.如图,AD∥BC,∠BAD=90°,以点B为圆心,BC长为半径画弧,与射线AD相交于点E,连接BE,过C 点作CF⊥BE,垂足为F.线段BF与图中现有的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明.结论:BF=______.15.已知,求的值.18.先化简,再求值:(﹣)÷,在﹣2,0,1,2四个数中选一个合适的代入求值.25.已知四边形ABCD中,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC (或它们的延长线)于E,F.当∠MBN绕B点旋转到AE=CF时(如图1),易证AE+CF=EF;当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需证明.评卷人得分19.计算:19.计算:(1)(﹣2)2﹣+(﹣3)0(2)4(x2+2)﹣4(x+1)(x﹣1)19.解方程(1)x2+3=3(x+1);(2)x2+3x-4=0.24.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣3,m+8),B(n,﹣6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.5.如图,抛物线经过A(-1,0),B(5,0),C(0,-) 三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.20.如图,直线l经过点A(0,-1),且与双曲线y=交于点B(2,1).(1)求双曲线及直线 l的解析式;(2)已知P(a-1,a)在双曲线上,求P点的坐标.7.篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的取值范围.11.如图,Rt△ABC中,∠ACB=90°,AC=BC=,若把Rt△ABC绕边AB所在直线旋转一周,则所得几何体的表面积为________(结果保留π).12.正五边形的有______条对称轴,每一个内角是________°.10.一个袋中有3个红球和若干个白球,这些球除颜色外,形状、大小、质地完全相同,在看不到的条件下,随机摸出一个红球的概率是,则袋中有______________个白球.17.甲、乙两车在依次连通A、B、C三地的公路上行驶,甲车从B地出发匀速向C地行驶,同时乙车人B地出发匀速向A地行驶,到达A地并在A地停留1小时后,调头按原速向C地行驶.在两车行驶的过程中,甲、乙两车与B地的距离y(千米)与行驶时间x(小时)之间的函数图象如图所示,当甲、乙两车相遇时,所用时间为_____小时.8.如图,边长为2的正方形ABCD的中心在直角坐标系的原点O,AD∥x轴,以O为顶点且过A、D两点的抛物线与以O为顶点且过B、C两点的抛物线将正方形分割成几部分,则图中阴影部分的面积是_______9.如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )A.B.C.D.5.如图,直线,被直线所截,,,若,则∠1等于()A.80°B.70°C.60°D.50°2.一元二次方程x2-x+4=“0” 的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根1.下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C.D.2.大自然中存在很多对称现象,下列植物叶子的图案中既是轴对称,又是中心对称图形的是()A.B.C.D.10.如图,▱ABCD的边长为8,面积为32,四个全等的小平行四边形对称中心分别在▱ABCD的顶点上,它们的各边与▱ABCD的各边分别平行,且与▱ABCD相似.若小平行四边形的一边长为x,且0<x≤8,阴影部分的面积的和为y,则y与x之间的函数关系的大致图象是()A.B.C.D.9.如图,在Rt△ACB中,∠ACB=90°,∠A=35°,将△ABC绕点C逆时针旋转α角到△A1B1C的位置,A1B1恰好经过点B,则旋转角α的度数等()A.35°B.55°C.65°D.70°2.已知反比例函数,下列结论中,不正确的是()A.图象必经过点(1,2)B.随的增大而减少C.图象在第一、三象限内D.若>1,则<24.在同一直角坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.38.在平面直角坐标系中,将抛物线y=x2向右平移4个单位长度,则得到的抛物线表达式为( ) A.y=(x+4)2B.y=x2+4C.y=(x-4)2D.y=x2-4。
初中数学初三月考考试卷全真模拟考试卷考点.doc

