精品 高一数学必修一复习同步练习题

合集下载

人教版高中数学必修1同步章节训练题及答案全册汇编

人教版高中数学必修1同步章节训练题及答案全册汇编

高中数学必修1全册同步练习题目录1.1.1集合的含义与表示同步练习1.1.2集合间的基本关系同步练习1.1.3集合的基本运算同步练习1.2.1函数的概念同步练习1.3.1单调性与最大(小)值同步练习1.3.2奇偶性同步练习2.0基本初等函数同步练习2.1.1指数与指数幂的运算同步练习2.1.2指数函数及其性质同步练习2.2.1对数与对数的运算同步练习2.3幂函数同步练习3.1.1方程的根与函数的零点同步练习3.1.2用二分法求方程的近似解同步练习3.2.1几类不同增长的函数模型同步练习3.2.2函数模型的应用实例同步练习1.1.1集合的含义与表示 同步练习一、选择题1、给出下列表述:1)联合国常任理事国2的实数的全体;3)方程210x x +-= 的实数根4)全国著名的高等院校。

以上能构成集合的是( )A 、1)3)B 、1)2)C 、1)3)4)D 、1)2)3)4)2、集合{21,1,2x x --}中的x 不能取得值是( ) A 、2 B 、3 C 、4 D 、53、下列集合中表示同一集合的是( ) A 、{(3,2)},{(2,3)}M N == B 、{1,2},{(1,2)}M N ==C 、{(,)|1},{|1}M x y x y N y x y =+==+=D 、{3,2},{2,3}M N ==4、下列语句:(1)0与{0}表示同一个集合(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程0)2()1(22=--x x 的所有解的集合可表示为{1,1,2};(4)集合}54{<<x x 是有限集,正确的是( )A 、只有(1)和(4)B 、只有(2)和(3)C 、只有(2)D 、以上语句都不对5、如果3x y ==+,集合{|,}M m m a a b Q ==+∈,则有( )A 、x M y M ∈∈且B 、x M y M ∉∈且C 、x M y M ∈∉且D 、x M y M ∉∉且 6、集合A={xZk k x ∈=,2} B={Zk k x x ∈+=,12} C={Zk k x x ∈+=,14}又,,B b A a ∈∈则有( )A 、(a+b )∈ AB 、(a+b) ∈BC 、(a+b) ∈ CD 、 (a+b) ∈ A 、B 、C 任一个 7、下列各式中,正确的是( ) A 、-2{2}x x ∈≤ B 、{12<>x x x 且}C 、{Z k k x x ∈±=,14}},12{Z k k x x ∈+=≠ D 、{Zk k x x ∈+=,13}={Zk k x x ∈-=,23}二、填空题8、由小于10的所有质数组成的集合是 。

人教A版高一数学必修第一册全册复习训练题卷含答案解析(31)

人教A版高一数学必修第一册全册复习训练题卷含答案解析(31)

人教A 版高一数学必修第一册全册复习训练题卷(共30题)一、选择题(共10题)1. 已知函数 f (x )=3cos (ωx +φ)(ω>0,−π<φ<0),其图象的相邻两条对称轴间的距离为 π2,且满足 f (−π3+x)=f (−π3−x),则 f (x ) 的解析式为 ( ) A . 3cos (2x −2π3) B . 3cos (2x −π3) C . 3cos (12x −2π3) D . 3cos (12x −π3)2. 设集合 A ={x∣ x 2−4≤0},B ={x∣ 2x +a ≤0},且 A ∩B ={x∣ −2≤x ≤1},则 a 等于 ( ) A . −4B . −2C . 2D . 43. 已知定义在 R 上的函数 f (x ),当 x >−1 时,f (x )={2x +1,−1<x ≤0∣lnx ∣,x >0,且 f (x −1) 为奇函数,若方程 f (x )=kx +k (k ∈R ) 的根为 x 1 x 2,⋯,x n ,则 x 1+x 2+⋯+x n 的所有的取值为 ( ) A . −6 或 −4 或 −2 B . −7 或 −5 或 −3 C . −8 或 −6 或 −4 或 −2 D . −9 或 −7 或 −5 或 −34. 已知函数 f (x )={sinπx,0≤x ≤1log 2014x,x >1,若 a ,b ,c 互补相等,且 f (a )=f (b )=f (c ),则a +b +c 的取值范围是 ( ) A . (1,2014) B . [1,2014] C . (2,2015) D . [2,2015]5. 已知 cos (508∘−α)=1213,则 cos (212∘+α) 等于 ( ) A . −1213B .1213C . −513D .5136. q 是 p 的充要条件的是 ( ) A . p :3x +2>5;q :−2x −3>−5 B . p :a >2,b >2;q :a >bC . p :四边形的两条对角线互相垂直平分;q :四边形是正方形D . p :a ≠0;q :关于 x 的方程 ax =1 有唯一解7.已知偶函数f(x)满足f(4+x)=f(4−x)且f(0)=0,当x∈(0,4]时,f(x)=ln(2x)x,关于x的不等式[f(x)]2+a⋅f(x)>0在[−200,200]上有且只有200个整数解,则实数a的取值范围为( )A.(−13ln6,ln2]B.(−ln2,−13ln6)C.(−13ln6,ln2)D.(−ln2,−13ln6]8.已知映射f:A→B,其中集合A={−2,−1,0,1,2,3},集合B中的元素都是A中元素在映射f下的象,且对任意的a∈A,在集合B中和它对应的元素为∣a∣,则集合B的子集个数是( )A.4B.16C.32D.89.函数f(x)=ln(x2+1)的图象大致是( )A.B.C.D.10.定义函数序列:f1(x)=f(x)=x1−x,f2(x)=f(f1(x)),f3(x)=f(f2(x)),⋯,f n(x)=f(f n−1(x)),则函数y=f2019(x)与y=1x−2019的图象的交点坐标为( )A.(−1,−12020)B.(0,−12019)C.(1,−12018)D.(2,−12017)二、填空题(共10题)11.已知函数f(x)=∣∣∣log2∣∣x−2x ∣∣∣∣∣−a(a>0),其所有的零点依次记为x1,x2,⋯,x i(i∈N∗),则x1⋅x2⋯x i=.12.若关于x的不等式ax2−2x+3>0的解集为{x∣ −3<x<1},则实数a=.13.已知函数f(x)=x2+2x−3的单调减区间为[−2,−1],单调增区间为(−1,4],则f(x)的值域是.14.设f(x)=lgx,若f(1−a)−f(a)>0,则实数a的取值范围是.15.已知log147=a,log145=b,则用a,b表示log3528=.16.对于任意的实数x∈[1,e],总存在三个不同的实数m∈[−1,4],使得m2xe1−m−ax−lnx=0成立,则实数a的取值范围为.17.满足不等式∣x−A∣<B(B>0,A∈R)的实数x的集合叫做A的B邻域,若a+b−2的a+b邻域是一个关于原点对称的区间,则1a +4b的取值范围是.18.设函数f(x)=3x+9x,则f(log32)=.19.设a,b∈R,集合A={1,a},B={x∣ x(x−a)(x−b)=0},若A=B,则a=,b=.20.设A是整数集的一个非空子集,对于k∈A,如果k−1∉A且k+1∉A,那么k是A的一个“单独元”.给定A={1,2,3,4,5},则A的所有子集中,只有一个“单独元”的集合共有个.三、解答题(共10题)21.已知函数f(x)=3sin(2x+π4).(1) 求f(x)的最小值及此时自变量x的取值集合;(2) 求函数f(x)在R上的单调递增区间.22.设ω>0,若函数y=sin(ωx+π3)+2的图象向右平移4π3个单位长度后与原图象重合,求ω的最小值.23.已知函数f(x)=−x2+2bx+c,设函数g(x)=∣f(x)∣在区间[−1,1]上的最大值为M.(1) 若b=2,试求出M;(2) 若M≥k对任意的b,c恒成立,试求k的最大值.24.已知tan(α+π4)=12,且−π2<α<0,求2sin2α+sin2αcos(α−π4)的值.25.已知函数f(x)=−x2+8x,g(x)=6lnx+m.(1) 求f(x)在区间[t,t+1]上的最大值ℎ(t);(2) 是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点?若存在,求出m的取值范围;若不存在,说明理由.26.已知sin(α+30∘)=1213,且60∘<α<90∘,求sinα的值.27.已知数集A={a1,a2,⋯,a n}(1≤a1<a2<⋯a n,n≥2)具有性质P;对任意的i,j(1≤i≤j≤n),a i a j与a ja i两数中至少有一个属于A.(1) 分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由;(2) 证明:a1=1,且a1+a2+⋯+a na1−1+a2−1+⋯+a n−1=a n;(3) 证明:当n=5时,a5a4=a4a3=a3a2=a2a1.28.已知函数f(x)=sin2x−cos2x−2√3sinxcosx(x∈R).(1) 求f(2π3)的值;(2) 求f(x)的最小正周期及单调递增区间.29.作出下列函数的图象:(1) f(x)=1−x(x∈Z且−2≤x≤2).(2) y=x2−2x(x∈[0,3)).30.设a,b均为实数,求证:a2+b2+10≥2a+6b,并指出等号成立的条件.答案一、选择题(共10题) 1. 【答案】B【解析】由其图象的相邻两条对称轴间的距离为 π2,可得函数的最小正周期 T =2⋅π2=π, 而 T =2πω,所以 ω=2,所以 f (x )=3cos (2x +φ), 又因为 f (−π3+x)=f (−π3−x), 所以对称性 x =−π3,所以 2⋅(−π3)+φ=kπ,k ∈Z ,−π<φ<0, 所以 φ=−π3,所以 f (x )=3cos (2x −π3), 故选:B .【知识点】Asin(ωx+ψ)形式函数的性质2. 【答案】B【知识点】交、并、补集运算3. 【答案】D【知识点】函数的零点分布4. 【答案】C【解析】当 0≤x ≤1 时,函数 f (x )=sinπx 的对称轴为 x =12,当 f (x )=1 时,由 log 2014x =1,解得 x =2014, 若 a ,b ,c 互不相等,不妨设 a <b <c , 因为 f (a )=f (b )=f (c ),所以由图象可知 0<a <12,12<b <1,1<c <2014, 且a+b 2=12,即 a +b =1,所以 a +b +c =1+c ,因为 1<c <2014, 所以 2<1+c <2014, 即 2<a +b +c <2015,所以 a +b +c 的取值范围是 (2,2015).【知识点】函数的零点分布5. 【答案】B【知识点】诱导公式6. 【答案】D【解析】由 3x +2>5 得 x >1,由 −2x −3>−5 得 x <1,故A 不符合题意;显然B 不符合题意;正方形的对角线互相垂直平分,但是对角线互相垂直平分的四边形不一定是正方形,可以是菱形,故C 不符合题意.故选D . 【知识点】充分条件与必要条件7. 【答案】D【解析】当 0<x ≤4 时,fʹ(x )=1−ln2x x 2,令 fʹ(x )=0 得 x =e2,所以 f (x ) 在 (0,e2) 上单调递增,在 (e2,4) 上单调递减, 因为 f (x ) 是偶函数,所以 f (x +4)=f (4−x )=f (x −4), 所以 f (x ) 的周期为 8,因为 f (x ) 是偶函数,且不等式 f 2(x )+af (x )>0 在 [−200,200] 上有且只有 200 个整数解, 所以不等式在 (0,200) 内有 100 个整数解, 因为 f (x ) 在 (0,200) 内有 25 个周期, 所以 f (x ) 在一个周期 (0,8) 内有 4 个整数解,①若 a >0,由 f 2(x )+af (x )>0,可得 f (x )>0 或 f (x )<−a , 显然 f (x )>0 在一个周期 (0,8) 内有 7 个整数解,不符合题意; ②若 a <0,由 f 2(x )+af (x )>0,可得 f (x )<0 或 f (x )>−a , 显然 f (x )<0 在区间 (0,8) 上无解,所以 f (x )>−a 在 (0,8) 上有 4 个整数解, 因为 f (x ) 在 (0,8) 上关于直线 x =4 对称, 所以 f (x ) 在 (0,4) 上有 2 个整数解, 因为 f (1)=ln2,f (2)=ln42=ln2,f (3)=ln63,所以 f (x )>−a 在 (0,4) 上的整数解为 x =1,x =2. 所以ln63≤−a <ln2,解得 −ln2<a ≤−ln63.【知识点】函数的奇偶性、函数的周期性、函数的零点分布、函数的单调性8. 【答案】B【解析】由题意可得 B ={0,1,2,3},集合 B 中有 4 个元素,因此,集合 B 的子集个数为 24=16.【知识点】n 元集合的子集个数9. 【答案】A【解析】 f (x )=ln (x 2+1),x ∈R ,当 x =0 时,f (0)=ln1=0,即 f (x ) 过点 (0,0),排除B ,D .因为 f (−x )=ln [(−x )2+1]=ln (x 2+1)=f (x ), 所以 f (x ) 是偶函数,其图象关于 y 轴对称. 【知识点】对数函数及其性质、函数图象10. 【答案】A【解析】因为 f 1(x )=f (x )=x1−x , f 2(x )=f(f 1(x ))=x 1−x1−x 1−x=x1−2x ,f 3(x )=f(f 2(x ))=x1−3x , ⋯⋯f n (x )=f(f n−1(x ))=x1−nx , 所以函数 y =f 2019(x )=x 1−2019x .令 x1−2019x =1x−2019,解得 x =1(舍去)或 x =−1, 将 x =−1 代入 y =1x−2019,得 y =−12020,所以函数 y =f 2019(x ) 与 y =1x−2019的图象的交点坐标为 (−1,−12020),故选A .【知识点】函数的零点分布二、填空题(共10题) 11. 【答案】 16【解析】函数f(x)=∣∣∣log2∣∣x−2x ∣∣∣∣∣−a(a>0)的零点,即f(x)=∣∣∣log2∣∣x−2x ∣∣∣∣∣−a=0,所以∣∣∣log2∣∣x−2x∣∣∣∣∣=a.去绝对值可得log2∣∣x−2x ∣∣=a或log2∣∣x−2x∣∣=−a,即2a=∣∣x−2x ∣∣或2−a=∣∣x−2x∣∣.去绝对值可得2a=x−2x 或−2a=x−2x,2−a=x−2x或−2−a=x−2x.当2a=x−2x,两边同时乘以x,化简可得x2−2a⋅x−2=0,设方程的根为x1,x2,由韦达定理可得x1⋅x2=−2;当−2a=x−2x,两边同时乘以x,化简可得x2+2a⋅x−2=0,设方程的根为x3,x4,由韦达定理可得x3⋅x4=−2;当2−a=x−2x,两边同时乘以x,化简可得x2−2−a⋅x−2=0,设方程的根为x5,x6,由韦达定理可得x5⋅x6=−2;当−2−a=x−2x,两边同时乘以x,化简可得x2+2−a⋅x−2=0,设方程的根为x7,x8,由韦达定理可得x7⋅x8=−2.综上可得所有零点的乘积为x1⋅x2⋅x3⋅x4⋅x5⋅x6⋅x7⋅x8=(−2)4=16.【知识点】对数函数及其性质、函数的零点分布12. 【答案】−1【解析】关于x的不等式ax2−2x+3>0的解集为{x∣−3<x<1},所以关于x的方程ax2−2x+3=0的实数根为−3和1,由根与系数的关系知,3a=−3×1,解得a=−1.【知识点】二次不等式的解法13. 【答案】[−4,21]【解析】由题意得,函数的定义域为[−2,4].因为二次函数f(x)图象的对称轴为直线x=−1,又−1∈[−2,4],图象开口向上,且区间端点4离对称轴较远,所以f(4)>f(−2),因为f(4)=21,f(−1)=−4,所以f(4)的值域是[−4,21].【知识点】函数的单调性14. 【答案】 (0,12)【知识点】对数函数及其性质15. 【答案】2−a a+b【解析】因为log 3528=log 1428log 1435=log 14(14×147)log 145+log 147=log 14142−log 147log 145+log 147=2−log 147log 145+log 147,且 log 147=a ,log 145=b , 所以 原式=2−aa+b .【知识点】对数的概念与运算16. 【答案】 [16e 3,3e )【知识点】指数函数及其性质、对数函数及其性质17. 【答案】 (−∞,12]∪[92,+∞)【解析】由题得 ∣x −(a +b −2)∣<a +b ,解得 x ∈(−2,2a +2b −2), 又其关于原点对称,所以 2a +2b −2=2,即 a +b =2, 所以 1a +4b =a+b 2a +2(a+b )b=52+b2a +2a b .若 a b >0,则 ba >0,此时 1a +4b =52+b2a +2a b ≥52+2√b 2a ⋅2a b=92,当且仅当 b =2a 时等号成立; 若ab <0,则 b a<0,1a +4b =52+b 2a +2a b=52−[(−b2a )+(−2ab)]≤52−2√(−b2a )⋅(−2ab)=12,当且仅当 b =2a 时等号成立. 所以 1a+4b∈(−∞,12]∪(92,+∞].【知识点】均值不等式的应用18. 【答案】 6【解析】因为函数 f (x )=3x +9x ,所以 f (log 32)=3log 32+9log 32=2+9log 94=2+4=6. 【知识点】对数的概念与运算19. 【答案】0;1【知识点】集合相等20. 【答案】13【解析】因为k∈A,k−1∉A且k+1∉A,所以所求集合中满足题意的有{1},{2},{3},{4},{5},{1,2,4},{1,2,5},{1,3,4},{1,4,5},{2,3,5},{2,4,5},{1,2,3,5},{1,3,4,5},共13个.【知识点】包含关系、子集与真子集三、解答题(共10题)21. 【答案】(1) 由题意可f(x)min=−3,此时2x+π4=−π2+2kπ,k∈Z,解得x=−3π8+kπ,k∈Z,即当f(x)取最小值时自变量x的取值集合为{x∣ x=−3π8+kπ,k∈Z}.(2) 令−π2+2kπ≤2x+π4≤π2+2kπ,k∈Z,解得−3π8+kπ≤x≤π8+kπ,k∈Z,即f(x)的单调递增区间为[−3π8+kπ,π8+kπ],k∈Z.【知识点】Asin(ωx+ψ)形式函数的性质22. 【答案】将y=sin(ωx+π3)+2的图象向右平移4π3个单位长度后,所得图象的函数解析式为y=sin[ω(x−4π3)+π3]+2=sin(ωx+π3−4ωπ3)+2.因为平移后的图象与原图象重合,所以有4ωπ3=2kπ(k∈Z),即ω=3k2,又因为ω>0,所以k≥1,故ω=3k2≥32.故ω的最小值为32.【知识点】Asin(ωx+ψ)形式函数的性质23. 【答案】(1) 当 b =2 时,f (x )=−x 2+4x +c 在区间 [−1,1] 上是增函数, 则 M 是 g (−1) 和 g (1) 中较大的一个,又 g (−1)=∣−5+c∣,g (1)=∣3+c∣,则 M ={∣−5+c∣,c ≤1∣3+c∣,c >1.(2) g (x )=∣f (x )∣=∣−(x −b )2+b 2+c ∣,(ⅰ)当 ∣b∣>1 时,y =g (x ) 在区间 [−1,1] 上是单调函数,则 M =max {g (−1),g (1)},而 g (−1)=∣−1−2b +c∣,g (1)=∣−1+2b +c∣, 则 2M ≥g (−1)+g (1)≥∣f (−1)−f (1)∣=4∣b∣>4,可知 M >2.(ⅰ)当 ∣b∣≤1 时,函数 y =g (x ) 的对称轴 x =b 位于区间 [−1,1] 之内, 此时 M =max {g (−1),g (1),g (b )},又 g (b )=∣b 2+c ∣, ①当 −1≤b ≤0 时,有 f (1)≤f (−1)≤f (b ),则 M =max {g (b ),g (1)}≥12(g (b )+g (1))≥12∣f (b )−f (1)∣=12(b −1)2≥12; ②当 0<b ≤1 时,有 f (−1)≤f (1)≤f (b ),则 M =max {g (b ),g (−1)}≥12(g (b )+g (−1))≥12∣f (b )−f (−1)∣=12(b +1)2>12. 综上可知,对任意的 b ,c 都有 M ≥12.而当 b =0,c =12时,g (x )=∣∣−x 2+12∣∣ 在区间 [−1,1] 上的最大值 M =12, 故 M ≥k 对任意的 b ,c 恒成立的 k 的最大值为 12.【知识点】函数的最大(小)值、二次函数的性质与图像24. 【答案】由 tan (α+π4)=tanα+11−tanα=12,得 tanα=−13.又 −π2<α<0,所以 sinα=−√1010,故2sin 2α+sin2αcos(α−π4)=√22(=2√2sinα=−2√55.【知识点】两角和与差的正切、二倍角公式、两角和与差的余弦25. 【答案】(1) f (x )=−x 2+8x =−(x −4)2+16.当 t +1<4,即 t <3 时,f (x ) 在 [t,t +1] 上单调递增,ℎ(t )=f (t +1)=−(t +1)2+8(t +1)=−t 2+6t +7;当 t ≤4≤t +1,即 3≤t ≤4 时,ℎ(t )=f (4)=16;当 t >4 时,f (x ) 在 [t,t +1] 上单调递减,ℎ(t )=f (t )=−t 2+8t.综上,ℎ(t )={−t 2+6t +7,t <3,16,3≤t ≤4,−t 2+8t,t >4.(2) 函数 y =f (x ) 的图象与 y =g (x ) 的图象有且只有三个不同的交点,即函数 φ(x )=g (x )−f (x ) 的图象与 x 轴的正半轴有且只有三个不同的交点.因为 φ(x )=x 2−8x +6lnx +m ,所以φʹ(x )=2x −8+6x=2x 2−8x+6x=2(x−1)(x−3)x(x >0).当 x ∈(0,1) 时,φʹ(x )>0,φ(x ) 是增函数;当 x ∈(1,3) 时,φʹ(x )<0,φ(x ) 是减函数; 当 x ∈(3,+∞) 时,φʹ(x )>0,φ(x ) 是增函数;当 x =1 或 x =3 时,φʹ(x )=0.∴φ(x )最大值=φ(1)=m −7,φ(x )最小值=φ(3)=m +6ln3−15. ∵ 当 x 充分接近 0 时,φ(x )<0,当 x 充分大时,φ(x )>0.∴ 要使 φ(x ) 的图象与 x 轴正半轴有三个不同的交点,必须且只须 {φ(x )最大值=m −7>0,φ(x )最小值=m +6ln3−15<0,即7<m <15−6ln3.所以存在实数 m ,使得函数 y =f (x ) 与 y =g (x ) 的图象有且只有三个不同的交点,m 的取值范围为 (7,15−6ln3). 【知识点】分段函数、函数的最大(小)值、利用导数研究函数的图象与性质26. 【答案】12√3+526. 【知识点】两角和与差的正弦27. 【答案】(1) {1,3,4} 不具有;{1,2,3,6} 具有. (2) 因为 A ={a 1,a 2,⋯a n } 具有性质 P , 所以 a n a n 与a n a n中至少有一个属于 A ,由于 1≤a 1<a 2<⋯<a n , 所以 a n a n >a n ,故 a n a n ∉A ,从而 1=an a n∈A ,所以 a 1=1.因为 1=a 1<a 2<⋯<a n , 所以 a k a n >a n ,故 a k a n ∉A (k =2,3,⋯,n ),由A具有性质P可知a na k∈A(k=1,2,3,⋯,n),又因为a na n <a na n−1<⋯<a na2<a na1,所以a na n =1,a na n−1=a2,⋯a na2=a n−1,a na1=a n,从而a na n =a na n−1+⋯+a na2+a na1=a1+a2+⋯+a n−1+a n,所以a1+a2+⋯+a na1−1+a2−1+⋯+a n−1=a n.(3) 由(2)知,当n=5时,有a5a4=a2,a5a3=a3,即a5=a2a4=a32,因为1=a1<a2<⋯<a5,所以a3a4>a2a4=a5,所以a3a4∉A,由A具有性质P可知a4a3∈A,由a2a4=a32,得a3a2=a4a3∈A,且1<a3a2=a2,所以a4a3=a3a2=a2,所以a5a4=a4a3=a3a2=a2a1=a2.【知识点】元素和集合的关系28. 【答案】(1) 由函数概念f(2π3)=sin22π3−cos22π3−2√3⋅sin2π3cos2π3,分别计算可得f(2π3)=2.(2) f(x)=−cos2x−√3sin2x =−2sin(2x+π6),所以f(x)的最小正周期是π.由正弦函数的性质得π2+2kπ≤2x+π6≤3π2+2kπ,k∈Z,解得π6+kπ≤x≤2π3+kπ,k∈Z,所以f(x)的单调递增区间是[π6+kπ,2π3+kπ],k∈Z.【知识点】Asin(ωx+ψ)形式函数的性质29. 【答案】(1) f(x)=1−x(x∈Z且−2≤x≤2)的图象如图(1)所示.(2) 因为x∈[0,3),所以这个函数的图象是抛物线y=x2−2x在0≤x<3之间的一段弧,如图(2)所示.【知识点】函数图象30. 【答案】a2+b2+10−2a−6b=(a2−2a+1)+(b2−6b+9)=(a−1)2+(b−3)2≥0,当且仅当a=1且b=3时,等号成立.【知识点】不等式的性质。

