高一数学必修一 函数知识点总结

合集下载

高一数学必修一知识点归纳

高一数学必修一知识点归纳

高一数学必修一知识点归纳第一章二次函数1.1 一元二次方程及其解法一元二次方程的标准形式为ax^2 + bx + c = 0,可以通过公式法、配方法和因式分解等方式求解。

1.2 二次函数的图像及性质二次函数y=ax^2+bx+c的图像为抛物线,开口向上或向下,顶点坐标为(-b/2a,c-b^2/4a)。

1.3 二次函数与一元二次方程的关系一元二次方程可以通过二次函数的图像特征求解,二次函数的各项系数与一元二次方程的特征之间有一一对应的关系。

第二章直线与圆2.1 直线的方程及性质直线的一般方程为Ax+By+C=0,斜率为-k/A,其中k为直线的垂直距离。

2.2 圆的方程及性质圆的标准方程为(x-a)^2 + (y-b)^2 = r^2,其中(a,b)为圆心坐标,r为半径。

第三章度量衡3.1 长度、面积和体积的计算长度、面积和体积的计算包括常见图形的计算公式和应用场景,如长方形、正方形、圆形等。

3.2 单位换算长度、面积和体积的不同单位之间的换算,包括长度单位、面积单位、体积单位等。

第四章三角函数4.1 弧度制下的角度角度的度量单位有度、分、秒和弧度制,弧度制下一周的角度为2π。

4.2 三角函数的概念三角函数包括正弦函数、余弦函数、正切函数等,它们与直角三角形的边和角之间有一一对应的关系。

4.3 三角函数的图像及性质三角函数的图像具有周期性、对称性,通过振幅和周期来描述函数的性质。

第五章概率5.1 随机事件及基本概率随机事件的基本概率计算方法包括等可能概率、加法原理和乘法原理等。

5.2 条件概率及事件的独立性条件概率描述了随机事件在已知其他事件发生的情况下自身发生的概率,事件的独立性指两个事件发生与否互不影响。

第六章初等数论6.1 整除、最大公因数、最小公倍数整除、最大公因数和最小公倍数概念及计算方法,涉及质数、合数、素数分解等内容。

6.2 同余式同余式描述了整数之间的某种特殊的相等关系,同余式的性质包括传递性、对称性和相容性等。

高一数学函数知识点总结(5篇)

高一数学函数知识点总结(5篇)

高一数学函数知识点总结函数的解析式与定义域1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量____有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:①分式的分母不得为零;②偶次方根的被开方数不小于零;③对数函数的真数必须大于零;④指数函数和对数函数的底数必须大于零且不等于1;⑤三角函数中的正切函数y=tan____(____∈R,且k∈Z),余切函数y=cot____(____∈R,____≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.已知f(____)的定义域是[a,b],求f[g(____)]的定义域是指满足a≤g(____)≤b的____的取值范围,而已知f[g(____)]的定义域[a,b]指的是____∈[a,b],此时f(____)的定义域,即g(____)的值域.2、求函数的解析式一般有四种情况(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(____)=a____+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.(3)若题设给出复合函数f[g(____)]的表达式时,可用换元法求函数f(____)的表达式,这时必须求出g(____)的值域,这相当于求函数的定义域.(4)若已知f(____)满足某个等式,这个等式除f(____)是未知量外,还出现其他未知量(如f(-____),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(____)的表达式.高一数学函数知识点总结(二)函数的值域与最值(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(____)与其反函数f-1(____)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(____)变形为关于____的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.如函数的值域是(0,____],最大值是16,无最小值.再如函数的值域是(-∞,-____]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如____>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.高一数学函数知识点总结(三)函数的奇偶性1、函数的奇偶性的定义:对于函数f(____),如果对于函数定义域内的任意一个____,都有f(-____)=-f(____)(或f(-____)=f(____)),那么函数f(____)就叫做奇函数(或偶函数).正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(____)为奇函数或偶函数的必要不充分条件;(2)f(____)=-f(____)或f(-____)=f(____)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).2、奇偶函数的定义是判断函数奇偶性的主要依据。

高一数学函数知识点归纳总结

高一数学函数知识点归纳总结

高一数学函数知识点归纳总结一、函数的基本概念函数的定义:对于两个非空数集A和B,如果存在某种对应关系f,使得A中的每一个元素x都能在B中找到唯一的元素y与之对应,则称f是从A到B的函数,记作y=f(x),其中x是自变量,y是因变量。

