高一数学必修1函数总复习

合集下载

有关高一数学必修一函数知识点总结4篇

有关高一数学必修一函数知识点总结4篇

有关高一数学必修一函数知识点总结4篇有关高一数学必修一函数知识点总结4篇积累通识知识可以让我们对各种事物有更全面、更深刻的理解和把握。

积累专业知识可以让我们在自己的领域内成为专家,获得更高的社会地位和经济回报。

下面就让小编给大家带来高一数学必修一函数知识点总结,希望大家喜欢! 高一数学必修一函数知识点总结篇1知识点总结本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。

函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。

所以理解了前面的几个知识点,函数的图象就迎刃而解了。

一、函数的单调性1、函数单调性的定义2、函数单调性的判断和证明:(1)定义法(2)复合函数分析法(3)导数证明法(4)图象法二、函数的奇偶性和周期性1、函数的奇偶性和周期性的定义2、函数的奇偶性的判定和证明方法3、函数的周期性的判定方法三、函数的图象1、函数图象的作法(1)描点法(2)图象变换法2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。

四、常见考法本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。

选择题、填空题和解答题都有,并且题目难度较大。

在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。

多考查函数的单调性、最值和图象等。

五、误区提醒1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。

2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。

3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。

4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。

5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。

高一数学必修一函数知识点总结篇2一、函数的定义域的常用求法:1、分式的分母不等于零;2、偶次方根的被开方数大于等于零;3、对数的真数大于零;4、指数函数和对数函数的底数大于零且不等于1;5、三角函数正切函数y=tanx中x≠kπ+π/2;6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

高一数学必修一知识点总结归纳(6篇)

高一数学必修一知识点总结归纳(6篇)

高一数学必修一知识点总结归纳1二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质1.抛物线是轴对称图形。

对称轴为直线x=-b/2a。

对称轴与抛物线的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

高一数学必修一知识点总结归纳2对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。

因此指数函数里对于a的规定,同样适用于对数函数。

右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

高一数学必修一第二章基本初等函数知识点总结

高一数学必修一第二章基本初等函数知识点总结

在 R 上是减函数
函数值的 变化情况
a 变化对
图象的影 响
y>1(x > 0), y=1(x=0), 0 < y<1(x < 0)
y> 1(x < 0), y=1(x=0), 0 < y< 1(x > 0)
在第一象限内, a 越大图象越高,越靠近 y 轴; 在第一象限内, a 越小图象越高,越靠近 y 轴; 在第二象限内, a 越大图象越低,越靠近 x 轴. 在第二象限内, a 越小图象越低,越靠近 x 轴.
y
f ( x) 中反解出 x
1
f ( y) ;
③将 x f 1( y ) 改写成 y f 1 ( x) ,并注明反函数的定义域.
( 8)反函数的性质
①原函数 y
f (x) 与反函数 y
1
f ( x) 的图象关于直线 y
x 对称.
②函数 y f ( x) 的定义域、值域分别是其反函数 y f 1 (x ) 的值域、定义域. ③若 P(a,b) 在原函数 y f (x ) 的图象上,则 P' (b, a) 在反函数 y f 1(x ) 的图象上.
③根式的性质: (n a )n a ;当 n 为奇数时, n an
a ;当 n 为偶数时, n an | a |
a (a 0)

a (a 0)
( 2)分数指数幂的概念
m
①正数的正分数指数幂的意义是: a n n a m (a 0, m, n N , 且 n 1) . 0 的正分数指数幂等于 0.②正数的负分数
设一元二次方程 ax 2 bx c 0( a 0) 的两实根为 x1, x2 ,且 x1 x2 .令 f ( x) ax 2 bx c ,从以下四个方
面来分析此类问题:①开口方向: a ②对称轴位置: x

高一数学必修一知识点梳理归纳

高一数学必修一知识点梳理归纳

高一数学必修一知识点梳理归纳高一数学必修一知识点梳理1一、指数函数(一)指数与指数幂的运算1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。

注意:当是奇数时,当是偶数时,2.分数指数幂正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3.实数指数幂的运算性质(二)指数函数及其性质1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.注意:指数函数的底数的取值范围,底数不能是负数、零和1.2、指数函数的图象和性质第三章:第三章函数的应用1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。

即:方程有实数根函数的图象与轴有交点函数有零点.3、函数零点的求法:求函数的零点:1(代数法)求方程的实数根;2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.4、二次函数的零点:二次函数.1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点.高一数学必修一知识点梳理21、函数零点的定义(1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy的零点。