高中数学必修一全册同步练习含参考答案

高中数学必修一全册同步练习含参考答案

高中数学必修一同步练习1.1.1 集合的含义与表示课后作业· 练习案【基础过关】1.若集合中只含一个元素1,则下列格式正确的是A.1=B.0C.1D.12.集合的另一种表示形式是A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5} 3.下列说法正确的有①集合,用列举法表示为{1,0,l};②实数集可以表示为或;③方程组的解集为.A.3个B.2个C.1个D.0个4.直角坐标系中,坐标轴上点的集合可表示为A.B.C.D.5.若集合含有两个元素1,2,集合含有两个元素1,,且,相等,则____. 6.已知集合,,且,则为 . 7.设方程的根组成的集合为,若只含有一个元素,求的值. 8.用适当的方法表示下列集合:(1)所有被3整除的整数;(2)满足方程的所有x的值构成的集合B.【能力提升】集合,,,设,则与集合有什么关系?详细答案【基础过关】1.D【解析】元素与集合之间只存在“∈”与“∉”的关系,故1∈A正确.2.B【解析】由x-2<3得x<5,又,所以x=1,2,3,4,即集合的另一种表示形式是{1,2,3,4}.3.D【解析】对于①,由于x∈N,而-1∉N,故①错误;对于②,由于“{ }”本身就具有“全部”、“所有”的意思,而且实数集不能表示为{R},故②错误;对于③,方程组的解集是点集而非数集,故③错误.4.C【解析】坐标轴上的点分为x轴、y轴上的点,在x轴上的点纵坐标为0,在y轴上的点横坐标为0.5.【解析】由于P,Q相等,故,从而.6.(2,5)【解析】∵a∈A且a∈B,∴a是方程组的解,解方程组,得∴a为(2,5).7.A中只含有一个元素,即方程(a∈R)有且只有一个实根或两个相等的实根.(1)当a=0时,方程的根为;(2)当a≠0时,有△=4-4a=0,即a=1,此时方程的根为.∴a的值为0或1.【备注】误区警示:初学者易自然认为(a∈R)是一元二次方程,而漏掉对a 的讨论,导致漏解.举一反三:若把“若A只含有一个元素”改为“若A含有两个元素”,则结论又如何?由题意知,a≠0,且△=4-4a>0,解得a<1.所以a<1且a≠0.8.(1){x|x=3n,n∈Z};(2)B={x|x=|x|,x∈R}.【能力提升】∵a∈P,b∈M,c=a+b,设,,,,∴,又∴c∈M.1.1.2集合间的基本关系班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.设,,若,则的取值范围是A. B. C. D.2.设集合,,则A.M =NB.M⊆NC.M ND.N3.已知集合,,若,求实数的值.4.满足条件{1,2,3}M{1,2,3,4,5,6}的集合的个数是A.8B.7C.6D.55.设集合和,那么与的关系为 .6.含有三个实数的集合,既可表示成,又可表示成,则.7.设集合,,求A∩B.8.已知M={x | x2-2x-3=0},N={x | x2+ax+1=0,a∈R},且N M,求a的取值范围.【能力提升】已知,,是否存在实数,使得对于任意实数,都有?若存在,求出对应的的值;若不存在,说明理由.答案【基础过关】1.D【解析】∵,∴a≥22.D【解析】本题考查集合间的基本关系.,;而;即N.选D.3.由A=B,可得,解得x=1.4.C【解析】本题考查子集.由题意得M={1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,3,4,5},{1,2,3,4,6},{1,2,3,6,5}共6个.选C. 5.M=P【解析】∵xy>0,∴x,y同号,又x+y<0,∴x<0,y<0,即集合M表示第三象限内的点.而集合P表示第三象限内的点,故M=P.6.-1【解析】本题考查相等集合.由题意得,所以,即;此时,所以,,且,解得.所以.7.,解得;所以.【解析】本题考查集合的基本运算.8.解:M={x | x 2-2x -3=0}={3,-1};∵N M,当N=∅时,N M 成立,N={x | x 2+ax+1=0},∴a 2-4<0, ∴-2<a <2;当N≠∅时,∵N M, ∴3∈N 或 -1∈N;当3∈N 时,32-3a+1=0即a= -310,N={3,31},不满足N M;当-1∈N 时,(-1)2-a+1=0即a=2,N={-1},满足N M;∴a 的取值范围是-2<a ≤2.【解析】本题考查集合间的基本关系. 【能力提升】不存在.要使对任意的实数b 都有,则1,2是A 中的元素,又∵A ={a -4,a +4},∴或这两个方程组均无解,故这样的实数a 不存在.1.1.3 集合的基本运算班级:__________姓名:__________设计人__________日期__________课后作业【基础过关】1.若,,,,则满足上述条件的集合的个数为A.5B.6C.7D.82.已知全集U={1,2,3,4,5,6,7,8},A={3,4,5}, B={1,3,6},那么集合{2,7,8}是A.A∪BB.A∩BC.(∁U A)∩(∁U B)D.(∁U A)∪(∁U B)3.若集合P={x∈N|-1<x<3},Q={x|x=2a,a∈P},则P∩Q=A.⌀B.{x|-2<x<6}C.{x|-1<x<3}D.{0,2}4.设全集U=R,集合M={x|x>1或x<-1},N={x|0<x<2},则N∩(∁U M)=A.{x|-2≤x<1}B.{x|0<x≤1}C.{x|-1≤x≤1}D.{x|x<1}5.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.6.集合A={(x,y)|x+y=0},B={(x,y)|x-y=2},则A∩B= .7.设集合A={x|0<x-m<3},B={x|x≤0,或x≥3},分别求满足下列条件的实数m.(1)A∩B=⌀;(2)A∪B=B.8.已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠⌀,求a的取值范围.【能力提升】已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},C={x|x2-x+2m=0}.(1)若A∪B=A,求a的值;(2)若A∩C=C,求m的取值范围.详细答案【基础过关】1.D2.C【解析】借助Venn图易得{2,7,8}=∁U(A∪B),即为(∁U A)∩(∁U B).3.D【解析】由已知得P={0,1,2},Q={0,2,4},所以P∩Q={0,2}.4.B【解析】∁U M={x|-1≤x≤1},结合数轴可得N∩(∁U M)={x|0<x≤1}.5.12【解析】设两项运动都喜爱的人数为x,依据题意画出Venn图,得到方程15-x+x+10-x+8=30,解得x=3,∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12.6.{(1,-1)}【解析】A∩B={(x,y)|}={(1,-1)}.7.因为A={x|0<x-m<3},所以A={x|m<x<m+3}.(1)当A∩B=⌀时,需,故m=0.即满足A∩B=⌀时,m的值为0.(2)当A∪B=B时,A⊆B,需m≥3,或m+3≤0,得m≥3,或m≤-3.即满足A∪B=B时,m的取值范围为{m|m≥3,或m≤-3}.8.(1)因为A={x|2≤x<7},B={x|3<x<10},所以A∪B={x|2≤x<10}.因为A={x|2≤x<7},所以∁R A={x|x<2,或x≥7},则(∁R A)∩B={x|7≤x<10}.(2)因为A={x|2≤x<7},C={x|x<a},且A∩C≠⌀,所以a>2.【能力提升】A={1,2}.(1)因为A∪B=A,所以B⊆A,故集合B中至多有两个元素1,2.而方程x2-ax+a-1=0的两根分别为1,a-1,注意到集合中元素的互异性,有①当a-1=2,即a=3时,B={1,2},满足题意;②当a-1=1,即a=2时,B={1},满足题意.综上可知,a=2或a=3.(2)因为A∩C=C,所以C⊆A.①当C=⌀时,方程x2-x+2m=0无实数解,因此其根的判别式Δ=1-8m<0,即m>.②当C={1}(或C={2})时,方程x2-x+2m=0有两个相同的实数解x=1(或x=2),因此其根的判别式Δ=1-8m=0,解得m=,代入方程x2-x+2m=0,解得x=,显然m=不符合要求.③当C={1,2}时,方程x2-x+2m=0有两个不相等的实数解x1=1,x2=2,因此x1+x2=1+2≠1,x1x2=2=2m,显然不符合要求.综上,m>.1.2.1 函数的概念班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.下列函数中,值域为(0,+∞)的是( )A.y=B.y=C.y=D.y=x2+12.下列式子中不能表示函数的是A. B. C. D.3.函数y=+的定义域是( )A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(0,1)D.{-1,1}4.若满足,且,,则等于A. B. C. D.5.若为一确定区间,则的取值范围是 .6.函数的图象是曲线,其中点,,的坐标分别为(0,0),(1,2),(3,1),则的值等于 .7.求下列函数的定义域.(1);(2).8.已知.(1)求,的值;(2)求的值. 【能力提升】已知函数f(x)对任意实数a,b,都有f(ab)=f(a)+f(b)成立.(1)求f(0),f(1)的值;(2)若f(2)=p,f(3)=q(p,q为常数),求f(36)的值.答案【基础过关】1.B【解析】y=的值域为[0,+∞),y=的值域为(-∞,0)∪(0,+∞),y=x2+1的值域为[1,+∞).故选B.2.A【解析】一个x对应的y值不唯一.3.D【解析】要使函数式有意义,需满足,解得x=±1,故选D.4.B【解析】f(72)=f(8×9)=f(8)+f(9)=3f(2)+2f(3)=3p+2q.5.【解析】由题意3a-1>a,则.【备注】误区警示:本题易忽略区间概念而得出,则的错误.6.2【解析】由图可知f(3)=1,∴f[f(3)]=f(1)=2.【备注】误区警示:本题在求解过程中会因不理解f[f(3)]的含义而出错.7.(1)由已知得∴函数的定义域为.(2)由已知得:∵|x+2|-1≠0,∴|x+2|≠1,得x≠-3,x≠-1.∴函数的定义域为(-∞,-3)∪(-3,-1)∪(―1,+∞).8.(1),.(2)∵,∴==1+1+1++1(共2012个1相加)=2012.【能力提升】(1)令a=b=0,得f(0)=f(0)+f(0),解得f(0)=0;令a=1,b=0,得f(0)=f(1)+f(0),解得f(1)=0.(2)方法一令a=b=2,得f(4)=f(2)+f(2)=2p,令a=b=3,得f(9)=f(3)+f(3)=2q,令a=4,b=9,得f(36)=f(4)+f(9)=2p+2q.方法二因为36=22×32,所以f(36)=f(22×32)=f(22)+f(32)=f(2×2)+f(3×3)=f(2)+f(2)+f(3)+f(3)=2f(2)+2f(3)=2p+2q .【解析】题设只有一个函数方程,因此考虑特殊值0,1,通过解方程获解.1.2.2函数的表示法班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.已知是反比例函数,当时,,则的函数关系式为A. B. C. D.2.已知函数若,则的取值范围是A. B.C. D.3.已知函数f(x)=,则函数f(x)的图象是( )A. B. C. D.4.已知则A.2B.-2C.D.5.已知函数,且,则 .6.已知函数f(x)对于任意实数x满足条件f(x+2)=,若f(1)=-5,则f[f(5)]= .7.已知,为常数,且,,,方程有两个相等的实数根.求函数的解析式.8.如图,是边长为2的正三角形,记位于直线左侧的图形的面积为,试求函数的解析式.【能力提升】下图是一个电子元件在处理数据时的流程图:(1)试确定y与x的函数关系式;(2)求f(-3), f(1)的值;(3)若f(x)=16,求x的值.答案【基础过关】1.C【解析】根据题意可设(k≠0),∵当x=2时,y=1,∴,∴k=2.2.D【解析】若x∈[-1,1],则有f(x)=2∉[-1,1],∴f(2)=2;若x∉[-1,1],则f(x)=x∉[-1,1],∴f[f(x)]=x,此时若f[f(x)]=2,则有x=2.【备注】误区警示:本题易将x∉[-1,1]的情况漏掉而错选B.3.A【解析】当x=-1时,y=0,即图象过点(-1,0),D错;当x=0时,y=1,即图象过点(0,1),C错;当x=1时,y=2,即图象过点(1,2),B错.故选A.4.C【解析】∵,∴.【备注】无5.【解析】,∴,∴,解得.6.-【解析】由已知条件f(x+2)=可得f(x+4)==f(x),所以f(5)=f(1)=-5,所以f[f(5)]=f(-5)=f(-1)===-.7.∵,且方程f(x)=x有两个相等的实数根,∴,∴b=1,又∵f(2)=0,∴4a+2=0,∴,∴.8.OB所在的直线方程为.当t∈(0,1]时,由x=t,求得,所以;当t∈(1,2]时,;当t∈(2,+∞)时,,所以【能力提升】(1)由题意知y=.(2)f(-3)=(-3)2+2=11, f(1)=(1+2)2=9.(3)若x≥1,则(x+2)2=16,解得x=2或x=-6(舍去);若x<1,则x2+2=16,解得x=(舍去)或x=-.综上可得,x=2或x=-.1.3.1单调性与最大(小)值班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.若函数在区间上是增函数,在区间上也是增函数,则函数在区间上A.必是增函数B.必是减函数C.先增后减D.无法确定单调性2.下列函数在(0,1)上是增函数的是A. B. C. D.3.函数,在上是A.减函数B.增函数C.先减后增D.无单调性4.下面说法错误的是A.函数的单调区间一定是函数的定义域B.函数的多个单调增区间的并集不一定是其单调增区间C.具有奇偶性的函数的定义域关于原点对称D.关于原点对称的图象一定是奇函数的图象5.已知函数在区间上为减函数,则的取值范围是_____________.6.设奇函数f(x)的定义域为[-5,5],且当x∈[0,5]时,f(x)的图象如图所示,则不等式f(x)<0的解集是.7..已知函数,若.(l)求的值.(2)利用单调性定义证明函数在区间的单调性.8.首届世界低碳经济大会在南昌召开,大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似地表示为,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?【能力提升】函数f(x)的图象如图所示.(1)说出f(x)的单调区间,以及在每一个单调区间上它是增函数还是减函数;(2)依据图象说明函数的最值情况.答案【基础过关】1.D【解析】因为(a,b),(c,d)不是两个连续的区间,所以无法确定其单调性.2.B【解析】选项A中y=1-2x为减函数,C中y=5为常数函数,D中的定义域为[1,+∞).3.B【解析】解答本题可先画出函数图象,由图象分析.函数f(x)的图象如图所示,由图结合单调性的定义可知,此函数在R上是增函数.4.A【解析】单调区间是定义域的子集,不一定是定义域,当多个单调区间并起来时,由单调性定义知,不再是单调区间.具有奇偶性的函数的定义域关于原点对称,是函数奇偶性判定的要求.奇函数的图象关于原点对称,反之,关于原点对称的图象一定是奇函数的图象.5.(-∞,1]6.(-2,0)∪(2,5]【解析】由图可知在区间(2,5]上f(x)<0,因为奇函数的图象关于原点对称,所以在(-2,0)上也有f(x)<0.7.(1)由2f(2)=f(3)+5,得,解得a=2.(2)由(1)知.任取x1,x2∈(1,+∞)且x1<x2,,因为1<x1<x2,所以x1-1>0,x2-1>0,x2-x1>0.所以f(x1)-f(x2)>0,即f(x1)>f(x2).所以f(x)在(1,+∞)上是减函数.8.(1)由题意可知,二氧化碳的每吨平均处理成本为令,可以证明t(x)在(0,400)为减函数,在[400,+∞)上是增函数,故每月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.(2)设该单位每月获利为S,则.因为400≤x≤600,所以当x=400时,S有最大值-40 000.故该单位不获利,需要国家每月至少补贴40 000元,才能不亏损.【能力提升】(1)由题图可知:函数f(x)的单调增区间为[0,];单调减区间为(-∞,0)和(,+∞).(2)观察图象可知,函数没有最大值和最小值.1.3.2奇偶性班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.设在[-2,-1]上为减函数,最小值为3,且为偶函数,则在[1,2]上A.为减函数,最大值为3B.为减函数,最小值为-3C.为增函数,最大值为-3D.为增函数,最小值为32.已知函数是偶函数,其图象与轴有四个交点,则方程的所有实根之和是A.4B.2C.1D.03.函数是奇函数,图象上有一点为,则图象必过点A. B.C. D.4.设,其中为常数,若,则的值为A.-7B.7C.17D.-175.已知定义在上的奇函数,当时,,那么时,.6.若函数为区间[-1,1]上的奇函数,则;.7.作出函数的图象,并根据函数的图象找出函数的单调区间.8.已知函数是定义在R上的偶函数,且当时,该函数的值域为,求函数的解析式.【能力提升】已知函数f(x)=-x2+x,是否存在实数m,n(m<n),使得当x∈[m,n]时,函数的值域恰为[2m,2n]?若存在,求出m,n的值;若不存在,说明理由.答案【基础过关】1.D2.D3.C【解析】奇函数f(x)满足f(-x)=-f(x),故有f(-a)=-f(a).因为函数f(x)是奇函数,故点(a,f(a))关于原点的对称点(-a,-f(a))也在y=f(x)上,故选C.4.D【解析】∵,∴27a+3b=-12,∴f(3)=27a+3b-5=-17.5.-x2-|x|+16.0 07.当x-2≥0,即x≥2时,;当x-2<0,即x<2时,=.所以这是分段函数,每段函数图象可根据二次函数图象作出(如图),其中,[2,+∞)是函数的单调增区间;是函数的单调减区间.8.由f(x)为偶函数可知f(x)=f(-x),即,可得恒成立,所以a=c=0,故.当b=0时,由题意知不合题意;当b>0,x∈[1,2]时f(x)单调递增,又f(x)值域为[-2,1],所以当b<0时,同理可得所以或.【能力提升】假设存在实数m,n,使得当x∈[m,n]时,y∈[2m,2n],则在[m,n]上函数的最大值为2n.而f(x)=-x2+x=-(x-1)2+在x∈R上的最大值为,∴2n≤,∴n≤.而f(x)在(-∞,1)上是增函数,∴f(x)在[m,n]上是增函数,∴,即.结合m<n≤,解得m=-2,n=0.∴存在实数m=-2,n=0,使得当x∈[-2,0]时,f(x)的值域为[-4,0].2.1.1指数与指数幂的运算班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.化简的结果为A. B. C.- D.2.计算的结果是A. B. C. D.3.设,则有A. B.C. D.4.下列说法中正确的个数是( )(1)49的四次方根为7; (2)=a(a≥0);(3)()5=a5; (4)=(-3.A.1B.2C.3D.45.若10m=2,10n=4,则= . 6.已知x=(2 01-2 01),n∈N*,则(x+)n的值为. 7.化简下列各式:(1)(·)÷;(2)()·(-3)÷().8.求下列各式的值:(1)2; (2)(; (3)+(-π0.【能力提升】已知+=3,求下列各式的值:(1)x+x-1;(2).答案【基础过关】1.A【解析】要使式子有意义,需,故x<0,所以原式.2.A【解析】本题考查指数运算.注意先算中括号内的部分。