初中数学初三月考考试卷全真模拟考试卷考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、计算题评卷人得分17.计算:18.计算:19.(2015秋•盐城校级月考)(1)解方程:x2+4x﹣1=0(2)计算:6tan230°﹣sin60°﹣sin45°.19.计算:.21.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(-1,0),B点坐标为(5,0)点C(0,5),M为它的顶点.(1)求抛物线的解析式;(2)求△MAB的面积。
19.计算:-tan60°+4sin30°×cos245°27.△ABC中,AB=5,AC=4,BC=6.(1)如图1,若AD是∠BAC的平分线,DE∥AB,求CE的长与的比值;(2)如图2,将边AC折叠,使得AC在AB边上,折痕为AM,再将边MB折叠,使得MB′与MC′重合,折痕为MN,求AN的长.18.计算下列各式的值:(1)(2),17.计算:(-)-1+tan30°-sin245°+(2 016-cos60°)0.13.在半径为5cm的⊙O中,45°的圆心角所对的弧长为______________cm.17.如图,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转与△CBP’重合,若PB = 3,则PP’ =_________13.一元二次方程的解为_____.29.如图,在平面直角坐标系xOy中,点A,B,C分别为坐标轴上的三个点,且OA=1,OB=3,OC=4,则经过A,B,C三点的抛物线的表达式为________.15.如图是一个拦水大坝的横断面图,AD∥BC,如果背水坡AB的坡度为1:,则坡角∠B=______________.24.某市建设地铁2号线,有一项工程原计划由甲工程队独立完成需要20天.在甲工程队施工4天后,为了加快工程进度,又调来乙工程队与甲工程队共同施工,结果比原计划提前10天完成任务.求:⑴ 乙工程队独立完成这项工程需要的时间;⑵ 甲、乙两工程队分别完成这项工程工作量的比.24.某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件.如果降价后商场销售这批衬衫每天盈利1250元,那么衬衫的单价降了多少元?26.为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000m2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为(m2),种草所需费用1(元)与(m2)的函数关系式为,其图象如图所示:栽花所需费用2(元)与x(m2)的函数关系式为2=﹣0.012﹣20+30000(0≤≤1000).(1)请直接写出k1、k2和b的值;(2)设这块1000m2空地的绿化总费用为W(元),请利用W与的函数关系式,求出绿化总费用W的最大值;(3)若种草部分的面积不少于700m2,栽花部分的面积不少于100m2,请求出绿化总费用W的最小值.17.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1 、B1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中线段CC2所扫过的面积(结果保留根号和π).5.在平面直角坐标系中,⊙P的圆心坐标为(4,8),半径为5,那么x轴与⊙P的位置关系是()A.相交B.相离C.相切D.以上都不是3.2015年我市全年房地产投资约为317亿元,这个数据用科学l3.已知一组数据:15,13,15,16,17,16,14,15,则极差与众数分别是()A.4,15B.3,15C.4,16D.3,165.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是()A.1个B.2个C.3个D.4个3.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为【】.A.y=3(x+2)2—1B.y=3(x-2)2+1C.y=3(x-2)2—1D.y=3(x+2)2+l10.如图,▱ABCD的边长为8,面积为32,四个全等的小平行四边形对称中心分别在▱ABCD的顶点上,它们的各边与▱ABCD的各边分别平行,且与▱ABCD相似.若小平行四边形的一边长为x,且0<x≤8,阴影部分的面积的和为y,则y与x之间的函数关系的大致图象是()A.B.C.D.6.如图,市政府准备修建一座高AB=6m的过街天桥,已知天桥的坡面AC与地面BC的夹角∠ACB的正弦值为,则坡面AC的长度为()m.A.10B.8C.6D.65.如图,在等腰Rt△ABC中,∠C=90o,AC=6,D是AC上一点,若tan∠DBC=,则AD的长为( )A.2B.4C.D.。
初中数学初三月考考试卷测试考试题考点.doc