高一数学(必修1)专题复习一函数的单调性和奇偶性

高一数学(必修1)专题复习一函数的单调性和奇偶性

高一数学(必修 1 )专题复习一函数的单一性和奇偶性一.基础知识复习1.函数单一性的定义:I假如函数 f ( x) 对定义域内的区间内的随意 x1 , x2,当 x1 x2时都有f x1 f x2,则 f x 在 I 内是增函数;当x1 x2时都有 f x1 f x2 ,则 f x 在I 内时减函数.2.单一性的定义①的等价形式:设x1 , x2 a,b ,那么f x1 f x20 f x 在x1 x2a,b 是增函数f x1 f x20 f x 在a,b 是减函数;;x1 x2x1 x2 f x1 f x2 0 f ( x) 在a, b是减函数.3.函数单一性的应用:利用定义都是充要性命题.即若 f ( x) 在区间I 上递加(递减)且 f (x1) f ( x2 ) x1 x2( x1, x2 I );若 f ( x) 在区间I 上递递减且 f ( x1 ) f ( x2 ) x1 x2( x1, x2 I ).① 比较函数值的大小;② 可用来解不等式;③ 求函数的值域或最值等.4.证明或判断函数单一性的方法:议论函数单一性一定在其定义域内进行,所以要研究函数单一性一定先求函数的定义域,函数的单一区间是定义域的子集.( 1)用定义.(2)用已知函数的单一性.(3)图象法.( 4)假如f (x) 在区间I上是增(减)函数,那么 f (x) 在I的任一非空子区间上也是增(减)函数(5)复合函数的单一性结论:“同增异减” .(6)奇函数在对称的单一区间内有同样的单一性,偶函数在对称的单一区间内拥有相反的单一性.( 7)在公共定义域内,增函数f (x) 增函数 g(x) 是增函数;减函数 f (x) 减函数 g(x) 是减函数;增函数 f (x) 减函数 g ( x) 是增函数;减函数 f ( x) 增函数 g(x) 是减函数.( 8 )函数y axb(a 0, b 0) 在, b 或 b , 上单一递加;在x a ab,0 或 0,b上是单一递减.a a5 .函数的奇偶性的定义:设y f ( x) ,x A ,如果对于任意 x A,都有f ( x) f ( x) ,则称函数 y f ( x) 为奇函数;如果对于任意x A,都有f ( x) f ( x) ,则称函数 y f ( x) 为偶函数.6.奇偶函数的性质:( 1)函数拥有奇偶性的必需条件是其定义域对于原点对称.( 2)f ( x)是偶函数 f ( x) 的图象对于y 轴对称; f (x)是奇函数 f ( x) 的图象关于原点对称.( 3)f (x) 为偶函数 f ( x) f ( x) f (| x |) .( 4)若奇函数 f ( x) 的定义域包括0 ,则 f (0) 0 .二.训练题目(一)选择题1.以下函数中,在区间( ,0] 上是增函数的是()A .y x2 4x 8 B.y log 1 ( x) C.y 21 D.y 1 x2 x2.若函数f ( x) x2 2(a 1)x 2 在区间,4 上是减函数,则实数 a 的取值范围是A.3, B.,3 C.,3 D.3,3.函数f (x)在递加区间是4,7 ,则 y f (x 3) 的递加区间是()A .2,3 B.1,10 C.1,7 D.4,104.已知函数f x 为 R 上的减函数,则知足 f 1f 1 的实数x的范围是()xA .1,1 B.0,1 C.1,0 0,1 D., 1 1,5.假如奇函数 f ( x) 在区间3,7 上是增函数,且最小值为 5 ,那么在区间7, 3 上是A .增函数且最小值为 5B .增函数且最大值为 5C.减函数且最小值为 5 D .减函数且最大值为 56.若函数f ( x)是定义在R上的偶函数,在( ,0] 上是减函数,且 f (2) 0 ,则使得f ( x) 0的 x 的取值范围是()A .,2 B.2, C., 2 U 2, D.2,27f (x) x2 2ax与g ( x)a 在区间1, 2上都是减函数,则 a 的取值范围是.