函数的定义域:函数y=f(x)中,自变量x的取值范围称为函数的定义域。

函数的值域:函数y=f(x)在定义域内所有函数值的集合称为函数的值域。

二、函数的性质单调性:如果对于定义域内的任意两个数x1和x2(x1<x2),都有f(x1)≤f(x2)或f(x1)≥f(x2),则称函数f(x)在定义域内单调递增或单调递减。

奇偶性:如果对于定义域内的任意x,都有f(-x)=f(x),则称函数f(x)为偶函数;如果对于定义域内的任意x(且x≠0),都有f(-x)=-f(x),则称函数f(x)为奇函数。

周期性:如果存在一个正数T,使得对于定义域内的任意x,都有f(x+T)=f(x),则称函数f(x)具有周期性,T为函数的周期。

三、基本初等函数幂函数:形如y=x^a(a为实数)的函数称为幂函数。

指数函数:形如y=a^x(a>0且a≠1)的函数称为指数函数。

对数函数:如果a^x=N(a>0且a≠1),那么数x叫做以a为底N的对数,记作x=log_aN。

函数y=log_ax(a>0,且a≠1)叫做对数函数。

三角函数:包括正弦函数、余弦函数、正切函数等,它们与角度和弧度有关。

四、函数的应用函数模型的应用:通过建立函数模型来解决实际问题,如最优化问题、增长率问题等。

函数图像的应用:通过观察和分析函数的图像来理解函数的性质和行为,从而解决相关问题。

以上是高一数学函数的主要知识点总结。

在学习过程中,应注重理解和掌握这些基本概念和性质,并通过练习和应用来加深对知识点的理解和记忆。

高一数学函数重点知识点归纳总结三篇

高一数学函数重点知识点归纳总结三篇

高一数学函数重点知识点归纳总结三篇高一新生对数学的函数知识是相当头疼的,函数知识面广,思维灵活,题型更是千奇百怪,要想学好函数,就需要一份准确的函数知识点归纳。

高一函数知识点归纳总结1函数的性质:函数的单调性、奇偶性、周期性单调性:定义:注意定义是相对与某个具体的区间而言。

判定方法有:定义法(作差比较和作商比较)导数法(适用于多项式函数)复合函数法和图像法。

应用:比较大小,证明不等式,解不等式。

奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。

f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数;f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。

判别方法:定义法,图像法,复合函数法应用:把函数值进行转化求解。

周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。

其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.应用:求函数值和某个区间上的函数解析式。

高一函数归纳总结2一:函数及其表示知识点详解文档包含函数的概念、映射、函数关系的判断原则、函数区间、函数的三要素、函数的定义域、求具体或抽象数值的函数值、求函数值域、函数的表示方法等1. 函数与映射的区别:\2. 求函数定义域常见的用解析式表示的函数f(x)的定义域可以归纳如下:①当f(x)为整式时,函数的定义域为R.②当f(x)为分式时,函数的定义域为使分式分母不为零的实数集合。