人教A版高一数学必修第一册全册复习训练题卷含答案解析(52)

人教A版高一数学必修第一册全册复习训练题卷含答案解析(52)

人教A 版高一数学必修第一册全册复习训练题卷(共30题)一、选择题(共10题)1. 已知 a 1,a 2,b 1,b 2 均为非零实数,不等式 a 1x +b 1<0 与不等式 a 2x +b 2<0 的解所组成的集合分别为集合 M 和集合 N ,则“a 1a 2=b 1b 2”是“M =N ”的 ( )A .充分不必要条件B .既不充分也不必要条件C .充要条件D .必要不充分条件2. 下面各组角中,终边相同的是 ( ) A . 390∘,690∘ B . −330∘,750∘ C . 480∘,−420∘D . 3000∘,−840∘3. 若对于任意实数 x 总有 f (−x )=f (x ),且 f (x ) 在区间 (−∞,−1] 上是增函数,则 ( ) A . f (−32)<f (−1)<f (2) B . f (−1)<f (−32)<f (2) C . f (2)<f (−1)<f (−32)D . f (2)<f (−32)<f (−1)4. 函数 f (x )=(x +sinx )cosx 的部分图象大致为 ( )A .B .C.D.5.集合A={x∣ −1<x<3},B={x∣ x2+x−6<0,x∈Z},则A∩B=( )A.(−1,2)B.(−3,3)C.{0,1}D.{0,1,2}6.已知集合A={x∣ 1≤x<3},B={x∣ x2≤4},则A∩B=( )A.{x∣ 1≤x<2}B.{x∣ −2≤x<1}C.{x∣ 1≤x≤2}D.{x∣ 1<x≤2}7.已知cos(π2+α)=√33(−π2<α<π2),则sin(α+π3)=( )A.3√2−√36B.3√2+√36C.√6−36D.√6+368.设集合M={x∈R∣ 0≤x≤2},N={x∈R∣ −1<x<1},则M∩N=( )A.{x∣ 0≤x≤1}B.{x∣ 0≤x<1}C.{x∣ 1<x≤2}D.{x∣ −1<x≤2}9. 式子 a√−1a 经过计算可得 ( ) A . √−a B . √a C . −√a D . −√−a10. 设集合 A ={x∣ −1<x ≤1},B ={−1,0,1,2},则 A ∩B = ( )A . {−1,0,1}B . {−1,0}C . {0,1}D . {1,2}二、填空题(共10题)11. 已知集合 A =(−2,3),B =[−1,4],则集合 A ∩B = .12. 已知 a >0,b >0,则 a 2+4+4ab+4b 2a+2b的最小值为 .13. 若 (3−2m )12>(m +1)12,则实数 m 的取值范围为 .14. 若 cosα=13,则 sin (α−π2)= .15. 若角 α 终边经过点 P (−1,2),则 tanα= .16. 二次函数 y =ax 2+bx +c (x ∈R ) 的部分对应值如表:x−3−2−101234y 60−4−6−6−406则不等式 ax 2+bx +c >0 的解集是 .17. 已知 a >b >0,则 a +4a+b +1a−b 的最小值为 .18. 若 π2<α<π 且 cosα=−13,则 tanα= .19. 如果 α∈(π2,π),且 sinα=45,那么 sin (α+π4)+cos (α+π4)= .20. 已知函数 f (x )=1+∣x∣−x 2(−2<x ≤2).用分段函数的形折表示该函数为 ; 该函数的值域为 .三、解答题(共10题)21.画出下列函数的图象,并根据图象说出函数y=f(x)的单调区间及在每一单调区间上的单调性.(1) y=x2−5x−6;(2) y=9−x2.22.数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的素养.因为运算,数的威力无限;没有运算,数就只是一个符号.对数运算与指数幂运算是两类重要的运算.(1) 对数的运算性质降低了运算的级别,简化了运算,在数学发展史上是伟大的成就.对数运算性质的推导有很多方法.请同学们根据所学知识推导如下的对数运算性质:如果a>0,且a≠1,M>0,那么log a M n=nlog a M(n∈R).(2) 请你运用上述对数运算性质计算lg3lg4(lg8lg9+lg16lg27)的值.(3) 因为210=1024∈(103,104),所以210的位数为4(一个自然数数位的个数,叫做位数).请你运用所学过的对数运算的知识,判断20192020的位数.(注:lg2019≈3.305).23.回答下列问题:(1) 将log232=5化成指数式;(2) 将3−3=127化成对数式;(3) 已知log4x=−32,求x;(4) 已知log2(log3x)=1,求x.24.写出下列命题的否定,并判断其否定的真假:(1) p:不论m取何实数,方程x2+mx−1=0必有实根;(2) ∀x,y∈R,x2+y2+2x−4y+5=0.25.已知集合A={x∣2−a≤x≤2+a},B={x∣∣x≤1或x≥4}.(1) 当a=3时,求A∩B;(2) 若A∩B=∅,求实数a的取值范围.26.已知函数f(x)=log a(x+2)−1,其中a>1.(1) 若f(x)在[0,1]上的最大值与最小值互为相反数,求a的值.(2) 若f(x)的图象不经过第二象限,求a的取值范围.27.求2π3的六个三角比的值.28.子集(1)对于两个集合A和B,如果集合A中都属于集合B(若a∈A,则a∈B),那么集合A叫做集合B的子集,记作或,读作“ ”或“ ”.可用文氏图表示为(2)子集的性质:①A⊆A,即任何一个集合是它本身的子集;②∅⊆A,即空集是任何集合的子集.问题:集合A是集合B的子集的含义是什么?,b},Q={0,a+b,b2},且P=Q.求a2018+b2019的值.29.已知集合P={1,ab30.已知集合A={x∣ 1≤x≤2},B={x∣ 1≤x≤a,a≥1}.(1) 若A⫋B,求a的取值范围;(2) 若B⊆A,求a的取值范围.答案一、选择题(共10题) 1. 【答案】D【解析】取 a 1=b 1=1,a 2=b 2=−1,则可得 M =(−∞,−1),N =(−1,+∞),M ≠N ,因此不是充分条件,而由 M =N ,显然可以得到 a 1a 2=b 1b 2,所以是必要条件.故选D .【知识点】充分条件与必要条件2. 【答案】B【解析】因为 390∘=360∘+30∘,690∘=720∘−30∘, 所以 390∘ 与 690∘ 终边不同,A 错误;因为 −330∘=−360∘+30∘,750∘=720∘+30∘, 所以 −330∘ 与 750∘ 终边相同,B 正确; 因为 480∘=360∘+120∘,−420∘=−360∘−60∘, 所以 480∘ 与 −420∘ 终边不同,C 错误;因为 3000∘=2880∘+120∘,−840∘=−720∘−120∘, 所以 3000∘ 与 −840∘ 终边不同,D 错误. 故选B .【知识点】任意角的概念3. 【答案】D【解析】由 f (−x )=f (x ) 可得 f (x ) 为偶函数,且在 (−∞,1] 上单增, 由偶函数性质可知其在区间 [1,+∞) 上, 因为 f (−32)=f (32),f (−1)=f (1), 所以 f (2)<f (−32)<f (−1). 【知识点】函数的单调性4. 【答案】D【解析】因为函数 f (x ) 为奇函数,故排除B ,又因为当 x ∈(0,π2) 时,f (x )>0,当 x ∈(π2,π)时,f (x )<0,故排除C ,A . 【知识点】函数的奇偶性、函数图象5. 【答案】C【解析】 B ={x∣ x 2+x −6<0,x ∈Z }={x∣ −3<x <2,x ∈Z }={−2,−1,0,1},又 A ={x∣ −1<x <3}, 所以 A ∩B ={0,1},故选C .【知识点】交、并、补集运算6. 【答案】C【知识点】二次不等式的解法、交、并、补集运算7. 【答案】A【解析】因为cos(π2+α)=−sinα=√33,所以sinα=−√33,所以−π2<α<0,所以cosα=√63,所以sin(α+π3)=sinαcosπ3+cosαsinπ3 =−√33×12+√63×√32=3√2−√36,故选A.【知识点】两角和与差的正弦8. 【答案】B【解析】因为M={x∈R∣ 0≤x≤2},N={x∈R∣ −1<x<1},所以M∩N={x∣ 0≤x<1}.【知识点】交、并、补集运算9. 【答案】D【解析】因为√−1a 成立,所以a<0,所以a√−1a=−√−a2a=−√−a.故选D.【知识点】幂的概念与运算10. 【答案】C【解析】A∩B={0,1}.【知识点】交、并、补集运算二、填空题(共10题)11. 【答案】[−1,3)【知识点】交、并、补集运算12. 【答案】 4【解析】由a 2+4+4ab+4b 2a+2b=(a+2b )2+4a+2b=(a +2b )+4a+2b ,因为 a >0,b >0, 所以 a +2b >0,4a+2b >0, 所以 (a +2b )+4a+2b≥2√(a +2b )⋅4a+2b=4,当且仅当 a +2b =2 时取等号,即a 2+4+4ab+4b 2a+2b的最小值为 4.【知识点】均值不等式的应用13. 【答案】 [−1,23)【知识点】幂函数及其性质14. 【答案】 −13【知识点】诱导公式15. 【答案】 −2【知识点】任意角的三角函数定义16. 【答案】 (−∞,−2)∪(3,+∞)【知识点】二次不等式的解法17. 【答案】 3√2【解析】 4a+b +1a−b =22a+b +12a−b ≥(2+1)2(a+b )+(a−b )=92a , 所以 a +4a+b +1a−b≥a +92a≥2√a ⋅92a=3√2,当且仅当 {2a+b=1a−b,a =92a,即 a =3√22,b =√22时等号成立.【知识点】均值不等式的应用18. 【答案】 −2√2【知识点】同角三角函数的基本关系19. 【答案】 −3√25【知识点】两角和与差的余弦、两角和与差的正弦20. 【答案】 f(x)={1−x,−2<x ≤01,0<x ≤2; [1,3)【解析】 f (x )=1+∣x∣−x 2(−2<x ≤2),当 −2<x ≤0 时,f (x )=1−x ; 当 0<x ≤2 时,f (x )=1.所以函数 f (x )={1−x,−2<x ≤01,0<x ≤2,函数 f (x ) 的图象如图所示:根据图象,得函数 f (x ) 的值域为 [1,3).【知识点】分段函数、函数的值域的概念与求法三、解答题(共10题) 21. 【答案】(1) 图略.函数 y =x 2−5x −6 在 (−∞,52] 上单调递减,在 [52,+∞) 上单调递增. (2) 函数 y =9−x 2 在 (−∞,0] 上单调递增,在 [0,+∞) 上单调递减. 【知识点】函数的单调性22. 【答案】(1) (a m )n =a mn , log a (a m )n =log a a mn , log a (a m )n =mn ,令 a m =M ,则 m =log a M , 则 log a M n =nlog a M .(2) lg3lg4(lg8lg9+lg16lg27)=lg32lg2(3lg22lg3+4lg23lg3)=34+23=1712. (3) lg20192020=2020lg2019≈2020×3.305=6676.1,所以20192020≈106676.1∈(106676,106677),所以20192020位数为6677.【知识点】对数的概念与运算23. 【答案】(1) 因为log232=5,所以25=32.(2) 因为3−3=127,所以log3127=−3.(3) 因为log4x=−32,所以x=4−32=22×(−32)=2−3=18.(4) 因为log2(log3x)=1,所以log3x=2,即x=32=9.【知识点】对数的概念与运算24. 【答案】(1) ¬p:存在一个实数m,使方程x2+mx−1=0没有实数根.因为该方程的判别式Δ=m2+4>0恒成立,所以¬p为假命题.(2) ¬p:∃x,y∈R,x2+y2+2x−4y+5≠0.因为x2+y2+2x−4y+5=(x+1)2+(y−2)2,当x=0,y=0时,x2+y2+2x−4y+5≠0成立,所以¬p为真命题.【知识点】全(特)称命题的概念与真假判断、全(特)称命题的否定、复合命题的概念与真假判断25. 【答案】(1) 当a=3时,A={x∣−1≤x≤5},B={x∣∣x≤1或x≥4},所以A∩B={x∣∣−1≤x≤1或4≤x≤5}.(2) ①若A=∅,则2−a>2+a,解得a<0,满足A∩B=∅;②若A≠∅,则2−a≤x≤2+a,所以a≥0.因为A∩B=∅,所以{2−a>1,2+a<4,解得0≤a<1.综上,实数a的取值范围是(−∞,1).【知识点】交、并、补集运算26. 【答案】(1) 函数f(x)=log a(x+2)−1的定义域是(−2,+∞).因为a>1,所以f(x)=log a(x+2)−1是[0,1]上的增函数.所以f(x)在[0,1]上的最大值是f(1)=log a3−1;最小值是f(0)=log a2−1.依题意,得log a3−1=−(log a2−1),解得a=√6.(2) 由(1)知,f(x)=log a(x+2)−1是(−2,+∞)上的增函数.在f(x)的解析式中,令x=0,得f(0)=log a2−1,所以,f(x)的图象与y轴交于点(0,log a2−1).依题意,得f(0)=log a2−1≤0.解得a≥2.【知识点】函数的最大(小)值、对数函数及其性质27. 【答案】sin2π3=√32,cos2π3=−12,tan2π3=−√3,cot2π3=−√33,sec2π3=−2,csc2π3=23√3.【知识点】任意角的三角函数定义28. 【答案】(1)任何一个元素;A⊆B;B⊇A;A包含于B;B包含A(2)集合A中的任何一个元素都是集合B中的元素,即由x∈A能推出x∈B.例如{0,1}⊆{−1,0,1},则由0∈{0,1}能推出0∈{−1,0,1}.【知识点】包含关系、子集与真子集29. 【答案】−1.【知识点】集合相等30. 【答案】(1) 若A⫋B,由下图可知,a>2.(2) 若B⊆A,由下图可知,1≤a≤2.【知识点】包含关系、子集与真子集11。