若x 1A .1, 0 U 0,1B .1, 0 U0,1 C.0,1 D.0,18.若函数f ( x)是定义在R上的奇函数,则函数F (x) f (x) f ( x ) 的图象对于()A .x轴对称B .y轴对称C.原点对称 D .以上均不对9.设f (x)是R上的随意函数,以下表达正确的选项是()A .f ( x) f ( x) 是奇函数B.f ( x) f ( x) 是奇函数C.f ( x) f ( x) 是偶函数D.f ( x) f ( x) 是偶函数10.已知f (x)是偶函数,x R ,当 x 0 时, f ( x)为增函数,若x1 0, x2 0 ,且| x1 | | x2 |,则()A .f ( x1) f ( x2 ) B.f ( x1) f ( x2 )C. f ( x1) f ( x2 ) D. f (x1) f ( x2 )(二)填空题1.已知f (x)是R上的奇函数,且在( 0, ) 上是增函数,则 f ( x) 在 ( ,0) 上的单一性为.2.已知奇函数 f ( x) 在0, 单一递加,且 f (3) 0 ,则不等式 xf ( x) 0 的解集是 .3.已知偶函数 f (x) 在 [0,2] 内单一递减, 若 af ( 1) ,bf (log 1 1) ,c f (lg 0.5) ,2 4则 a 、 b 、 c 之间的大小关系是 _____________ .4.若函数 f ( x) a x b 2 在 0,上为增函数, 则实数 a 、b 的范围是. 5.已知 yf ( x) 为奇函数,若 f (3)f (2) 1 ,则 f ( 2)f ( 3).6.设函数 f (x)(x1)( xa)为奇函数,则 a.x7.已知函数 f ( x) ax 2 bx c , x 2a3,1 是偶函数 ,则 a b.8.已知 f ( x)ax 7 bx 5 cx 3dx 5 ,此中 a, b, c, d 为常数,若 f ( 7)7 ,则f (7) _______.9.已知函数 f ( x) 是定义在 ,上的偶函数,当x,0 时, f ( x) x x 4 ,则当 x0, 时, f ( x).10.定义在 ( 1,1) 上的函数 f ( x)x m是奇函数, 则常数 m ____ ,n_____ .x2nx 1(三)解答题1.写出以下函数的单一区间( 1)y x 2 x 1( 2)y2x 1(3)yx 3 x3x 22.判断以下各函数的奇偶性:( 1) f ( x) 2( x 1) 3 6x(x 2) 2 ( 2) f (x)x 21 x 21( 3) f ( x)1 x 2x 2 x (x0)x 2 2(4) f ( x)x( x 0)x 23.利用单一性的定义: ( 1)证明函数 f ( x)x 3 1 在( -∞, +∞)上是减函数.ax( 2)议论函数f ( x)x 2 1 ( a 0 )在(- 1,1)上的单一性.4.( 1)已知奇函数f ( x) 在定义域 ( 1,1) 内单一递减,且 f (1 m) f (1 m2 ) 0,求m的取值范围.( 2)设定义在2,2上的偶函数f ( x)在区间0,2上单一递减,若f (1 m) f (m),务实数 m 的取值范围.5 f (x)x2 1 ax,此中a 0 1 f ( x)在区间0,.设函数.求证:当 a ≥时,函数上是单一函数.6a 0,f ( x)a 是R 1 2 f (x)在(0, ).设e x 上的偶函数.()求 a 的值;()证明a e x上为增函数.7 .已知函数f ( x)的定义域是x 0 的一切实数,对定义域内的任意x1, x2都有f (x1 x2 ) f (x1) f ( x2 ) ,且当x 1时f ( x) 0, f (2) 1 ,( 1)求证:f (x)是偶函数;( 2)f ( x)在(0,) 上是增函数;( 3)解不等式f (2 x21) 2。