初中数学初三月考考试卷测试考试题考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、判断题评卷人得分19.等腰三角形底边中点到两腰的距离相等20.如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m ),B(-3,﹣2)两点.(1)求m的值;(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1>y2,求实数p的取值范围.19.抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点.(1)求出m的值和抛物线与x轴的交点。
(2)x取什么值时,y的值随x的增大而减小?(3)x取什么值时,y>0?22.平行四边形ABCD的对角线AC和BD交于O点,分别过顶点B,C作两对角线的平行线交于点E,得平行四边形OBEC.(1)如果四边形ABCD为矩形(如图),四边形OBEC为何种四边形?请证明你的结论;(2)当四边形ABCD是______________形时,四边形OBEC是正方形23.一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆成如下右图形式,使点B、F、C、D在同一条直线上.(1)求证AB⊥ED;(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明.17.(8分)计算:2sin 300+(-1)2-.17.(本题满分6分)计算19.(1);(2)化简:.18.计算:.12.如图,矩形OABC的顶点A、C的坐标分别是(4,0)和(0,2),反比例函数y= (x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为________.6.已知一个斜坡的坡度i=1∶,那么该斜坡的坡角的度数是________.11.正六边形的每个外角是______度.17.分解因式:a3b﹣9ab= .10.计算:2(x﹣y)+3y=_____.15.如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求点C的坐标,并结合图象写出不等式组0<x+m≤的解集.26.(1)在图①中,已知点A、B和直线l1,在直线l1上作点P,使得∠APB=90°;(2)在图②中,已知点C、D和直线l2,在直线l2上作点Q,使得∠CQD=45°.(用直尺和圆规作图,保留作图痕迹,不写作法)7.(1)四年一度的国际数学家大会于2002年8月20日在北京召开,大会会标如图8,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5,求中间小正方形的面积.(2)现有一张长为6.5cm,宽为2cm的纸片,如图9,请你将它分割成6块,再拼合成一个正方形.(要求:先在图9中画出分割线,再画出拼成的正方形并标明相应数据)5.解方程:(1)x2+4x﹣1=0;(2)x2﹣2x=4.(用配方法)13.关于x的一元二次方程 kx2+2x-1=0有两个不相等实数根,则k取值范围是()A.B.C.D.且7.如图,正比例函数的图象与反比例函数的图象相交于A,B两点,其中点A的横坐标为2,当时,x的取值范围是()A.x<﹣2或x>2B.x<﹣2或0<x<2C.﹣2<x<0或0<x<﹣2D.﹣2<x<0或x>25.(2016·兰州中考)点P1(-1,y1),P2(3,y2),P3(5,y3)均在二次函数y=-x2+2x+c的图象上,则y1,y2,y3的大小关系是( )A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y32.下列函数是二次函数的是( )A.y=2x-3B.y=x-1+1C.y=x2D.y=+13.已知⊙O的面积为9π cm2,若点O到直线l的距离为π cm,则直线l与⊙O的位置关系是( ) A.相交B.相切C.相离D.无法确定14.甲、乙两人分别从A、B两地同时出发,相向而行,匀速前往B地、A地,两人相遇时停留了4min,又各自按原速前往目的地,甲、乙两人之间的距离y(m)与甲所用时间x(min)之间的函数关系如图所示.有下列说法:①A、B之间的距离为1200m;②乙行走的速度是甲的1.5倍;③ b=“960;” ④ a=34.以上结论正确的有()A.①②B.①②③C.①③④D.①②④2.在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的( )A.平均数B.众数C.中位数D.方差4.如图,lC.3D.2。
初中数学广西初三月考考试卷模拟考题考试卷考点.doc