同步练习册必修一数学答案

同步练习册必修一数学答案

同步练习册必修一数学答案一、选择题1. A2. C3. B4. D5. E二、填空题1. \( x = 3 \)2. \( y = -2 \)3. \( \sin \alpha = \frac{\sqrt{3}}{2} \)4. \( \cos \beta = \frac{1}{2} \)5. \( \tan \gamma = 1 \)三、解答题1. 证明题:证明勾股定理。

- 证明:设直角三角形ABC,其中∠C为直角。

根据勾股定理,我们有 \( AB^2 = AC^2 + BC^2 \)。

通过构造辅助线和应用相似三角形的性质,可以证明这一点。

2. 计算题:计算下列极限。

- 极限 \( \lim_{x \to 0} \frac{\sin x}{x} \) 等于1。

3. 应用题:某工厂生产一批产品,每件产品的成本为10元,销售价格为15元。

如果工厂希望获得的利润是总成本的20%,那么每件产品的销售价格应该是多少?- 解:设每件产品的销售价格为P元。

根据题意,我们有 \( (P -10) \times 100\% = 20\% \times 10 \)。

解得 \( P = 12.5 \) 元。

四、综合题1. 函数题:给定函数 \( f(x) = x^2 - 4x + 3 \),求其在区间[0, 4]上的最大值和最小值。

- 解:函数 \( f(x) \) 是一个开口向上的抛物线,对称轴为\( x = 2 \)。

在区间[0, 4]上,最小值出现在对称轴上,即 \( f(2) = -1 \),最大值出现在区间端点,即 \( f(4) = 3 \)。

2. 几何题:在三角形ABC中,已知AB=5,AC=7,BC=6,求∠A的大小。

- 解:根据余弦定理,我们可以求出 \( \cos A = \frac{b^2 +c^2 - a^2}{2bc} \),其中a、b、c分别是三角形的三边。

代入数值得到 \( \cos A = \frac{7^2 + 6^2 - 5^2}{2 \times 7 \times 6}= \frac{1}{2} \),所以 \( A = 60^\circ \)。

高一上学期数学(必修一)《第三章函数的应用》同步练习题及答案(人教版)

高一上学期数学(必修一)《第三章函数的应用》同步练习题及答案(人教版)

高一上学期数学(必修一)《第三章函数的应用》同步练习题及答案(人教版)一、单选题1.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,第一季度共获利42万元,已知二月份和三月份利润的月增长率相同.设二、三月份利润的月增长率为x ,则x 满足的方程为( )A .210(1)42x +=B .21010(1)42x ++=C .1010(1)10(12)42x x ++++=D .21010(1)10(1)42x x ++++=2.某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,如图所示,由图中给出的信息可知,营销人员没有销售量时的收入是( )A .310元B .300元C .390元D .280元3.某公司在甲、乙两地同时销售一种品牌车,销售x 辆该品牌车的利润(单位:万元)分别为2121L x x=-+和22L x =.若该公司在两地共销售15辆,则能获得的最大利润为( )A .90万元B .60万元C .120万元D .120.25万元4.把长为12cm 的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是( )A .233cm 2B .24cmC .232cmD .223cm5.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为( )m .A .400B .12C .20D .306.单位时间内通过道路上指定断面的车辆数被称为“道路容量”,与道路设施、交通服务、环境、气候等诸多条件相关.假设某条道路一小时通过的车辆数N 满足关系2010000.70.3v N v v d =++,其中0d 为安全距离,v为车速()m /s .当安全距离0d 取30m 时,该道路一小时“道路容量”的最大值约为( )A .135B .149C .165D .1957.某中学体育课对女生立定跳远项目的考核标准为:立定跳远距离1.33米得5分,每增加0.03米,分值增加5分,直到1.84米得90分后,每增加0.1米,分值增加5分,满分为120分.若某女生训练前的成绩为70分,经过一段时间的训练后,成绩为105分,则该女生训练后,立定跳远距离增加了( )A .0.33米B .0.42米C .0.39米D .0.43米8.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A 地出发前往B 地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85继续骑行,经过一段时间,甲先到达B 地,乙一直保持原速前往B 地.在此过程中,甲、乙两人相距的路程y (单位:米)与乙骑行的时间x (单位:分钟)之间的关系如图所示,则下列说法错误的是( )A .乙的速度为300米/分钟B .25分钟后甲的速度为400米/分钟C .乙比甲晚14分钟到达B 地D .A 、B 两地之间的路程为29400米二 、多选题 9.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f(x)=√x x <A,√A x ⩾A(A,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,下列结果正确的是( )A. A =16B. c =60C. A =4D. c =3010.对任意两个实数a ,b ,定义max{ a,b}={a,a >b,若f(x)=2−x 2,g(x)=x 2下列关于函数F(x)=max{ f(x),g(x)}的说法正确的有( )A. 函数F(x)是偶函数B. 函数F(x)有四个单调区间C. 方程F(x)=2有四个不同的根D. 函数F(x)的最大值为1,无最小值11.函数y =[x]的函数值表示不超过x 的最大整数.例如[1.1]=1,[2.3]=2设函数f(x)={1−x 2,x <0,x −[x],x ⩾0,则下列说法正确的是( )A. 函数f(x)的值域为(−∞,0]B. 若x ⩾0,则[f(x)]=0C. 方程f(x)=1有无数个实数根D. 若方程f(x)=−x +a 有两个不等的实数根,则实数a 的取值范围是[0,+∞)12.已知函数f(x)={x 2,x ⩽0,−x 2,x >0,则下列结论中正确的是( ) A. f(√2)=2B. 若f(m)=9,则m ≠±3C. f(x)是奇函数D. 在f(x)上R 单调递减三、填空题13.某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算. 可以享受折扣优惠金额折扣优惠率 不超过500元的部分5% 超过500元的部分 10% 某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为__________元.14.函数()()222323y x x x x =---+零点的个数为_____________.15.如图,在半径为4(单位:cm )的半圆形(O 为圆心)铁皮上截取一块矩形材料ABCD ,其顶点,A B 在直径上,顶点,C D 在圆周上,则矩形ABCD 面积的最大值为____(单位:2cm ).四、解答题16..如图,某灌溉渠的横断面是等腰梯形,底宽2m ,渠深为1.8m ,斜坡的倾斜角是45°(无水状态不考虑).(1)试将横断面中水的面积()A h (2m )表示成水深h (m )的函数;(2)当水深为1.2m 时,求横断面中水的面积.17.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,把每尾鱼的平均生长速度v (单位:千克/年)表示为养殖密度x (单位:尾/立方米)的函数.当04x <≤时,v 的值为2;当420x <≤时,v 是关于x 的一次函数.当x =20时,因缺氧等原因,v 的值为0.(1)当020x <≤时,求函数()v x 的表达式;(2)当x 为多大时,鱼的年生长量(单位:千克/立方米)()()f x x v x =⋅可以达到最大?并求出最大值.18.首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下进行技术攻关,采取了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似的表示为21200800002y x x =-+ ,且处理每吨二氧化碳得到可利用的化工产品价值为100元. (1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使单位不亏损?19.吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每生产x 万盒,需投入成本()h x 万元,当产量小于或等于50万盒时()180100h x x =+;当产量大于50万盒时()2603500h x x x =++,若每盒玩具手办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完(利润=售价-成本,成本=固定成本+生产中投入成本)(1)求“冰墩墩”玩具手办销售利润y (万元)关于产量x (万盒)的函数关系式;(2)当产量为多少万盒时,该企业在生产中所获利润最大?20.随着城市居民汽车使用率的增加,交通拥堵问题日益严重,而建设高架道路、地下隧道以及城市轨道公共运输系统等是解决交通拥堵问题的有效措施.某市城市规划部门为提高早晚高峰期间某条地下隧道的车辆通行能力,研究了该隧道内的车流速度v (单位:千米/小时)和车流密度x (单位:辆/千米)所满足的关系式:()60,030R 80,30120150x v k k x x <≤⎧⎪=∈⎨-<≤⎪-⎩.研究表明:当隧道内的车流密度达到120辆/千米时造成堵塞,此时车流速度是0千米/小时.(1)若车流速度v 不小于40千米/小时,求车流密度x 的取值范围;(2)隧道内的车流量y (单位时间内通过隧道的车辆数,单位:辆/小时)满足y x v =⋅,求隧道内车流量的最大值(精确到1辆/小时),并指出当车流量最大时的车流密度(精确到1辆/千米).(参考数据:5 2.236) 参考答案1.D 2.B3.C4.D5.C6.B7.B8.C9.AB;10.AB;11.BD;12.CD;13.112014.215.1616.(1)依题意,横断面中的水面是下底为2m ,上底为()22h +m ,高为h m 的等腰梯形,所以()()()222220 1.82h A h h h h h ++=⋅=+<≤. (2)由(1)知()()220 1.8A h h h h =+<≤ ()21.2 1.22 1.2 3.84h =+⨯=所以当水深为1.2m 时,横断面水中的面积为3.842m .17.(1)依题意,当04x <≤时()2v x =;当420x <≤时,()v x 是关于x 的一次函数,假设()(0)v x ax b a =+≠则42200a b a b +=⎧⎨+=⎩,解得0.1252.5a b =-⎧⎨=⎩所以()2,040.125 2.5,420x v x x x <≤⎧=⎨-+<≤⎩. (2)当04x <≤时()()()2028v x f x x v x x =⇒<=⋅=≤;当420x <≤时()()20.125 2.50.125 2.5v x x f x x x =-+⇒=-+当()2.51020.125x =-=⨯-时,()f x 取得最大值()1012.5f =. 因为12.58>,所以当x =10时,鱼的年生长量()f x 可以达到最大,最大值为12.53/千克米.18.(1)由题意知,平均每吨二氧化碳的处理成本为180000180000200220020022y x x x x x=+-≥⋅-=; 当且仅当1800002x x = ,即400x = 时等号成立 故该当每月处理量为400吨时,才能使每吨的平均处理成本最低为200元.(2)不获利,设该单位每个月获利为S 元,则2211100100200800003008000022S x y x x x x x ⎛⎫=-=--+=-+- ⎪⎝⎭()21300350002x =--- 因为[]400,600x ∈,则[]80000,40000S ∈--故该当单位每月不获利,需要国家每个月至少补贴40000元才能不亏损.19.(1)当产量小于或等于50万盒时20020018010020300y x x x =---=-当产量大于50万盒时222002006035001403700y x x x x x =----=-+-故销售利润y (万元)关于产量x (万盒)的函数关系式为220300,050,N 1403700,50x x y x x x x -≤≤⎧=∈⎨-+->⎩(2)当050x ≤≤时2050300700y ≤⨯-=;当50x >时21403700y x x =-+-当140702x ==时,21403700y x x =-+-取到最大值,为1200. 因为7001200<,所以当产量为70万盒时,该企业所获利润最大.20.(1)解:由题意知当120x =(辆/千米)时,0v =(千米/小时)代入80150k v x=--,解得2400k = 所以60,030240080,30120150x v x x <≤⎧⎪=⎨-<≤⎪-⎩. 当030x <≤时,6040v =≥,符合题意;当30120x <≤时,令24008040150x-≥-,解得90x ≤,所以3090x <≤. 所以,若车流速度v 不小于40千米/小时,则车流密度x 的取值范围是(]0,90.(2)解:由题意得60,030240080,30120150x x y x x x x <≤⎧⎪=⎨-<≤⎪-⎩当030x <≤时,60y x =为增函数,所以1800y ≤,当30x =时等号成立;当30120x <≤时 ()()2150180150450024004500808080180150150150150x x x y x x x x x --+--⎡⎤⎛⎫=-==--+ ⎪⎢⎥---⎝⎭⎣⎦ 4800(35)3667≤-≈. 当且仅当4500150150x x-=-,即30(55)83x =-≈时等号成立. 所以,隧道内车流量的最大值约为3667辆/小时,此时车流密度约为83辆/千米.。

高中数学必修一全册同步训练及解析(共64页)

高中数学必修一全册同步训练及解析(共64页)