高一数学必修1函数知识点

高一数学必修1函数知识点

高一数学必修1函数知识点一、函数的概念与表示函数是数学中描述变量之间依赖关系的一种基本工具。

在高中数学的学习中,函数的概念和性质是重中之重。

函数通常由两个数集之间的对应关系来定义,其中一个数集中的每一个元素都与另一个数集中的唯一元素相对应。

这种对应关系可以用一个表达式或公式来表示,我们称之为函数的解析式。

例如,y = f(x) = 2x + 3 就是一个简单的线性函数,其中x是自变量,y是因变量,函数的值是自变量x的两倍再加上3。

这个函数可以用图像的形式在坐标系中表示,它的图像是一条直线。

二、函数的性质函数的性质包括单调性、奇偶性、周期性等。

了解函数的性质有助于我们更好地理解函数的行为和特点。

1. 单调性:函数的单调性描述了函数值随自变量变化的趋势。

如果对于所有的x1 < x2,都有f(x1) ≤ f(x2),那么我们称这个函数在该区间上是增函数。

相反,如果f(x1) ≥ f(x2),那么它是减函数。

2. 奇偶性:函数的奇偶性描述了函数图像相对于y轴的对称性。

如果对于所有的x,都有f(-x) = -f(x),那么这个函数是奇函数。

如果f(-x) = f(x),那么这个函数是偶函数。

3. 周期性:周期性是指函数在某个固定的区间内重复其值的特性。

如果存在一个正数T,使得对于所有的x,都有f(x + T) = f(x),那么函数具有周期T。

三、函数的图像函数的图像是函数在坐标系中的表现形式,通过图像我们可以直观地了解函数的性质。

例如,线性函数的图像是一条直线,二次函数的图像是一个抛物线,指数函数的图像随着底数的不同会有不同的形状。

1. 线性函数:y = ax + b (a ≠ 0),其中a是斜率,b是截距。

斜率决定了直线的倾斜程度,截距决定了直线与y轴的交点位置。

2. 二次函数:y = ax^2 + bx + c (a ≠ 0),其图像是一个抛物线。

二次函数的开口方向、顶点位置和对称轴都与系数a、b、c有关。

河北省2020年新高一数学必修一第三章函数的概念与性质知识点总结(人教版)

河北省2020年新高一数学必修一第三章函数的概念与性质知识点总结(人教版)

2020年新高一数学必修一知识点总结第三章函数的概念与性质3.1函数的概念及其表示1.函数是刻画变量间对应关系的数学模型和工具。

2.函数问题的共同特征:①定义域、值域均为非空数集;②定义域和值域间有一个对应关系;③对于定义域中的任何一个自变量,在值域中都有唯一确定的数与之对应。

3.函数中的对应关系可用解析式、图象、表格等表示,为了表示方便,引进符号f 统一表示对应关系。

【注】函数符号()y f x =是由德国数学家莱布尼茨在18世纪引入的。

4.函数定义一般地,设,A B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,记作(),y f x x A =∈。

其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合(){}f x x A ∈叫做函数的值域。

5.函数的三要素:①定义域;②对应关系;③值域。

6.(1)函数的定义域和对应关系可以确定出函数的值域,即一个函数的值域是由它的定义域和对应关系决定的。

(2)没有特别说明的情况下,函数的定义域默认是使其有意义的自变量取值范围。

如y =,则默认定义域是{}0x x ≠(3)实际问题中的函数定义域要根据实际情况定.如:匀速直线运动中位移、速度和时间的关系:()s t v t = ,隐含着0t ≥。

6.几个特殊函数的定义域和值域(1)正比例函数()0y kx k =≠,定义域和值域都为全体实数R。

(2)一次函数()0y kx b k =+≠,定义域和值域都为全体实数R。

(3)反比例函数()0k y k x=≠,定义域为{}0x x ≠,值域为{}0y y ≠。

(4)一元二次函数()20y ax bx c a =++≠,定义域为R。

①当0a >时,值域为244ac b y y a ⎧⎫-⎪⎪≥⎨⎬⎪⎪⎩⎭;②当0a <时,值域为244ac b y y a ⎧⎫-⎪⎪≤⎨⎬⎪⎪⎩⎭。

高一数学必修一函数知识点总结归纳

高一数学必修一函数知识点总结归纳

高一数学必修一函数知识点总结归纳1.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;5.方程k=f(x)有解k∈D(D为f(x)的值域);6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;7.(1)(a>0,a≠1,b>0,n∈R+);(2)logaN=(a>0,a≠1,b>0,b≠1); (3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a>0,a≠1,N>0);8.判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) f (x) log2 (x2 1)
(3) f (x) log0.5 (4x 3)
1.【-1,2)∪(2,+∞) 2.(-∞,-1)∪(1,+∞) 3.(3∕4,1】
练习:
(1) y 1 x 1 2x
(2) y 2 x (x 3)0
x2
2
(3) y log2 (2x 1)
B B,求实数a的取值范围
2.设全集为R,集合 A {x | 1 x 3} ,
B {x | 2x 4 x 2}
(1)求: A∪B,CR(A∩B);(数轴法)
(2)若集合 C {x | 2x a 0} ,满足
B C C ,求实数a的取值范围。
练习
1.集合A={1,0,x},且x2∈A,则x= -1 。
2.已知集合M -1,1,2集合N y y x2 ,x M,
则M∩N是( B )
A 1,2,4 B{1 } C{1,2} DΦ
3.满足{1,2} A {1,2,3,4}的集合A的个数
有3