③当f(x)为偶次根式时,函数的定义域是使被开方数不小于0的实数集合。

④当f(x)为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合。

⑤如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合,即求各部分有意义的实数集合的交集。

⑥复合函数的定义域是复合的各基本的函数定义域的交集。

高一数学一函数知识点总结归纳.docx

高一数学一函数知识点总结归纳.docx

高一数学必修一函数知识点总结归纳1.函数的奇偶性(1)若 f(x) 是偶函数,那么 f(x)=f(-x);(2)若 f(x) 是奇函数, 0 在其定义域内,则 f(0)=0( 可用于求参数);(3)判断函数奇偶性可用定义的等价形式: f(x) ±f( -x)=0 或(f(x)≠0);(4) 若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性 ; 偶函数在对称的单调区间内有相反的单调性 ;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为 [a ,b], 其复合函数f[g(x)] 的定义域由不等式 a≤g(x) ≤b解出即可 ; 若已知 f[g(x)] 的定义域为 [a,b], 求 f(x) 的定义域,相当于 x∈[a,b] 时,求 g(x) 的值域 ( 即f(x) 的定义域 ); 研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定 ; 3.函数图像 ( 或方程曲线的对称性 )(1)证明函数图像的对称性,即证明图像上任意点关于对称中心( 对称轴 ) 的对称点仍在图像上 ;(2)证明图像 C1 与 C2的对称性,即证明 C1 上任意点关于对称中心(对称轴 ) 的对称点仍在 C2上,反之亦然 ;(3) 曲线 C1:f(x,y)=0, 关于 y=x+a(y=-x+a) 的对称曲线 C2的方程为 f(y-a,x+a)=0( 或 f(-y+a,-x+a)=0);(4)曲线 C1:f(x,y)=0 关于点 (a,b) 的对称曲线 C2方程为: f(2a-x,2b-y)=0;(5) 若函数 y=f(x) 对 x∈R时, f(a+x)=f(a-x) 恒成立,则 y=f(x) 图像关于直线 x=a 对称 ;(6)函数 y=f(x-a) 与 y=f(b-x) 的图像关于直线 x=对称 ; 4.函数的周期性(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立 , 则 y=f(x) 是周期为 2a 的周期函数;(2)若 y=f(x) 是偶函数,其图像又关于直线 x=a 对称,则 f(x) 是周期为 2︱a︱的周期函数 ;x=a 对称,则f(x)是周(3) 若 y=f(x) 奇函数,其图像又关于直线期为 4︱a︱的周期函数 ;(4)若 y=f(x) 关于点 (a,0),(b,0) 对称,则 f(x) 是周期为 2 的周期函数 ;(5)y=f(x)的图象关于直线x=a,x=b(a ≠b) 对称,则函数y=f(x)是周期为 2 的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-或f(x+a)=,则y=f(x)是f(x)(周期为 2 的周期函数 ;5. 方程k=f(x)有解k∈D(D 为f(x)的值域 );6.a ≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;7.(1)(a>0,a≠1,b>0,n∈R+);(2)logaN=(a>0,a≠1,b>0,b≠1);(3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a>0,a≠1,N>0);8.判断对应是否为映射时,抓住两点:(1)A 中元素必须都有象且唯一 ;(2)B 中元素不一定都有原象,并且 A 中不同元素在 B中可以有相同的象 ;9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

高一数学必修1函数知识点

高一数学必修1函数知识点

高一数学必修1函数知识点一、函数的概念与表示函数是数学中描述变量之间依赖关系的一种基本工具。

在高中数学的学习中,函数的概念和性质是重中之重。

函数通常由两个数集之间的对应关系来定义,其中一个数集中的每一个元素都与另一个数集中的唯一元素相对应。

这种对应关系可以用一个表达式或公式来表示,我们称之为函数的解析式。

例如,y = f(x) = 2x + 3 就是一个简单的线性函数,其中x是自变量,y是因变量,函数的值是自变量x的两倍再加上3。

这个函数可以用图像的形式在坐标系中表示,它的图像是一条直线。

二、函数的性质函数的性质包括单调性、奇偶性、周期性等。

了解函数的性质有助于我们更好地理解函数的行为和特点。

1. 单调性:函数的单调性描述了函数值随自变量变化的趋势。

如果对于所有的x1 < x2,都有f(x1) ≤ f(x2),那么我们称这个函数在该区间上是增函数。

相反,如果f(x1) ≥ f(x2),那么它是减函数。

2. 奇偶性:函数的奇偶性描述了函数图像相对于y轴的对称性。

如果对于所有的x,都有f(-x) = -f(x),那么这个函数是奇函数。

如果f(-x) = f(x),那么这个函数是偶函数。

3. 周期性:周期性是指函数在某个固定的区间内重复其值的特性。

如果存在一个正数T,使得对于所有的x,都有f(x + T) = f(x),那么函数具有周期T。

三、函数的图像函数的图像是函数在坐标系中的表现形式,通过图像我们可以直观地了解函数的性质。

例如,线性函数的图像是一条直线,二次函数的图像是一个抛物线,指数函数的图像随着底数的不同会有不同的形状。

1. 线性函数:y = ax + b (a ≠ 0),其中a是斜率,b是截距。

斜率决定了直线的倾斜程度,截距决定了直线与y轴的交点位置。

2. 二次函数:y = ax^2 + bx + c (a ≠ 0),其图像是一个抛物线。

二次函数的开口方向、顶点位置和对称轴都与系数a、b、c有关。

高一数学必修1函数知识点总结

高一数学必修1函数知识点总结

函数,,,A B A x B y f B A B x y x f y y x y →映射定义:设,是两个非空的集合,如果按某一个确定的对应关系,使对于集合中的任意一个元素, 在集合中都有唯一确定的元素与之对应,那么就称对应:为从集合到集合的一个映射传统定义:如果在某变化中有两个变量并且对于在某个范围内的每一个确定的值,定义 按照某个对应关系都有唯一确定的值和它对应。