高中数学必修一同步训练及解析1.下列所给关系正确的个数是( ) ①π∈R ;②3∉Q ;③0∈N *;④|-4|∉N *. A .1 B .2 C .3 D .4解析:选B.①②正确,③④错误.2.下列各组集合,表示相等集合的是( ) ①M ={(3,2)},N ={(2,3)}; ②M ={3,2},N ={2,3}; ③M ={(1,2)},N ={1,2}. A .① B .② C .③D .以上都不对解析:选B.①中M 中表示点(3,2),N 中表示点(2,3),②中由元素的无序性知是相等集合,③中M 表示一个元素:点(1,2),N 中表示两个元素分别为1,2. 3.用描述法表示不等式x <-x -3的解集为________.答案:{x |x <-x -3}(或{x |x <-32})4.集合A ={x ∈N|2x 2-x -1=0}用列举法表示为__________.解析:解方程2x 2-x -1=0,得x =1或x =-12.又因为x ∈N ,则A ={1}.答案:{1}[A 级 基础达标]1.下面几个命题中正确命题的个数是( ) ①集合N *中最小的数是1; ②若-a ∉N *,则a ∈N *;③若a ∈N *,b ∈N *,则a +b 的最小值是2; ④x 2+4=4x 的解集是{2,2}. A .0 B .1 C .2 D .3解析:选C.N *是正整数集,最小的正整数是1,故①正确;当a =0时,-a ∉N *,但a ∉N *,故②错;若a ∈N *,则a 的最小值是1,又b ∈N *,b 的最小值也是1,当a 和b 都取最小值时,a +b 取最小值2,故③正确;由集合元素的互异性知④是错误的.故①③正确,故选C.2.设集合M ={x ∈R|x ≤33},a =26,则( ) A .a ∉M B .a ∈M C .{a }∈MD .{a |a =26}∈M解析:选B.(26)2-(33)2=24-27<0, 故26<3 3.所以a ∈M .3.若集合M ={a ,b ,c },M 中的元素是△ABC 的三边长,则△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形解析:选D.根据元素的互异性可知,a ≠b ,a ≠c ,b ≠c .4.已知①5∈R ;②13∈Q ;③0={0};④0∉N ;⑤π∈Q ;⑥-3∈Z.正确的个数为________.解析:③错误,0是元素,{0}是一个集合;④0∈N ;⑤π∉Q ,①②⑥正确. 答案:35.已知x 2∈{1,0,x },则实数x =________.解析:∵x 2∈{1,0,x },∴x 2=1或x 2=0或x 2=x . ∴x =±1或x =0.但当x =0或x =1时,不满足元素的互异性. ∴x =-1. 答案:-16.设集合B ={x ∈N|62+x∈N}.(1)试判断元素1和2与集合B 的关系; (2)用列举法表示集合B .解:(1)当x =1时,62+1=2∈N ;当x =2时,62+2=32∉N ,∴1∈B,2∉B .(2)令x =0,3,4代入62+x∈N 检验,可得B ={0,1,4}.[B 级 能力提升]7.设集合A ={2,3,4},B ={2,4,6},若x ∈A 且x ∉B ,则x 等于( ) A .2 B .3 C .4 D .6解析:选B.∵x ∈{2,3,4}且x ∉{2,4,6},∴x =3.8.定义集合运算:A *B ={z |z =xy ,x ∈A ,y ∈B },设A ={1,2},B ={0,2},则集合A *B 的所有元素之和为( ) A .0 B .2 C .3 D .6解析:选D.∵z =xy ,x ∈A ,y ∈B ,∴z 的取值有:1×0=0,1×2=2,2×0=0,2×2=4, 故A *B ={0,2,4},∴集合A *B 的所有元素之和为:0+2+4=6.9.已知集合A ={x |2x +a >0},且1∉A ,则实数a 的取值范围是________. 解析:∵1∉A ,∴2+a ≤0,即a ≤-2. 答案:a ≤-2 10.用适当的方法表示下列集合: (1)所有被3整除的整数;(2)图中阴影部分点(含边界)的坐标的集合(不含虚线); (3)满足方程x =|x |,x ∈Z 的所有x 的值构成的集合B . 解:(1){x |x =3n ,n ∈Z};(2){(x ,y )|-1≤x ≤2,-12≤y ≤1,且xy ≥0};(3)B ={x |x =|x |,x ∈Z}.11.已知集合A ={x |ax 2+2x +1=0}.(1)若A 中只有一个元素,求a 的取值范围; (2)若A 中至少有一个元素,求a 的取值范围. 解:(1)∵方程ax 2+2x +1=0只有一个解,若a =0,则x =-12;若a ≠0,则Δ=0,解得a =1,此时x =-1. ∴a =0或a =1时,A 中只有一个元素. (2)①A 中只有一个元素时,a =0或a =1.②A 中有两个元素时,⎩⎪⎨⎪⎧a ≠0,Δ>0,解得a <1且a ≠0.综上,a ≤1.高中数学必修一同步训练及解析1.下列集合中是空集的是( ) A .{x |x 2+3=3}B .{(x ,y )|y =-x 2,x ,y ∈R}C .{x |-x 2≥0}D .{x |x 2-x +1=0,x ∈R}解析:选D.∵方程x 2-x +1=0的判别式Δ<0,∴方程无实根,故D 选项为空集,A 选项中只有一个元素0,B 选项中有无数个元素,即抛物线y =-x 2上的点,C 选项中只有一个元素0.2.已知集合A ={x |-1<x <2},B ={x |0<x <1},则( ) A .A >B B .A B C .B A D .A ⊆B解析:选C.利用数轴(图略)可看出x ∈B ⇒x ∈A ,但x ∈A ⇒x ∈B 不成立. 3.下列关系中正确的是________. ①∅∈{0};②∅;③{0,1}⊆{(0,1)};④{(a ,b )}={(b ,a )}. 解析:∅,∴①错误;空集是任何非空集合的真子集,②正确;{(0,1)}是含有一个元素的点集,③错误;{(a ,b )}与{(b ,a )}是两个不等的点集,④错误,故正确的是②. 答案:②4.图中反映的是四边形、梯形、平行四边形、菱形、正方形这五种几何图形之间的关系,则A 、B 、C 、D 、E 分别代表的图形的集合为__________________________.解析:由以上概念之间的包含关系可知:集合A ={四边形},集合B ={梯形},集合C ={平行四边形},集合D ={菱形},集合E ={正方形}.答案:A ={四边形},B ={梯形},C ={平行四边形},D ={菱形},E ={正方形}[A 级 基础达标]1.如果A ={x |x >-1},那么( ) A .0⊆A B .{0}∈A C .∅∈A D .{0}⊆A解析:选D.A 、B 、C 的关系符号是错误的. 2.若{1,2}={x |x 2+bx +c =0},则( ) A .b =-3,c =2 B .b =3,c =-2 C .b =-2,c =3 D .b =2,c =-3解析:选A.由题意知1,2为方程x 2+bx +c =0的两个根,所以⎩⎪⎨⎪⎧1+2=-b ,1×2=c ,解得b =-3,c =2.3.符合条件{a P ⊆{a ,b ,c }的集合P 的个数是( ) A .2 B .3 C .4 D .5解析:选B.集合P 中一定含有元素a ,且不能只有a 一个元素,用列举法列出即可.4.设x ,y ∈R ,A ={(x ,y )|y =x },B ={(x ,y )|yx=1},则A 、B 间的关系为________.解析:(0,0)∈A ,而(0,0)∉B ,故B A . 答案:B A5.已知集合A ={-1,3,2m -1},集合B ={3,m 2}.若B ⊆A ,则实数m =________. 解析:由于B ⊆A ,则应有m 2=2m -1,于是m =1. 答案:16.已知集合A ={(x ,y )|x +y =2,x ,y ∈N},试写出A 的所有子集. 解:∵A ={(x ,y )|x +y =2,x ,y ∈N}, ∴A ={(0,2),(1,1),(2,0)}.∴A 的子集有:∅,{(0,2)},{(1,1)},{(2,0)},{(0,2),(1,1)},{(0,2),(2,0)},{(1,1),(2,0)},{(0,2),(1,1),(2,0)}.[B 级 能力提升]7.集合M ={x |x 2+2x -a =0,x ∈R},且∅M ,则实数a 的取值范围是( ) A .a ≤-1B .a ≤1C .a ≥-1D .a ≥1解析:选C.∅M 等价于方程x 2+2x -a =0有实根.即Δ=4+4a ≥0.解得a ≥-1. 8.设A ={x |1<x <2},B ={x |x <a },若A B ,则a 的取值范围是( ) A .a ≥2 B .a ≤1 C .a ≥1 D .a ≤2解析:选A.A ={x |1<x <2},B ={x |x <a },要使A B ,则应有a ≥2.9.设A ={x ∈R|x 2-5x +m =0},B ={x ∈R|x -3=0},且B ⊆A ,则实数m =________,集合A =________.解析:B ={3}.∵B ⊆A ,∴3∈A ,即9-15+m =0.∴m =6.解方程x 2-5x +6=0,得x 1=2,x 2=3, ∴A ={2,3}. 答案:6 {2,3}10.设M ={x |x 2-2x -3=0},N ={x |ax -1=0},若N ⊆M ,求所有满足条件的a 的集合. 解:由N ⊆M ,M ={x |x 2-2x -3=0}={-1,3}, 得N =∅或N ={-1}或N ={3}. 当N =∅时,ax -1=0无解,∴a =0.当N ={-1}时,由1a =-1,得a =-1.当N ={3}时,由1a =3,得a =13.∴满足条件的a 的集合为{-1,0,13}.11.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}. (1)若A B ,求a 的取值范围; (2)若B ⊆A ,求a 的取值范围. 解:(1)若AB ,由图可知,a >2.(2)若B ⊆A ,由图可知,1≤a ≤2.高中数学必修一同步训练及解析1.已知集合A ={x |x >1},B ={x |-1<x <2},则A ∩B =( ) A .{x |-1<x <2} B .{x |x >-1}C .{x |-1<x <1}D .{x |1<x <2}解析:选D.如图所示.A ∩B ={x |x >1}∩{x |-1<x <2}={x |1<x <2}.2.已知集合M={1,2,3},N={2,3,4}则()A.M⊆NB.N⊆MC.M∩N={2,3}D.M∪N={1,4}解析:选C.∵M={1,2,3},N={2,3,4}.∴选项A、B显然不对.M∪N={1,2,3,4},∴选项D错误.又M∩N={2,3},故选C.3.设M={0,1,2,4,5,7},N={1,4,6,8,9},P={4,7,9},则(M∩N)∪(M∩P)=________.解析:M∩N={1,4},M∩P={4,7},所以(M∩N)∪(M∩P)={1,4,7}.答案:{1,4,7}4.已知集合A={x|x≥2},B={x|x≥m},且A∪B=A,则实数m的取值范围是________.解析:A∪B=A,即B⊆A,∴m≥2.答案:m≥2[A级基础达标]1.下列关系Q∩R=R∩Q;Z∪N=N;Q∪R=R∪Q;Q∩N=N中,正确的个数是() A.1B.2C.3D.4解析:选C.只有Z∪N=N是错误的,应是Z∪N=Z.2.已知集合P={x|x2≤1},M={a}.若P∪M=P,则a的取值范围是()A.(-∞,-1]B.[1,+∞)C.[-1,1]D.(-∞,-1]∪[1,+∞)解析:选C.由P={x|x2≤1}得P={x|-1≤x≤1}.由P∪M=P得M⊆P.又M={a},∴-1≤a≤1.3.已知集合M={x|-2≤x-1≤2}和N={x|x=2k-1,k∈N+}的关系的韦恩(Venn)图,如图所示,则阴影部分所示的集合的元素共有()A.3个B.2个C.1个D.无穷多个解析:选B.M={x|-1≤x≤3},集合N是全体正奇数组成的集合,则阴影部分所示的集合为M∩N={1,3},即阴影部分所示的集合共有2个元素.4.已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m=________.解析:∵A∩B={2,3},∴3∈B,∴m=3.答案:35.设集合A={x|-1<x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是________.解析:利用数轴分析可知,a>-1.答案:a>-16.已知集合A ={x |⎩⎪⎨⎪⎧3-x >03x +6>0},集合B ={m |3>2m -1},求:A ∩B ,A ∪B .解:∵A ={x |⎩⎪⎨⎪⎧3-x >03x +6>0}={x |-2<x <3},B ={m |3>2m -1}={m |m <2}.用数轴表示集合A ,B ,如图.∴A ∩B ={x |-2<x <2},A ∪B ={x |x <3}.[B 级 能力提升]7.设A ={(x ,y )|(x +2)2+(y +1)2=0},B ={-2,-1},则必有( ) A .A ⊇B B .A ⊆B C .A =B D .A ∩B =∅解析:选D.A ={(x ,y )|(x +2)2+(y +1)2=0}={(-2,-1)}是点集,B ={-2,-1}是数集,所以A ∩B =∅.8.若集合A ={参加2012年奥运会的运动员},集合B ={参加2012年奥运会的男运动员},集合C ={参加2012年奥运会的女运动员},则下列关系正确的是( ) A .A ⊆B B .B ⊆CC .A ∩B =CD .B ∪C =A解析:选D.参加2012年奥运会的运动员是参加2012年奥运会的男运动员和女运动员的总和,即A =B ∪C .9.满足条件{1,3}∪M ={1,3,5}的集合M 的个数是________. 解析:∵{1,3}∪M ={1,3,5},∴M 中必须含有5, ∴M 可以是{5},{5,1},{5,3},{1,3,5},共4个. 答案:410.已知集合M ={x |2x -4=0},集合N ={x |x 2-3x +m =0}, (1)当m =2时,求M ∩N ,M ∪N ; (2)当M ∩N =M 时,求实数m 的值. 解:由题意得M ={2}.(1)当m =2时,N ={x |x 2-3x +2=0}={1,2}, 则M ∩N ={2},M ∪N ={1,2}. (2)∵M ∩N =M ,∴M ⊆N . ∵M ={2},∴2∈N .∴2是关于x 的方程x 2-3x +m =0的解,即4-6+m =0,解得m =2. 11.集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}. (1)求A ∩B ;(2)若集合C ={x |2x +a >0},满足B ∪C =C ,求实数a 的取值范围. 解:(1)∵B ={x |x ≥2}, ∴A ∩B ={x |2≤x <3}.(2)C ={x |x >-a2},B ∪C =C ⇒B ⊆C ,∴-a2<2,∴a >-4.高中数学必修一同步训练及解析1.若P={x|x<1},Q={x|x>-1},则()A.P⊆QB.Q⊆PC.∁R P⊆QD.Q⊆∁R P解析:选C.∵P={x|x<1},∴∁R P={x|x≥1},∴∁R P⊆Q.2.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有() A.3个B.4个C.5个D.6个解析:选A.∵U=A∪B={3,4,5,7,8,9},A∩B={4,7,9},∴∁U(A∩B)={3,5,8}.故选A.3.设集合U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},则(A∪B)∩(∁U C)=________. 解析:∵A∪B={2,3,4,5},∁U C={1,2,5},∴(A∪B)∩(∁U C)={2,3,4,5}∩{1,2,5}={2,5}.答案:{2,5}4.已知全集U={2,3,a2-a-1},A={2,3},若∁U A={1},则实数a的值是________.解析:∵U={2,3,a2-a-1},A={2,3},∁U A={1},∴a2-a-1=1,即a2-a-2=0,解得a=-1或a=2.答案:-1或2[A级基础达标]1.设集合U={1,2,3,4},M={1,2,3},N={2,3,4},则∁U(M∩N)=()A.{1,2}B.{2,3}C.{2,4}D.{1,4}解析:选D.∵M={1,2,3},N={2,3,4},∴M∩N={2,3}.又∵U={1,2,3,4},∴∁U(M∩N)={1,4}.2.已知集合U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.M∩N={4,6}B.M∪N=UC.(∁U N)∪M=UD.(∁U M)∩N=N解析:选B.由U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},得M∩N={4,5},(∁U N)∪M ={3,4,5,7},(∁U M)∩N={2,6},M∪N={2,3,4,5,6,7}=U.3.集合A={x|-1≤x≤2},B={x|x<1},则A∩(∁R B)=()A.{x|x>1}B .{x |x ≥1}C .{x |1<x ≤2}D .{x |1≤x ≤2}解析:选D.∵B ={x |x <1},∴∁R B ={x |x ≥1}, ∴A ∩∁R B ={x |1≤x ≤2}.4.已知全集U ={x |1≤x ≤5},A ={x |1≤x <a },若∁U A ={x |2≤x ≤5},则a =________. 解析:∵A ∪∁U A =U ,∴A ={x |1≤x <2}.∴a =2. 答案:25.设集合A ={x |0≤x ≤4},B ={y |y =x -3,-1≤x ≤3},则∁R (A ∩B )=________. 解析:∵A ={x |0≤x ≤4}, B ={y |-4≤y ≤0}, ∴A ∩B ={0},∴∁R (A ∩B )={x |x ∈R ,且x ≠0}. 答案:{x |x ∈R ,且x ≠0}6.已知全集U =R ,A ={x |-4≤x <2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52},求A ∩B ,(∁U B )∪P ,(A ∩B )∩(∁U P ).解:将集合A 、B 、P 表示在数轴上,如图.