函数 定义域 值域 单调性 奇偶性 图象
一次函数 反比例函数
二次函数 指数函数 对数函数 幂函数
函数的复习主要抓住两条主线 1、函数的概念及其有关性质。 2、几种初等函数的具体性质。
一、集合的含义与表示
(一)集合的含义 1、集合:把研究对象称为元素,把一些元素组成的
总体叫做集合
2、元素与集合的关系: 或 3、元素的特性:确定性、互异性、无序性 4、常用数集: N 、N、Z、Q、R
(二)集合的表示 1、列举法:把集合中的元素一一列举出来,并
放在{ }内
2、描述法:用文字或公式等描述出元素的特性,
(2)已知A {x 1 x 3}, B x x 0,或x 2 ,
求A B, A B.
例5 设U=1,2,3,4,5,若A B=2,(CUA) B =4,(CUA) (CUB)=1,5,求A.
U
1
3
3 24
5A B
例6 已知集合A {x | 1 x 2}, B {x | x k 0}, (1)若A B ,求k的取值范围 (2)若A B A,求k的取值范围
使函数有意义的x的取值范围。
求 1、分式的分母不为零.
定 2、偶次方根的被开方数不小于零.
义 域
3、零次幂的底数不为零.
的 4、对数函数的真数大于零.
主 5、指、对数函数的底数大于零且不为1. 要
依 6、实际问题中函数的定义域

(一)函数的定义域
1、具体函数的定义域
例7.求下列函数的定义域
(1) f (x) x 1 x2
函数知识结构
函数
函数的概念
函数的基本性质
函数的单调性 函数的最值 函数的奇偶性
一、函数的概念:
B
A
思考:函数 C
值域与集
x1 x2
A.B是两个非空的数集,如合果B的关 按照某种对应法则f,对于 系
y1 y2
x3 集合A中的每一个元素x,
y3
在集合B中都有唯一的元素y
x4
和它对应,这样的对应叫做
y4
当mA B0时B,B ,符合题意;
B A 转化的思想
当m
0时,B
1 m,B A1 m2, 则m
1 ;或2
1 m
3, m
1. 3
m 0,或 1 ,或 1 23
考查集合的运算
例(4 1)已知I {0,1,2,3,4}, A {0,1,2,3}, B {2,3},求CI B,CAB.
并放在{x| }内
3.图示法 Venn图,数轴
二、集合间的基本关系
1、子集:对于两个集合A,B如果集合A中的任
何一个元素都是集合B的元素,我们称A为B的子集.
若集合中元素有n个,则其子集个数为 2n
真子集个数为
2n-1
非空真子集个数为
2n-2
2、集合相等: A B, B A A B
3、空集:规定空集是任何集合的子集,是任
例8 若f (x) lg(ax2 4ax 3)的定义域为R
2、抽象函数的定义域
1)已知函数y=f(x)的定义域是[1,3], 求f(2x-1)的定义域 2)已知函数y=f(x)的定义域是[0,5), 求g(x)=f(x-1)- f(x+1)的定义域
3) y f (x 2)的定义域为{x|x 4},
求y=f(x2 )的定义域
1.[1,2] ; 2.[1,4); 3. [- 2,2 ]
例2 A y y x2 , B x y x2 ,
求A B.
A [0, ), B R, A B [0, ).
考查集合之间的关系
例3 设A x | x2 x 6 0 , B x | mx 1 0,
且A B A,求m的值的集合.
解A: BAA2, 3,由A B A得B A
何非空集合的真子集
三、集合的并集、交集、全集、补集
1、A B {x | x A或x B} A
B
2、A B {x | x A且x B}
3、CU A {x | x U且x A}
全集:某集合含有我们所研究的各个集合的全
部元素,用U表示
题型示例
考查集合的含义
例1 已知x {1, 2, x2},则x 0或2
x5 从A到B的一个函数。
y5
函数的三要素:定义域,值域,对应法则 y6
二、映射的概念
设A,B是两个非空的集合,如果按照某种确定 的对应关系f,使对于集合A中的任意一个元 素x,在集合B中都有唯一确定的元素y于之对 应,那么就称对应f:A→B为集合A到集合B的 一个映射
映射是函数的一种推广,本质是:任一对唯一
返回
扩展提升
1.设 A {x x2 4x 0}, B {x x2 2(a 1)x a2 1 0},
其中 x R ,如果 A
新疆 源头学子小屋
/wxc/ 特级教师
王新敞 wxckt@ 新疆 源头学子小屋 /wxc/ 特级教师 王新敞 wxckt@
第一章 集合与函数概念 第二章 基本初等函数Ⅰ 第三章 函数应用
周口文昌中学数学组 :杨留 杰
永切隔数形数焉数
,
,
——
远莫离形少无能与
联忘分结数形分形
系几家合时时作本
华莫何万百难少两是
罗分代事般入直边相
庚离数休好微觉飞倚




一、知识结构
集合
含义与表示
基本关系
基本运算
列举法 描述法 图示法 包含 相等 并集 交集 补集
相关文档
最新文档