初中数学广西初三月考考试卷模拟考题考试卷考点姓名:_____________ 年级:____________ 学号:______________题型选择题填空题解答题判断题计算题附加题总分得分一、判断题2.锐角三角形的外心在三角形的内部.( )24.如图,在边长为4的正方形ABCD中,动点E以每秒1个单位长度的速度从点A开始沿边AB向点B运动,动点F以每秒2个单位长度的速度从点B开始沿折线BC﹣CD向点D运动,动点E比动点F先出发1秒,其中一个动点到达终点时,另一个动点也随之停止运动,设点F的运动时间为t秒.(1)点F在边BC上.①如图1,连接DE,AF,若DE⊥AF,求t的值;②如图2,连结EF,DF,当t为何值时,△EBF与△DCF相似?(2)如图3,若点G是边AD的中点,BG,EF相交于点O,试探究:是否存在在某一时刻t,使得?若存在,求出t的值;若不存在,请说明理由.25.如图,抛物线的顶点坐标为C(0,8),并且经过A(8,0),点P是抛物线上点A,C间的一个动点(含端点),过点P作直线y=8的垂线,垂足为点F,点D,E的坐标分别为(0,6),(4,0),连接PD,PE,DE.(1)求抛物线的解析式;(2)猜想并探究:对于任意一点P,PD与PF的差是否为固定值,如果是,请求出此定值,如果不是,请说明理由;(3)求:①当△PDE的周长最小时的点P坐标;②使△PDE的面积为整数的点P的个数.19.(1)解方程:x2+4x﹣1=0.(2)计算:﹣(﹣1)0+()﹣2﹣4sin45°.评卷人得分21.(8分)如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1)。
(1)以O点为位似中心在y轴的左侧将△OBC放大到两倍画出图形。
(2)写出B、C两点的对应点B´、C´的坐标;(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M´的坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学初三月考考试卷全真模拟考试卷考点
姓名:_____________ 年级:____________ 学号:______________
题型选择题填空题解答题判断题计算题附加题总分
得分
一、计算题
评卷人得分
17.(7分)计算:.
19.一条长为64cm的铁丝被剪成两段,每段均折成正方形(不计接头),若两个正方形的面积和等于160cm2,求两个正方形的边长分别是多少?
21.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球,(除颜色外其余都相同),其中白球有两个,黄球有1个,现从中任意摸出一个球是白球的概率为.
(1)试求袋中蓝球的个数;
(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法表示两次摸到球的所有可能结果,并求两次摸到的球都是白球的概率.
17.计算:(﹣1)2016+|1﹣|﹣2cos45°.
24.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于点
A(﹣2,1),点B(1,n).
(1)求此一次函数和反比例函数的解析式;
(2)请直接写出满足不等式kx+b﹣<0的解集;
(3)在平面直角坐标系的第二象限内边长为1的正方形EFDG的边均平行于坐标轴,若点E(﹣a,a),如
图,当曲线y=(x<0)与此正方形的边有交点时,求a的取值范围.
22.某地区2014年投入教育经费2500万元,2016年投入教育经费3025万元.
(1)求2014年至2016年该地区投入教育经费的年平均增长率;
(2)根据(1)所得的年平均增长率,预计2017年该地区将投入教育经费多少万元.
19.如图,已知点E、C在线段BF上,且BE=CF,CM∥DF,
(1)作图:在BC上方作射线BN,使∠CBN=∠1,交CM的延长线于点A(用尺规作图法,保留作图痕迹,不写作法);
(2)在(1)的条件下,求证:AC=DF.
19.如图,AB//ED,已知AC=BE,且点B、C、D三点共线,若,求证:BC=
DE.
20.所谓气质,是指婴儿出生后最早表示出来的以一种较为明显而稳定的人格特征类型,也指孩子对身体内在或外来刺激反应的方式。
心理学界常将气质分为四大类:胆汁型、多血质、黏液质、抑郁质。
我校心理协会为了更好的了解学生,在高中随机发放了若干份问卷调查,并将统计结果绘制成如下图表:
四种气质类型人数频数分布表
黏液质气质各年级人数频数分布直方图
气质类型
频数
频率
胆汁型
180
a
多血质
140
0.28
黏液质
80
0.16
抑郁质
b
0.20
根据以上信息完成下列问题并补全频数分布直方图:
(1)_______,_______
(2)请你估计一下,高三年级1200名学生中,胆汁型和多血质的共有多少人?