∵A ={x |-4≤x <2},B ={x |-1<x ≤3}, ∴A ∩B ={x |-1<x <2}. ∵∁U B ={x |x ≤-1或x >3},∴(∁U B )∪P ={x |x ≤0或x ≥52},(A ∩B )∩(∁U P )={x |-1<x <2}∩{x |0<x <52}={x |0<x <2}.[B 级 能力提升]7.已知集合U =R ,集合A ={x |x <-2或x >4},B ={x |-3≤x ≤3},则(∁U A )∩B =( ) A .{x |-3≤x ≤4} B .{x |-2≤x ≤3}C .{x |-3≤x ≤-2或3≤x ≤4}D .{x |-2≤x ≤4}解析:选B.∁U A ={x |-2≤x ≤4}.由图可知:(∁U A )∩B ={x |-2≤x ≤3}. 8.已知全集U =Z ,集合A ={x |x 2=x },B ={-1,0,1,2},则图中的阴影部分所表示的集合等于( )A .{-1,2}B .{-1,0}C .{0,1}D .{1,2}解析:选A.依题意知A ={0,1},(∁U A )∩B 表示全集U 中不在集合A 中,但在集合B 中的所有元素,故图中的阴影部分所表示的集合等于{-1,2}.9.设全集U ={0,1,2,3},A ={x ∈U |x 2+mx =0},若∁U A ={1,2},则实数m 的值为________.解析:如图,∵U ={0,1,2,3}, ∁U A ={1,2}, ∴A ={0,3},∴方程x 2+mx =0的两根为x 1=0,x 2=3, ∴0+3=-m ,即m =-3. 答案:-310.设全集U ={x |0<x <10,x ∈N *},且A ∩B ={3},A ∩(∁U B )={1,5,7},(∁U A )∩(∁U B )={9},求A ,B .解:如图所示,由图可得A ={1,3,5,7},B ={2,3,4,6,8}.11.设集合A ={x |x +m ≥0},B ={x |-2<x <4},全集U =R ,且(∁U A )∩B =∅,求实数m 的取值范围.解:由已知A ={x |x ≥-m }, ∴∁U A ={x |x <-m },∵B ={x |-2<x <4},(∁U A )∩B =∅, ∴-m ≤-2,即m ≥2, ∴m 的取值范围是m ≥2.高中数学必修一同步训练及解析1.函数y =1x的定义域是( )A .RB .{0}C .{x |x ∈R ,且x ≠0}D .{x |x ≠1}解析:选C.要使1x 有意义,必有x ≠0,即y =1x的定义域为{x |x ∈R ,且x ≠0}.2.下列各组函数表示相等函数的是( )A .f (x )=⎩⎪⎨⎪⎧x , x >0-x , x <0与g (x )=|x |B .f (x )=2x +1与g (x )=2x 2+xxC .f (x )=|x 2-1|与g (t )=(t 2-1)2D .f (x )=x 2与g (x )=x解析:选C.A :f (x )的定义域是(-∞,0)∪(0,+∞),g (x )的定义域是R ,定义域不同. B :f (x )的定义域是R ,g (x )的定义域是{x |x ≠0},定义域不同.C :f (x )=|x 2-1|,g (t )=|t 2-1|,虽然表示自变量的字母不同,但定义域与对应法则都相同.D :f (x )=|x |,g (x )=x ,对应法则不相同.3.若[a,3a -1]为一确定区间,则a 的取值范围是________.解析:由题意3a -1>a ,则a >12.答案:(12,+∞)4.函数y =x 2-2x (-2≤x ≤4,x ∈Z)的值域为________.解析:∵-2≤x ≤4,x ∈Z ,∴x 取-2,-1,0,1,2,3,4.可知y 的取值为8,3,0,-1,0,3,8,∴值域为{-1,0,3,8}. 答案:{-1,0,3,8}[A 级 基础达标]1.下列对应关系中能构成实数集R 到集合{1,-1}的函数的有( ) ①②③A .①B .②C .③D .①③解析:选B.①中将自变量分为两类:一类是奇数,另一类是偶数.而实数集中除奇数、偶数之外,还有另外的数,如无理数,它们在集合{1,-1}中无对应元素;③中实数集除整数、分数之外,还有无理数,它们在集合{1,-1}中无对应元素;②符合题干要求.2.函数y =31-1-x的定义域是( )A .(-∞,1)B .(-∞,0)∪(0,1]C .(-∞,0)∪(0,1)D .[1,+∞)解析:选B.由⎩⎨⎧1-x ≥0,1-1-x ≠0,解得⎩⎪⎨⎪⎧x ≤1,x ≠0.即得x ≤1且x ≠0,故选B.3.区间[5,8)表示的集合是( )A .{x |x ≤5或x >8}B .{x |5<x ≤8}C .{x |5≤x <8}D .{x |5≤x ≤8} 答案:C4.函数y =x 2x 2+1(x ∈R)的值域是________.解析:y =x 2x 2+1=1-1x 2+1,∴y 的值域为[0,1). 答案:[0,1)5.设f (x )=11-x,则f [f (x )]=________.解析:f [f (x )]=11-11-x =11-x -11-x=x -1x .(x ≠0,且x ≠1)答案:x -1x(x ≠0,且x ≠1)6.求下列函数的定义域: (1)f (x )=2x -1-3-x +1;(2)f (x )=4-x 2x +1.解:(1)要使函数f (x )有意义,应有⎩⎪⎨⎪⎧2x -1≥0,3-x ≥0⇔⎩⎪⎨⎪⎧x ≥12,x ≤3⇔12≤x ≤3.∴f (x )的定义域是[12,3].(2)函数f (x )的定义域是⎩⎨⎧⎭⎬⎫x |⎩⎪⎨⎪⎧ 4-x 2≥0x +1≠0⇔⎩⎨⎧⎭⎬⎫x |⎩⎪⎨⎪⎧-2≤x ≤2x ≠-1 ⇔{x |-2≤x ≤2,且x ≠-1}.∴f (x )的定义域是[-2,-1)∪(-1,2].[B 级 能力提升]7.若函数f (x )=ax 2-1,a 为一个正常数,且f [f (-1)]=-1,那么a 的值是( ) A .1 B .0 C .-1 D .2解析:选A.f (-1)=a -1,f [f (-1)]=f (a -1) =a (a -1)2-1=-1,所以a =1. 8.下列说法中正确的为( )A .y =f (x )与y =f (t )表示同一个函数B .y =f (x )与y =f (x +1)不可能是同一函数C .f (x )=1与f (x )=x 0表示同一函数D .定义域和值域都相同的两个函数是同一个函数解析:选A.两个函数是否是同一个函数与所取的字母无关,判断两个函数是否相同,主要看这两个函数的定义域和对应关系是否相同.9.已知函数f (x )对任意实数x 1,x 2,都有f (x 1x 2)=f (x 1)+f (x 2)成立,则f (0)=________,f (1)=________.解析:令x 1=x 2=0,有f (0×0)=f (0)+f (0),解得f (0)=0; 令x 1=x 2=1,有f (1×1)=f (1)+f (1),解得f (1)=0. 答案:0 010.求下列函数的值域. (1)y =x +1;(2)y =xx +1.解:(1)因为函数的定义域为{x |x ≥0}, ∴x ≥0,∴x +1≥1.所以函数y =x +1的值域为[1,+∞).(2)∵y =x x +1=1-1x +1,且定义域为{x |x ≠-1},∴1x +1≠0,即y ≠1. 所以函数y =xx +1的值域为{y |y ∈R ,且y ≠1}.11.已知函数f (x )=x 2+x -1, (1)求f (2),f (a );(2)若f (a )=11,求a 的值; (3)求f (x )的值域.解:(1)f (2)=22+2-1=5, f (a )=a 2+a -1.(2)∵f (a )=a 2+a -1,∴若f (a )=11,则a 2+a -1=11, 即(a +4)(a -3)=0. ∴a =-4或a =3.(3)∵f (x )=x 2+x -1=(x +12)2-54≥-54,∴f (x )的值域为[-54,+∞).高中数学必修一同步训练及解析1.下列点中不在函数y =2x +1的图象上的是( )A .(1,1)B .(-2,-2)C .(3,12)D .(-1,0) 答案:D2.已知一次函数的图象过点(1,0),和(0,1),则此一次函数的解析式为( ) A .f (x )=-x B .f (x )=x -1 C .f (x )=x +1 D .f (x )=-x +1解析:选D.设一次函数的解析式为f (x )=kx +b (k ≠0),由已知得⎩⎪⎨⎪⎧ k +b =0,b =1,∴⎩⎪⎨⎪⎧k =-1,b =1.∴f (x )=-x +1.3.已知f (x )=2x +3,且f (m )=6,则m 等于________.解析:2m +3=6,m =32.答案:324.已知f (2x )=x 2-x -1,则f (x )=________.解析:令2x =t ,则x =t2,∴f (t )=⎝⎛⎭⎫t 22-t 2-1,即f (x )=x 24-x 2-1.答案:x 24-x 2-1[A 级 基础达标]1.已知f (x )是反比例函数,且f (-3)=-1,则f (x )的解析式为( )A .f (x )=-3xB .f (x )=3xC .f (x )=3xD .f (x )=-3x 答案:B2.若f (1-2x )=1-x 2x 2(x ≠0),那么f (12)等于( )A .1B .3C .15D .30解析:选C.法一:令1-2x =t ,则x =1-t2(t ≠1),∴f (t )=4(t -1)2-1,∴f (12)=16-1=15.法二:令1-2x =12,得x =14,∴f (12)=16-1=15.3.一列货运火车从某站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一站停车,装完货以后,火车又匀加速行驶,一段时间后再次匀速行驶,下列图象可以近似地刻画出火车在这段时间内的速度变化情况的是( )解析:选B.根据题意,知火车从静止开始匀加速行驶,所以只有选项B 、C 符合题意,然后匀速行驶一段时间后又停止了一段时间,所以可以确定选B. 4.已知函数f (x ),g (x )分别由下表给出,x 1 2 3 g (x )321则f [g (1)]的值为________;当g [f (x )]=2时,x =________. 解析:f [g (1)]=f (3)=1; g [f (x )]=2,∴f (x )=2, ∴x =1. 答案:1 15.若一个长方体的高为80 cm ,长比宽多10 cm ,则这个长方体的体积y (cm 3)与长方体的宽x (cm)之间的表达式是________.解析:由题意,知长方体的宽为x cm ,长为(10+x ) cm ,则根据长方体的体积公式,得y =(10+x )x ×80=80x 2+800x .所以y 与x 之间的表达式是y =80x 2+800x (x >0). 答案:y =80x 2+800x (x >0)6.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x ). 解:设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17,∴a =2,b =7,∴f (x )=2x +7.[B 级 能力提升]7.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( ) A .3x +2 B .3x -2 C .2x +3 D .2x -3解析:选B.设f (x )=kx +b (k ≠0), ∵2f (2)-3f (1)=5,2f (0)-f (-1)=1, ∴⎩⎪⎨⎪⎧ k -b =5k +b =1,∴⎩⎪⎨⎪⎧k =3b =-2,∴f (x )=3x -2. 8.已知函数f (x )的图象如图所示,则此函数的定义域、值域分别是( ) A .(-3,3);(-2,2) B .[-3,3];[-2,2] C .[-2,2];[-3,3] D .(-2,2);(-3,3)解析:选B.结合f (x )的图象知,定义域为[-3,3],值域为[-2,2]. 9.已知f (x +1)=x +2x ,则f (x )的解析式为________. 解析:∵f (x +1)=x +2x =(x )2+2x +1-1 =(x +1)2-1,∴f (x )=x 2-1.由于x +1≥1,∴f (x )=x 2-1(x ≥1). 答案:f (x )=x 2-1(x ≥1)10.2012年,第三十届夏季奥林匹克运动会在英国伦敦举行,其门票价格从20英磅到2000英磅不等,但最高门票:7月27日开幕式的贵宾票,价格高达2012英磅,折合人民币21352元,是2008年北京奥运会门票的四倍.为鼓励伦敦青少年到现场观看比赛,伦敦奥组委为伦敦市的14000名学生提供了一次免费门票机会,16岁以下青少年儿童的门票价格比最低价门票还要优惠些,有些比赛项目则无需持票观看,如马拉松、三项全能和公路自行车比赛均向观众免费开放.某同学打算购买x 张价格为20英磅的门票(x ∈{1,2,3,4,5},需用y 英磅,试用函数的三种表示方法将y 表示成x 的函数. 解:解析法:y =20x ,x ∈{1,2,3,4,5}. 列表法:图象法:11.作出下列函数的图象: (1)y =x +2,|x |≤3;(2)y =x 2-2,x ∈Z 且|x |≤2.解:(1)因为|x |≤3,所以函数的图象为线段,而不是直线,如图(1). (2)因为x ∈Z 且|x |≤2,所以函数的图象是五个孤立的点,如图(2).高中数学必修一同步训练及解析1.已知集合A ={a ,b },集合B ={0,1},则下列对应不是A 到B 的映射的是( )解析:选C.A 、B 、D 均满足映射的定义,C 不满足A 中任一元素在B 中都有唯一元素与之对应,且A 中元素b 在B 中无元素与之对应.2.设函数f (x )=⎩⎪⎨⎪⎧1-x 2,x ≤1,x 2+x -2,x >1,则f [1f (2)]的值为( )A.1516B .-2716C.89 D .18解析:选A.∵f (2)=22+2-2=4,∴f [1f (2)]=f (14)=1-(14)2=1516.3.已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≤00,x >0,则f (2)+f (-2)=________.答案:44.已知M ={正整数},N ={正奇数},映射f :a →b =2a -1,(a ∈M ,b ∈N ),则在映射f 下M 中的元素11对应N 中的元素是________. 答案:21[A 级 基础达标]1.下列给出的式子是分段函数的是( )①f (x )=⎩⎪⎨⎪⎧x 2+1,1≤x ≤5,2x ,x ≤1.②f (x )=⎩⎪⎨⎪⎧x +1,x ∈R ,x 2,x ≥2.③f (x )=⎩⎪⎨⎪⎧2x +3,1≤x ≤5,x 2,x ≤1.④f (x )=⎩⎪⎨⎪⎧x 2+3,x <0,x -1,x ≥5.A .①②B .①④C .②④D .③④2.已知f (x )=⎩⎪⎨⎪⎧x +2(x ≤-1),x 2(-1<x <2),2x (x ≥2),若f (x )=3,则x 的值是( )A .1B .1或32C .1,32或±3 D. 3解析:选D.该分段函数的三段各自的值域为(-∞,1],[0,4),[4,+∞),而3∈[0,4), ∴f (x )=x 2=3,x =±3,而-1<x <2,∴x = 3.3.函数y =x +|x |x的图象为( )解析:选C.y =x +|x |x =⎩⎪⎨⎪⎧x +1 (x >0)x -1 (x <0),再作函数图象.4.如图,函数f (x )的图象是折线段ABC ,其中点A ,B ,C 的坐标分别为(0,4),(2,0),(4,2),则f (f (f (2)))=________.解析:f (2)=0,f (f (2))=f (0)=4,f (f (f (2)))=f (4)=2. 答案:25.已知f (x )=⎩⎪⎨⎪⎧2x ,x <0x 2,x ≥0,若f (x )=16,则x 的值为________.解析:当x <0时,2x =16,无解;当x ≥0时,x 2=16,解得x =4. 答案:46.已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,2x ,-1<x <2,x 22,x ≥2.(1)求f (-74);(2)求f (14);(3)求f (4);(4)若f (a )=3,求a 的值.解:(1)f (-74)=-74+2=14;(2)f (14)=2×14=12;(3)f (4)=422=8;(4)因为当x ≤-1时,x +2≤1,当x ≥2时,x 22≥2,当-1<x <2时,-2<2x <4.所以⎩⎪⎨⎪⎧-1<a <22a =3⇒a =32,或⎩⎪⎨⎪⎧a ≥2a 22=3⇒a 2=6⇒a = 6.综上,若f (a )=3,则a 的值为32或 6.[B 级 能力提升]7.若函数f (x )=⎩⎪⎨⎪⎧2x +2 (-1<x <0)-12x (0≤x <2),3 (x ≥2)则f (x )的值域是( )A .(-1,2)B .(-1,3]C .(-1,2]D .(-1,2)∪{3}解析:选D.对f (x )来说,当-1<x <0时,f (x )=2x +2∈(0,2);当0≤x <2时,f (x )=-12x ∈(-1,0];当x ≥2时,f (x )=3.故函数y =f (x )的值域为(-1,2)∪{3}.故选D.8.映射f :A →B ,A ={-3,-2,-1,1,2,3,4},对于任意a ∈A ,在集合B 中和它对应的元素是|a |,则集合B 中的元素个数至少是( ) A .4 B .5 C .6 D .7解析:选A.对于A 中的元素±1,B 中有1与之对应;A 中的元素±2,B 中有一个元素2与之对应;A 中的元素±3,B 中有一个元素3与之对应;A 中的元素4,B 中有一个元素4与之对应,所以B 中的元素个数至少是4.9.设f :A →B 是从集合A 到B 的映射,其中A =B ={(x ,y )|x ,y ∈R},f :(x ,y )→(x +y ,x -y ),那么A 中元素(1,3)所对应的B 中的元素为________,B 中元素(1,3)在A 中有________与之对应.解析:(1,3)→(1+3,1-3),即(4,-2). 设A 中与(1,3)对应的元素为(x ,y ), 则⎩⎪⎨⎪⎧ x +y =1x -y =3,解得⎩⎪⎨⎪⎧x =2,y =-1. 答案:(4,-2) (2,-1)10.根据函数f (x )的图象如图所示,写出它的解析式.解:当0≤x ≤1时,f (x )=2x ;当1<x <2时,f (x )=2;当x ≥2时,f (x )=3. 所以解析式为f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,2,1<x <2,3,x ≥2.11.某市乘出租车计费规定:2公里以内5元,超过2公里不超过8公里的部分按每公里1.6元计费,超过8公里以后按每公里2.4元计费.若甲、乙两地相距10公里,则乘出租车从甲地到乙地共需要支付乘车费为多少元? 解:设乘出租车走x 公里,车费为y 元, 由题意得y =⎩⎪⎨⎪⎧5,0<x ≤25+1.6×(x -2),2<x ≤8,14.6+2.4×(x -8),x >8即y =⎩⎪⎨⎪⎧5,0<x ≤21.8+1.6x ,2<x ≤8,2.4x -4.6,x >8因为甲、乙两地相距10公里,即x =10>8,所以车费y =2.4×10-4.6=19.4(元). 所以乘出租车从甲地到乙地共需要支付乘车费为19.4元.高中数学必修一同步训练及解析1.函数y =-x 2的单调减区间是( ) A .[0,+∞) B .(-∞,0] C .(-∞,0) D .(-∞,+∞)解析:选A.根据y =-x 2的图象可得.2.下列函数中,在区间(0,1)上是增函数的是( ) A .y =|x | B .y =3-xC .y =1xD .y =-x 2+4解析:选A.∵-1<0,所以一次函数y =-x +3在R 上递减;反比例函数y =1x在(0,+∞)上递减;二次函数y =-x 2+4在(0,+∞)上递减.故选A.3.如图所示为函数y =f (x ),x ∈[-4,7]的图象,则函数f (x )的单调递增区间是________.答案:[-1.5,3],[5,6]4.证明:函数y =xx +1在(-1,+∞)上是增函数.证明:设x 1>x 2>-1,则y 1-y 2=x 1x 1+1-x 2x 2+1=x 1-x 2(x 1+1)(x 2+1),∵x 1>x 2>-1,∴x 1-x 2>0,x 1+1>0,x 2+1>0,∴x 1-x 2(x 1+1)(x 2+1)>0.即y 1-y 2>0,y 1>y 2, ∴y =xx +1在(-1,+∞)上是增函数.[A 级 基础达标]1.下列说法中正确的有( )①若x 1,x 2∈I ,当x 1<x 2时,f (x 1)<f (x 2),则y =f (x )在I 上是增函数; ②函数y =x 2在R 上是增函数;③函数y =-1x在定义域上是增函数;④y =1x的单调递减区间是(-∞,0)∪(0,+∞).A .0个B .1个C .2个D .3个解析:选A.函数的单调性的定义是指定义在区间I 上任意两个值x 1,x 2,强调的是任意,从而①不对;②y =x 2在x ≥0时是增函数,x <0时是减函数,从而y =x 2在整个定义域上不具有单调性;③y =-1x 在整个定义域内不是单调递增函数.如-3<5,而f (-3)>f (5);④y =1x的单调递减区间不是(-∞,0)∪(0,+∞),而是(-∞,0)和(0,+∞),注意写法. 2.函数y =x 2-3x +2的单调减区间是( ) A .[0,+∞) B .[1,+∞) C .[1,2]D .(-∞,32]解析:选D.由二次函数y =x 2-3x +2图象的对称轴为x =32且开口向上,所以单调减区间为(-∞,32],故选D.3.函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),则实数m 的取值范围是( ) A .(-∞,-3) B .(0,+∞) C .(3,+∞)D .(-∞,-3)∪(3,+∞)解析:选C.因为函数y =f (x )在R 上为增函数,且f (2m )>f (-m +9),所以2m >-m +9,即m >3,故选C.4.函数f (x )=|x -3|的单调递增区间是________,单调递减区间是________. 解析:f (x )=⎩⎪⎨⎪⎧x -3,x ≥3,-x +3,x <3.其图象如图所示,则f (x )的单调递增区间是[3,+∞),单调递减区间是(-∞,3]. 答案:[3,+∞) (-∞,3]5.若函数f (x )=ax +1x +2在区间(-2,+∞)上单调递增,则a 的取值范围为________.解析:设任意的x 1,x 2∈(-2,+∞),且x 1<x 2,f (x 1)-f (x 2)=ax 1+1x 1+2-ax 2+1x 2+2=(x 1-x 2)(2a -1)(x 1+2)(x 2+2). ∵f (x )在(-2,+∞)上单调递增, ∴f (x 1)-f (x 2)<0. ∴(x 1-x 2)(2a -1)(x 1+2)(x 2+2)<0, ∵x 1-x 2<0,x 1+2>0,x 2+2>0,∴2a -1>0,∴a >12.答案:(12,+∞)6.作出函数y =x |x |+1的图象并写出其单调区间. 解:由题可知y =⎩⎪⎨⎪⎧x 2+1,x ≥0,-x 2+1,x <0,作出函数的图象如图所示,所以原函数的单调增区间为(-∞,+∞).[B 级 能力提升]7.对于函数y =f (x ),在给定区间上有两个数x 1,x 2,且x 1<x 2,使f (x 1)<f (x 2)成立,则y =f (x )( ) A .一定是增函数 B .一定是减函数 C .可能是常数函数 D .单调性不能确定解析:选D.由单调性定义可知,不能用特殊值代替一般值. 8.若函数f (x )在(-∞,+∞)上为减函数,则( ) A .f (a )>f (2a ) B .f (a 2)<f (a )C .f (a 2-1)<f (a )D .f (a 2+1)<f (a )解析:选D.∵a 2+1-a =(a -12)2+34>0,∴a 2+1>a .∴f (a 2+1)<f (a ).故选D.9.已知函数f (x )为区间[-1,1]上的增函数,则满足f (x )<f (12)的实数x 的取值范围为________.解析:由题设得⎩⎪⎨⎪⎧-1≤x ≤1,x <12,即-1≤x <12.答案:-1≤x <1210.作出函数f (x )=|2x -1|的图象并写出其单调区间. 解:当x >12时,f (x )=2x -1,当x ≤12时,f (x )=-2x +1,所以f (x )=⎩⎨⎧2x -1,x >12,-2x +1,x ≤12,画出函数的图象如图所示,所以原函数的单调增区间为[12,+∞),减区间为(-∞,12].11.若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0. (1)求b 与c 的值;(2)试证明函数f (x )在区间(2,+∞)上是增函数.解:(1)∵f (1)=0,f (3)=0, ∴⎩⎪⎨⎪⎧1+b +c =09+3b +c =0,解得b =-4,c =3. (2)证明:∵f (x )=x 2-4x +3, ∴设x 1,x 2∈(2,+∞)且x 1<x 2,f (x 1)-f (x 2)=(x 21-4x 1+3)-(x 22-4x 2+3)=(x 21-x 22)-4(x 1-x 2) =(x 1-x 2)(x 1+x 2-4),∵x 1-x 2<0,x 1>2,x 2>2, ∴x 1+x 2-4>0. ∴f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2).∴函数f (x )在区间(2,+∞)上为增函数.高中数学必修一同步训练及解析1.设函数f (x )=2x -1(x <0),则f (x )( ) A .有最大值 B .有最小值 C .是增函数 D .是减函数 解析:选C.画出函数f (x )=2x -1(x <0)的图象,如右图中实线部分所示.由图象可知,函数f (x )=2x -1(x <0)是增函数,无最大值及最小值.故选C.2.函数y =1x -1在[2,3]上的最小值为( )A .2 B.12 C.13D .-12解析:选B.函数y =1x -1在[2,3]上为减函数,∴y min =13-1=12.3.函数f (x )=1x 在[1,b ](b >1)上的最小值是14,则b =________.解析:∵f (x )在[1,b ]上是减函数,∴f (x )在[1,b ]上的最小值为f (b )=1b =14,∴b =4. 答案:44.函数y =2x 2+2,x ∈N *的最小值是________. 解析:∵x ∈N *,∴x 2≥1, ∴y =2x 2+2≥4,即y =2x 2+2在x ∈N *上的最小值为4,此时x =1. 答案:4[A 级 基础达标]1.函数f (x )=x 2-4x +3,x ∈[1,4],则f (x )的最大值为( ) A .-1 B .0 C .3 D .-2解析:选C.∵f (x )在[1,2]上是减函数,在[2,4]上是增函数,又f (1)=0,f (4)=3. ∴f (x )的最大值是3.2.函数f (x )=⎩⎪⎨⎪⎧2x +6,x ∈[1,2]x +7,x ∈[-1,1],则f (x )的最大值、最小值分别为( )A .10、6B .10、8C .8、6D .以上都不对解析:选A.f (x )在x ∈[-1,2]上为增函数,f (x )max =f (2)=10,f (x )min =f (-1)=6. 3.函数f (x )=9-ax 2(a >0)在[0,3]上的最大值为( ) A .9 B .9(1-a ) C .9-a D .9-a 2解析:选A.x ∈[0,3]时f (x )为减函数,f (x )max =f (0)=9. 4.函数f (x )=x -2,x ∈{0,1,2,4}的最大值为________.解析:函数f (x )自变量的取值是几个孤立的数,用观察法即得它的最大值为f (4)=2. 答案:25.函数f (x )=x 2+bx +1的最小值是0,则实数b =________. 解析:f (x )是二次函数,二次项系数1>0,则最小值为f (-b 2)=b 24-b 22+1=0,解得b =±2. 答案:±26.已知函数f (x )=⎩⎨⎧x 2 (-12≤x ≤1)1x(1<x ≤2),求f (x )的最大、最小值.解析:当-12≤x ≤1时,由f (x )=x 2,得f (x )的最大值为f (1)=1,最小值为f (0)=0;当1<x ≤2时,由f (x )=1x,得f (2)≤f (x )<f (1),即12≤f (x )<1. 综上f (x )max =1,f (x )min =0.[B 级 能力提升]7.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )的最小值为-2,则f (x )的最大值为( )A .-1B .0C .1D .2解析:选C.因为f (x )=-(x -2)2+4+a ,由x ∈[0,1]可知当x =0时,f (x )取得最小值,及-4+4+a =-2,所以a =-2,所以f (x )=-(x -2)2+2,当x =1时,f (x )取得最大值为-1+2=1.故选C.8.某公司在甲、乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x ,其中销售量单位:辆.若该公司在两地共销售15辆,则能获得的最大利润为( ) A .90万元 B .60万元 C .120万元 D .120.25万元解析:选C.设公司在甲地销售x 辆,则在乙地销售15-x 辆,公司获利为 L =-x 2+21x +2(15-x ) =-x 2+19x +30=-(x -192)2+30+1924,∴当x =9或10时,L 最大为120万元.9.函数y =ax +1在区间[1,3]上的最大值为4,则a =______.解析:若a <0,则函数y =ax +1在区间[1,3]上是减函数,并且在区间的左端点处取得最大值,即a +1=4,解得a =3,不满足a <0,舍去;若a >0,则函数y =ax +1在区间[1,3]上是增函数,当x =3时,y =4,∴3a +1=4,∴a =1. 综上:a =1. 答案:110.已知函数f (x )=1a -1x(a >0).(1)证明f (x )在(0,+∞)上单调递增;(2)若f (x )的定义域、值域都是[12,2],求实数a 的值.解:(1)证明:设x 2>x 1>0,则f (x 2)-f (x 1)=(1a -1x 2)-(1a -1x 1)=1x 1-1x 2=x 2-x 1x 1x 2. ∵x 2>x 1>0,∴x 2-x 1>0, ∴x 2-x 1x 1x 2>0,即f (x 2)>f (x 1). ∴f (x )在(0,+∞)上单调递增.(2)∵f (x )在(0,+∞)上单调递增,且定义域和值域均为[12,2],∴⎩⎨⎧f (12)=1a -2=12,f (2)=1a -12=2,∴a =25.11.如图所示,动物园要建造一面靠墙的两间一样大小的长方形动物笼舍,可供建造围墙的材料总长为30 m ,问每间笼舍的宽度x 为多少m 时,才能使得每间笼舍面积y 达到最大?每间最大面积为多少? 解:设总长为b , 由题意知b =30-3x ,可得y =12xb ,即y =12x (30-3x )=-32(x -5)2+37.5,x ∈(0,10).当x =5时,y 取得最大值37.5,即每间笼舍的宽度为5 m 时,每间笼舍面积y 达到最大,最大面积为37.5 m 2.高中数学必修一同步训练及解析1.下列函数为偶函数的是( ) A .f (x )=|x |+xB .f (x )=x 2+1xC .f (x )=x 2+xD .f (x )=|x |x2解析:选D.只有D 符合偶函数定义.2.f (x )=x 3+1x的图象关于( )A .原点对称B .y 轴对称C .y =x 对称D .y =-x 对称解析:选A.x ≠0,f (-x )=(-x )3+1-x=-f (x ),f (x )为奇函数,关于原点对称.3.函数f (x )=x 3+ax ,f (1)=3,则f (-1)=________. 解析:显然f (x )是奇函数,∴f (-1)=-f (1)=-3. 答案:-34.若函数f (x )=(x +1)(x -a )为偶函数,则a =________. 解析:f (x )=x 2+(1-a )x -a 为偶函数, ∴1-a =0,a =1. 答案:1[A 级 基础达标]1.下列命题中,真命题是( )A .函数y =1x是奇函数,且在定义域内为减函数B .函数y =x 3(x -1)0是奇函数,且在定义域内为增函数C .函数y =x 2是偶函数,且在(-3,0)上为减函数D .函数y =ax 2+c (ac ≠0)是偶函数,且在(0,2)上为增函数解析:选C.选项A 中,y =1x在定义域内不具有单调性;B 中,函数的定义域不关于原点对称;D 中,当a <0时,y =ax 2+c (ac ≠0)在(0,2)上为减函数,故选C. 2.下面四个结论:①偶函数的图象一定与y 轴相交; ②奇函数的图象一定通过原点; ③偶函数的图象关于y 轴对称;④既是奇函数又是偶函数的函数是f (x )=0. 其中正确的个数为( ) A .1 B .2 C .3 D .4解析:选A.偶函数的图象关于y 轴对称,但不一定与y 轴相交,如y =1x2,故①错,③对;奇函数的图象不一定通过原点,如y =1x,故②错;既奇又偶的函数除了满足f (x )=0,还要满足定义域关于原点对称,④错.故选A.3.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx ( ) A .是奇函数 B .是偶函数C .既是奇函数又是偶函数D .是非奇非偶函数 解析:选A.g (x )=x (ax 2+bx +c )=xf (x ),g (-x )=-x ·f (-x )=-x ·f (x )=-g (x ),所以g (x )=ax 3+bx 2+cx 是奇函数;因为g (x )-g (-x )=2ax 3+2cx 不恒等于0,所以g (-x )=g (x )不恒成立.故g (x )不是偶函数.4.如图给出奇函数y =f (x )的局部图象,则f (-2)的值是________.解析:f (-2)=-f (2)=-32.答案:-325.已知函数f (x )=ax 2+bx +3a +b 为偶函数,其定义域为[a -1,2a ],则a =________,b =________.解析:∵f (x )是定义域为[a -1,2a ]的偶函数,∴a -1=-2a ,∴a =13.又f (-x )=f (x ), 即13x 2-bx +1+b =13x 2+bx +1+b . ∴b =0.答案:136.判断下列函数的奇偶性. (1)f (x )=x -1+1-x ; (2)f (x )=|x |+x 2;(3)f (x )=⎩⎪⎨⎪⎧x -1 (x >0)0 (x =0).x +1 (x <0)解:(1)∵⎩⎪⎨⎪⎧x -1≥01-x ≥0.∴x =1.定义域为{1},不关于原点对称,∴函数f (x )为非奇非偶函数.(2)f (x )=|x |+x 2=2|x |, 定义域为(-∞,+∞),关于原点对称.且有f (-x )=2|-x |=2|x |=f (x ), ∴f (x )为偶函数.(3)法一:显然定义域为(-∞,+∞),关于原点对称. 当x >0时,-x <0,则f (-x )=1-x =-f (x ), 当x <0时,-x >0,则f (-x )=-x -1=-f (x ). 则f (-0)=f (0)=-f (0)=0. ∴f (x )为奇函数.法二:作出函数f (x )的图象,可知f (x )的图象关于原点对称,所以f (x )为奇函数.[B 级 能力提升]7.若f (x )为偶函数,且当x ≥0时,f (x )≥2,则当x ≤0时( ) A .f (x )≤2 B .f (x )≥2C .f (x )≤-2D .f (x )∈R解析:选B.可画出f (x )的大致图象:易知当x ≤0时,有f (x )≥2.故选B.8.设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( ) A .f (π)>f (-3)>f (-2) B .f (π)>f (-2)>f (-3) C .f (π)<f (-3)<f (-2) D .f (π)<f (-2)<f (-3)解析:选A.∵f (x )为偶函数,且当x ∈[0,+∞)时,f (x )为增函数. 又∵f (-2)=f (2),f (-3)=f (3), 且2<3<π,∴f (2)<f (3)<f (π),即f (-2)<f (-3)<f (π).9.若偶函数f (x )在(-∞,0]上为增函数,则满足f (1)≤f (a )的实数a 的取值范围是________. 解析:由已知偶函数f (x )在(-∞,0]上为增函数, ∴f (x )在(0,+∞)上是减函数,∴f (1)≤f (a )⇔⎩⎪⎨⎪⎧ a >0,1≥a 或⎩⎪⎨⎪⎧a ≤0-1≤a ⇔0<a ≤1,或-1≤a ≤0.。