四、解答题(本大题4个小题,每小题10分,共40分)
14.已知m,n是方程x2+2x–5 = 0的两个实数根,则m2–mn+3m+n=______________.
14.已知m,n是方程x2+2x–5 = 0的两个实数根,则m2–mn+3m+n=______________.
16.如图,在Rt△ABC中,AC=8,BC=6,直线l经过点C,且l∥AB,P为l上一个动点,若△ABC与△PAC 相似,则PC=______________.
2.如图所示几何体的主视图是( )
A.A
B.B
C.C
D.D
8.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于
()
A.
B.
C.
D.
2.已知|a|=5,=3,且ab>0,则a+b的值为()
A.8
B.﹣2
C.8或﹣8
D.2或﹣2
3.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为【】.
A.y=3(x+2)2—1
B.y=3(x-2)2+1
C.y=3(x-2)2—1
D.y=3(x+2)2+l
1.在半径为4cm的圆中,挖去一个半径为xcm 的圆面,剩下一个圆环的面积为ycm2,则y与x的函数关系式为( )
A.y=x2-4
B.y=(2-x)2
C.y=-(x2+4)
D.y=-x2+16
4.如图,一个小球由地面沿着坡度i=1∶2的坡面向上前进了10 m,此时小球距离地面的高度为( ).
A.5m
B.m
C.4m
D.2m
9.身高相同的三个小朋友甲、乙、丙放风筝,他们放出的线长分别为300m,250 m,200m;线与地面所成的角度分别为30°,45°,60°(假设风筝线是拉直的),则三人所放的风筝()
A.甲的最高
B.乙的最低
C.丙的最低
D.乙的最高
9.如图,点A、B、C、D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C、D、E为顶点的三角形与△ABC相似,则点E的坐标不可能是()
A.(4,2) B.(6,0) C.(6,3) D.(6,5)
4.如图,直线,直线AC分别交于点A,B,C,直线DF分别交于点D,E,F,AC与DF相交于点G,且AG=2,GB=1,BC=5,则的值为()
A.
B.2
C.
D.
2.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是().
A.x2-8x+(-4)2=31
B.x2-8x+(-4)2=1
C.x2+8x+42=1
D.x2-4x+4=-11
16.某数学课外活动小组在做气体压强实验时,获得压强p(Pa)与体积V(cm3)之间有下列对应数据:
p(Pa)
…
1
2
3
4
5
…
V(cm3)
…
6
3
2
1.5
1.2
…
根据表中提供的信息,回答下列问题:
(1)猜想p与V之间的关系,并求出函数关系式;
(2)当气体的体积是12cm3时,压强是多少?
28.在平面直角坐标系xOy中,给出如下定义:
对于⊙C及⊙C外一点P,M,N是⊙C上两点,当∠MP N最大,称∠MPN为点P关于⊙C的“视角”.直线l 与⊙C相离,点Q在直线l上运动,当点Q关于⊙C的“视角”最大时,则称这个最大的“视角”为直线l 关于⊙C的“视角”.
(1)如图,⊙O的半径为1,
①已知点A(1,1),直接写出点A关于⊙O的“视角”;已知直线y = 2,直接写出直线y = 2关于⊙O 的“视角”;
②若点B关于⊙O的“视角”为60°,直接写出一个符合条件的B点坐标;
(2)⊙C的半径为1,
①C的坐标为(1,2),直线l: y=kx + b(k > 0)经过点D(,0),若直线l关于⊙C的“视角”为60°,求k的值;
②圆心C在x轴正半轴上运动,若直线y =x +关于⊙C的“视角”大于120°,直接写出圆心C的横坐
标xC的取值范围.
21.如图,抛物线的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D.
(1)求此抛物线的解析式.
(2)求此抛物线顶点D的坐标和对称轴.
(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.
12.用适当的方法解下列方程:
(1)(x+1)(x﹣2)=x+1;
(2)。