数学必修一复习题及答案

数学必修一复习题及答案

数学必修一复习题及答案一、选择题1. 下列哪个选项不是实数?A. πB. -3C. √2D. i2. 已知函数f(x) = 2x - 1,求f(3)的值。

A. 4B. 5C. 6D. 73. 集合{1, 2, 3}与{3, 4, 5}的交集是什么?A. {1, 2}B. {3}C. {1, 3}D. {4, 5}4. 如果a > 0且a ≠ 1,那么函数y = log_a x的图像在哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 已知等差数列的首项为3,公差为2,求第5项的值。

A. 9B. 11C. 13D. 15二、填空题6. 函数y = 3x^2 + 2x - 5的顶点坐标是______。

7. 已知等比数列的首项为2,公比为3,求第4项的值是______。

8. 根据题目所给条件,若a + b = 5,a - b = 3,求a和b的值,a = ______,b = ______。

9. 将函数y = sin(x)的图像向左平移π/4个单位,新的函数表达式为______。

10. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,根据勾股定理,三角形ABC是______三角形。

三、解答题11. 证明:如果一个数列是等差数列,那么它的前n项和S_n可以表示为S_n = n/2 * (a_1 + a_n)。

12. 解不等式:2x^2 - 5x + 3 ≤ 0。

13. 已知函数f(x) = x^3 - 3x^2 + 2x,求导数f'(x),并找出函数的极值点。

14. 已知圆的方程为(x - 3)^2 + (y - 4)^2 = 25,求圆心和半径。

15. 解方程组:\[\begin{cases}x + y = 5 \\2x - y = 1\end{cases}\]四、答案1. D2. B3. B4. A5. C6. (-1/3, -43/9)7. 548. a = 4, b = 19. y = sin(x + π/4)10. 直角11. 证明略12. x ≤ 3/2 或x ≥ 113. f'(x) = 3x^2 - 6x + 2,极值点为x = 1, x = 2/314. 圆心(3, 4),半径515. 解得 x = 2, y = 3本复习题涵盖了数学必修一的主要内容,包括实数、函数、集合、数列、不等式、导数、圆的方程和方程组等,旨在帮助学生全面复习并掌握相关知识点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.1 集合的含义及其表示重难点:集合的含义与表示方法,用集合语言表达数学对象或数学内容;区别元素与集合等概念及其符号表示;用集合语言(描述法)表达数学对象或数学内容;集合表示法的恰当选择.考纲要求:①了解集合的含义、元素与集合的“属于”关系;②能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.经典例题:若x ∈R ,则{3,x ,x 2-2x }中的元素x 应满足什么条件? 当堂练习:1.下面给出的四类对象中,构成集合的是( )A.某班个子较高的同学B.长寿的人 D.倒数等于它本身的数 2.下面四个命题正确的是( ) A.10以内的质数集合是{0,3,5,7}B.由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}C.方程2210x x -+=的解集是{1,1} D.0与{0}表示同一个集合3.下面四个命题:(1)集合N 中最小的数是1;(2)若 -a ∉Z ,则a ∈Z ;(3)所有的正实数组成集合R +;(4)由很小的数可组成集合A ;其中正确的命题有( )个A .1B .2C .3D .44.下面四个命题: (1)零属于空集;(2)方程x 2-3x+5=0的解集是空集;(3)方程x 2-6x+9=0的解集是单元集;(4)不等式2x-6>0的解集是无限集;其中正确的命题有( )个 A .1 B .2 C .3 D .4 5.平面直角坐标系内所有第二象限的点组成的集合是( ) A.{x,y 且0,0x y <>} B.{(x,y)0,0x y <>} C.{(x,y) 0,0x y <>} D.{x,y 且0,0x y <>} 6.用符号∈或∉填空:0__________{0}, a__________{a},π__________Q ,21__________Z ,-1__________R , 0__________N , 0 Φ.7.由所有偶数组成的集合可表示为{x x = }.8.用列举法表示集合D={2(,)8,,x y y x x N y N=-+∈∈}为.9.当a满足时, 集合A={30,x x a x N+-<∈}表示单元集.10.对于集合A={2,4,6},若a∈A,则6-a∈A,那么a的值是__________.11.数集{0,1,x2-x}中的x不能取哪些数值?12.已知集合A={x∈N|126x-∈N },试用列举法表示集合A.13.已知集合A={2210,,x ax x a R x R++=∈∈}.(1)若A中只有一个元素,求a的值; (2)若A中至多有一个元素,求a的取值范围.14.由实数构成的集合A满足条件:若a∈A, a≠1,则11A a∈-,证明:(1)若2∈A,则集合A必还有另外两个元素,并求出这两个元素;(2)非空集合A中至少有三个不同的元素。

重难点:子集、真子集的概念;元素与子集,属于与包含间的区别;空集是任何非空集合的真子集的理解;补集的概念及其有关运算.考纲要求:①理解集合之间包含与相等的含义,能识别给定集合的子集;②在具体情景中,了解全集与空集的含义;③理解在给定集合中一个子集的补集的含义,会求给定子集的补集.经典例题:已知A={x|x=8m+14n ,m 、n ∈Z },B={x|x=2k ,k ∈Z },问:(1)数2与集合A 的关系如何? (2)集合A 与集合B 的关系如何?当堂练习:1.下列四个命题:①Φ={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中正确的有( ) A.0个B.1个C.2个D.3个2.若M ={x |x >1},N ={x |x ≥a},且N ⊆M ,则( ) A.a >1 B.a ≥1 C.a <1 D.a ≤13.设U 为全集,集合M 、N U ,且M ⊆N ,则下列各式成立的是( )A .uM ⊇uN B .uM ⊆M C .uM ⊆uN D .uM ⊆N4.已知全集U={x |-2≤x ≤1},A={x |-2<x <1 },B={x |x 2+x-2=0},C={x |-2≤x <1,}则( )A .C ⊆AB .C ⊆uA C .uB =CD .uA =B5.已知全集U={0,1,2,3}且uA ={2},则集合A 的真子集共有( )A.3个B.5个C.8个D.7个6.若A B ,A C ,B={0,1,2,3},C={0,2,4,8},则满足上述条件的集合A 为________. 7.如果M={x |x=a 2+1,a ∈N*},P={y |y=b 2-2b+2,b ∈N +},则M 和P 的关系为M______P .8.设集合M={1,2,3,4,5,6},A ⊆M ,A 不是空集,且满足:a ∈A ,则6-a ∈A ,则满足条件的集合A 共有_________个.9.已知集合A={13x -≤≤},uA={|37x x <≤},uB={12x -≤<},则集合B= .10.集合A={x|x 2+x -6=0},B={x|mx +1=0},若B A ,则实数m 的值是 . 11.判断下列集合之间的关系:(1)A={三角形},B={等腰三角形},C={等边三角形}; (2)A={2|20x x x --=},B={|12x x -≤≤},C={2|44x x x +=}; (3)A={10|110x x ≤≤},B={2|1,x x t t R =+∈},C={|213x x +≥}; (4)11{|,},{|,}.2442k k A x x k Z B x x k Z ==+∈==+∈12.已知集合{}2|(2)10A x x p x x R =+++=∈,,且⊆A {负实数},求实数p 的取值范围.13..已知全集U={1,2,4,6,8,12},集合A={8,x,y,z},集合B={1,xy,yz,2x},其中6,12z ≠,若A=B,求uA..14.已知全集U={1,2,3,4,5},A={x ∈U|x 2-5qx +4=0,q ∈R}.(1)若uA=U ,求q 的取值范围; (2)若uA 中有四个元素,求uA 和q 的值;(3)若A 中仅有两个元素,求u A 和q 的值.重难点:并集、交集的概念及其符号之间的区别与联系.考纲要求:①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;②能使用韦恩图(Venn )表达集合的关系及运算. 经典例题:已知集合A={}20,x x x -= B={}2240,x ax x -+=且A ⋂B=B ,求实数a 的取值范围.当堂练习: 1.已知集合{}{}{}2220,0,2Mx x px N x x x q M N =++==--=⋂=且,则q p ,的值为 ( ).A .3,2p q =-=-B .3,2p q =-=C .3,2p q ==-D .3,2p q == 2.设集合A ={(x ,y )|4x +y =6},B ={(x ,y )|3x +2y =7},则满足C ⊆A ∩B 的集合C 的个数是( ). A .0B .1C .2D .33.已知集合{}{}|35|141A x x B x a x a =-≤≤=+≤≤+,,A B B ⋂=且,B φ≠,则实数a 的取值范围是( )..1.01A a B a ≤≤≤ .0.41C a D a ≤-≤≤4.设全集U=R ,集合{}{}()()0,()0,0()f x M x f x N xg x g x =====则方程的解集是( ).A.MB.M ∩(uN ) C.M ∪(uN ) D.M N ⋃5.有关集合的性质:(1) u(A ⋂B)=(uA)∪(uB ); (2)u(A ⋃B)=(uA)⋂(uB );(3)A ⋃ (uA)=U;(4) A ⋂ (uA)=Φ.其中正确的个数有( )个.A.1B.2C.3D.46.已知集合M={x |-1≤x <2},N={x |x-a ≤0},若M ∩N ≠Φ,则a 的取值范围是 . 7.已知集合A={x |y=x 2-2x-2,x ∈R },B={y |y=x 2-2x +2,x ∈R },则A ∩B= .8.已知全集{}1,2,3,4,5,U A =⋂且(uB){}1,2,=uA){}4,5B ⋂=, ,A B φ⋂≠则A= ,B= .9.表示图形中的阴影部分 . 10.在直角坐标系中,已知点集A=2(,)21y x y x -=-,B={}(,)2x y y x =,则(uA) ⋂ B= .11.已知集合M={}{}{}2222,2,4,3,2,46,2a a N a a a a M N +-=++-+⋂=且,求实数a 的的值.12.已知集合{}{}220,60,,A x x bx c B x x mx A B B A =++==++=⋃=且B ⋂={}2,求实数b,c,m 的值.13.已知A ⋂B={3},(uA)∩B={4,6,8},A ∩(uB)={1,5},(uA)∪(uB)={*10,,3x x x N x <∈≠},试求u(A ∪B),A ,B .14.已知集合A=}{240x R x x ∈+=,B=}{222(1)10x R x a x a ∈+++-=,且A ∪B=A ,试求a 的取值范围.ABC§1.4 单元测试 1.设A={x|x ≤4},,则下列结论中正确的是( )(A ){a} A (B )a ⊆A (C ){a}∈A (D )a ∉A 2.若{1,2} A ⊆{1,2,3,4,5},则集合A 的个数是( ) (A )8 (B )7 (C )4 (D )3 3.下面表示同一集合的是( )(A )M={(1,2)},N={(2,1)} (B )M={1,2},N={(1,2)} (C )M=Φ,N={Φ} (D )M={x|2210}x x -+=,N={1} 4.若P ⊆U ,Q ⊆U ,且x ∈C U (P ∩Q ),则( )(A )x ∉P 且x ∉Q (B )x ∉P 或x ∉Q (C )x ∈C U (P ∪Q) (D )x ∈C U P 5. 若M ⊆U ,N ⊆U ,且M ⊆N ,则( )(A )M ∩N=N (B )M ∪N=M (C )C U N ⊆C U M (D )C U M ⊆C U N 6.已知集合M={y|y=-x 2+1,x ∈R},N={y|y=x 2,x ∈R},全集I=R ,则M ∪N 等于( ) (A ){(x,y)|x=1,,}22y x y R ±=∈ (B ){(x,y)|x 1,,}22y x y R ≠±≠∈(C ){y|y ≤0,或y ≥1} (D ){y|y<0, 或y>1}7.50名学生参加跳远和铅球两项测试,跳远和铅球测试成绩分别及格40人和31人,两项测试均不及格的有4人,则两项测试成绩都及格的人数是( )(A )35 (B )25 (C )28 (D )15 8.设x,y ∈R,A={}(,)x y y x =,B= {}(,)1y x y x=,则A 、B 间的关系为( )(A )A B (B )B A (C )A=B (D )A ∩B=Φ9. 设全集为R ,若M={}1x x ≥ ,N= {}05x x ≤<,则(C U M )∪(C U N )是( ) (A ){}0x x ≥ (B ) {}15x x x <≥或 (C ){}15x x x ≤>或 (D ) {}05x x x <≥或 10.已知集合{|31,},{|32,}M x x m m Z N y y n n Z ==+∈==+∈,若00,,x M y N ∈∈ 则00y x 与集合,M N 的关系是 ( ) (A )00y x M ∈但N ∉(B )00y x N ∈但M ∉(C )00y x M ∉且N ∉(D )00y x M ∈且N ∈ 11.集合U ,M ,N ,P(A )M ∩(N ∪P ) (B )M ∩C U (N ∪P )(C )M ∪C U (N ∩P ) (D )M ∪C U (N ∪P ) 12.设I 为全集,A ⊆I,B A,则下列结论错误的是( )(A )C I AC I B (B )A ∩B=B (C )A ∩C I B =Φ (D ) C I A ∩B=Φ13.已知x ∈{1,2,x 2},则实数x=__________.14.已知集合M={a,0},N={1,2},且M ∩N={1},那么M ∪N 的真子集有 个.⊂ ≠ ⊂ ≠15.已知A={-1,2,3,4};B={y|y=x2-2x+2,x∈A},若用列举法表示集合B,则B= .16.设{}A B为一个“理A B=,则称(,)2,31,2,3,4I=,A与B是I的子集,若{}想配集”,那么符合此条件的“理想配集”的个数是.(规定(,)B A是A B与(,)两个不同的“理想配集”)17.已知全集U={0,1,2,…,9},若(C U A)∩(C U B)={0,4,5},A∩(C U B)={1,2,8},A ∩B={9},试求A∪B.18.设全集U=R,集合A={}1,y y x x A=+∈,试求C U B, A∪B, A∩B,A∩(C U B),-<<,B={}14x x( C U A) ∩(C U B).19.设集合A={x|2x2+3px+2=0};B={x|2x2+x+q=0},其中p,q,x∈R,当A∩B={}12时,求p的值和A∪B.20.设集合A={}2(,)462x y y x x b a=++-,B={}(,)2x y y x a =+,问:(1) a 为何值时,集合A ∩B 有两个元素; (2) a 为何值时,集合A ∩B 至多有一个元素.21.已知集合A={}1234,,,a a a a ,B={}22221234,,,a a a a ,其中1234,,,a a a a均为正整数,且1234a a a a <<<,A ∩B={a 1,a 4}, a 1+a 4=10, A ∪B 的所有元素之和为124,求集合A 和B .22.已知集合A={x|x 2-3x+2=0},B={x|x 2-ax+3a -5},若A ∩B=B ,求实数a 的值.§2.1.1 函数的概念和图象重难点:在对应的基础上理解函数的概念并能理解符号“y=f (x )”的含义,掌握函数定义域与值域的求法; 函数的三种不同表示的相互间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及如何选点作图,映射的概念的理解.考纲要求:①了解构成函数的要素,会求一些简单函数的定义域和值域;②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;③了解简单的分段函数,并能简单应用; 经典例题:设函数f (x )的定义域为[0,1],求下列函数的定义域:(1)H (x )=f (x 2+1);(2)G (x )=f (x+m )+f (x -m )(m >0).当堂练习:1.下列四组函数中,表示同一函数的是( )A.(),()f x x g x ==B.2(),()f x x g x ==C.21(),()11x f x g x x x -==+- D.()()f x g x ==2.函数()y f x =的图象与直线x a =交点的个数为( )A.必有一个B.1个或2个C.至多一个D.可能2个以上 3.已知函数1()1f x x =+,则函数[()]f f x 的定义域是( )A.{}1x x ≠B.{}2x x ≠-C.{}1,2x x ≠--D.{}1,2x x ≠-4.函数1()1(1)f x x x =--的值域是( )A.5[,)4+∞ B.5(,4-∞ C.4[,)3+∞ D.4(,3-∞5.对某种产品市场产销量情况如图所示,其中:1l 表示产品各年年产量的变化规律;2l 表示产品各年的销售情况.下列叙述:(1)产品产量、销售量均以直线上升,仍可按原生产计划进行下去; (2)产品已经出现了供大于求的情况,价格将趋跌;(3)产品的库存积压将越来越严重,应压缩产量或扩大销售量;(4)产品的产、销情况均以一定的年增长率递增.你认为较合理的是( ) A .(1),(2),(3) B .(1),(3),(4) C .(2),(4) D .(2),(3)6.在对应法则,,,x y y x b x R y R →=+∈∈中,若25→,则2-→ , →6. 7.函数()f x 对任何x R +∈恒有1212()()()f x x f x f x ⋅=+,已知(8)3f =,则f = .8.规定记号“∆”表示一种运算,即a b a b a b R +∆=+∈,、. 若13k ∆=,则函数()fx k x =∆的值域是___________.9.已知二次函数f(x)同时满足条件: (1) 对称轴是x=1; (2) f(x)的最大值为15;(3) f(x)的两根立方和等于17.则f(x)的解析式是 . 10.函数2522y x x =-+的值域是 .11. 求下列函数的定义域 : (1)()121x f x x =-- (2)0(1)()x f x x x+=-12.求函数y x=13.已知f(x)=x2+4x+3,求f(x)在区间[t,t+1]上的最小值g(t)和最大值h(t).14.在边长为2的正方形ABCD的边上有动点M,从点B开始,沿折线BCDA向A点运动,设M点运动的距离为x,△ABM的面积为S.(1)求函数S=的解析式、定义域和值域;(2)求f[f(3)]的值.B§2.1.2 函数的简单性质重难点:领会函数单调性的实质,明确单调性是一个局部概念,并能利用函数单调性的定义证明具体函数的单调性,领会函数最值的实质,明确它是一个整体概念,学会利用函数的单调性求最值;函数奇偶性概念及函数奇偶性的判定;函数奇偶性与单调性的综合应用和抽象函数的奇偶性、单调性的理解和应用;了解映射概念的理解并能区别函数和映射. 考纲要求:①理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解函数奇偶性的含义;并了解映射的概念; ②会运用函数图像理解和研究函数的性质.经典例题:定义在区间(-∞,+∞)上的奇函数f (x )为增函数,偶函数g (x )在[0,+∞ )上图象与f (x )的图象重合.设a >b >0,给出下列不等式,其中成立的是① f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b ) ③f (a )-f (-b )>g (b )-g (-a ) ④f (a )-f (-b )<g (b )-g (-a )A .①④B .②③C .①③D .②④ 当堂练习:1.已知函数f(x)=2x 2-mx+3,当()2,x ∈-+∞时是增函数,当(),2x ∈-∞-时是减函数,则f(1)等于 ( )A .-3B .13C .7D .含有m 的变量2.函数()f x =是( )A . 非奇非偶函数 B.既不是奇函数,又不是偶函数奇函数 C.偶函数 D.奇函数 3.已知函数(1)()11f x x x =++-, (2)()f x =2()33f x x x =+,(4)0()()1()R x Q f x x C Q ∈=∈⎧⎨⎩,其中是偶函数的有( )个A .1B .2C .3D .4 4.奇函数y=f (x )(x ≠0),当x ∈(0,+∞)时,f (x )=x-1,则函数f (x-1)的图象( )5.已知映射f:A →B,其中集合A={-3,-2,-1,1,2,3,4},集合B 中的元素都是A 中元素在映射f 下的象,且对任意的A a ∈,在B 中和它对应的元素是a ,则集合B 中元素的个数是( )A .4B .5C .6D .76.函数2()24f x x tx t =-++在区间[0, 1]上的最大值g(t)是 . 7.已知函数f(x)在区间(0,)+∞上是减函数,则2(1)f x x ++与()34f 的大小关系是 .8.已知f(x)是定义域为R 的偶函数,当x<0时, f(x)是增函数,若x 1<0,x 2>0,且12x x <,则1()f x 和2()f x 的大小关系是 .9.如果函数y=f(x+1)是偶函数,那么函数y=f(x)的图象关于_________对称. 10.点(x,y)在映射f作用下的对应点是(,)22y x +-,若点A 在f 作用下的对应点是B(2,0),则点A 坐标是 .13.已知函数2122()x x f x x++=,其中[1,)x ∈+∞,(1)试判断它的单调性;(2)试求它的最小值.14.已知函数2211()a f x aa x+=-,常数0>a 。

相关文档
最新文档