那么就是的函数。

记作函数及其表示函数{[][][][][]().,,()()(),,1212()()(),,12f x a b a x x b f x f x f x a b a b f x f x f x a b a b a =≤<≤<>⎧⎪⎪⎧⎪⎨⎨⎩⎪⎧⎪⎨⎪⎩⎩近代定义:函数是从一个数集到另一个数集的映射。

定义域函数的三要素值域对应法则解析法函数的表示方法列表法图象法单调性函数的基本性质传统定义:在区间上,若如,则在上递增,是 递增区间;如,则在上递减,是的递减区间。

导数定义:在区间[][][][][]()1()2()()00,()0(),,()0(),,y f x I M x I f x M x I f x M M y f x b f x f x a b a b f x f x a b a b =∈≤∈==⎧⎪⎪⎨><⎪⎪⎩最大值:设函数的定义域为,如果存在实数满足:()对于任意的,都有; ()存在,使得。

则称是函数的最大值最值最上,若,则在上递增,是递增区间;如 则在上递减,是的递减区间。

()1()2()()00(1)()(),()(2)()(),()y f x I N x I f x N x I f x N N y f x f x f x x D f x f x f x x D f x =∈≥∈==-=-∈-=∈⎧⎪⎨⎪⎩小值:设函数的定义域为,如果存在实数满足:()对于任意的,都有; ()存在,使得。

高一数学必修一函数知识点总结归纳

高一数学必修一函数知识点总结归纳

高一数学必修一函数知识点总结归纳1.函数的奇偶性(1)若f(x)是偶函数,那么f(x)=f(-x);(2)若f(x)是奇函数,0在其定义域内,则f(0)=0(可用于求参数);(3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0);(4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

(2)复合函数的单调性由“同增异减”判定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);(4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;4.函数的周期性(1)y=f(x)对x∈R时,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恒成立,则y=f(x)是周期为2a的周期函数;(2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;(3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;(4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数;(5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数;(6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)=,则y=f(x)是周期为2的周期函数;5.方程k=f(x)有解k∈D(D为f(x)的值域);6.a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;7.(1)(a>0,a≠1,b>0,n∈R+);(2)logaN=(a>0,a≠1,b>0,b≠1); (3)logab的符号由口诀“同正异负”记忆;(4)alogaN=N(a>0,a≠1,N>0);8.判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;9.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 函数值域的求法:①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型),(,)(2n m x c bx ax x f ∈++=的形式;②逆求法(反求法):通过反解,用y 来表示x ,再由x 的取值范围,通过解不等式,得出y 的取值范围;常用来解,型如:),(,n m x dcx bax y ∈++=;④换元法:通过变量代换转化为能求值域的函数,化归思想; 常针对根号,举例:令 ,原式转化为: ,再利用配方法。

⑤利用函数有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如:)0(>+=k xkx y ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。

⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。

二.函数的性质1.函数的单调性(局部性质) (1)增函数设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D 上是增函数.区间D 称为y=f(x)的单调增区间.如果对于区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2 时,都有f(x 1)>f(x 2),那么就说f(x)在这个区间上是减函数.区间D 称为y=f(x)的单调减区间. 注意:函数的单调性是函数的局部性质;⑴单调性:定义(注意定义是相对与某个具体的区间而言)增函数:)()(],,[,x 212121x f x f x x b a x <⇒<∈对任意的 减函数:)()(],,[,x 212121x f x f x x b a x >⇒<∈对任意的注:① 函数上的区间I 且x 1,x 2∈I.若2121)()(x x x f x f -->0(x 1≠x 2),则函数f(x)在区间I 上是增函数;若2121)()(x x x f x f --<0(x 1≠x 2),则函数f(x)是在区间I 上是减函数。

② 用定义证明单调性的步骤:<1>设x1,x2∈M ,且21x x <;则<2> )()(21x f x f -作差整理;<3>判断差的符号; <4>下结论;③ 增+增=增 减+减=减④ 复合函数y=f[g(x)]单调性:同增异减[](内层)(外层))(,则)(,)((x f y x u u f y ϕϕ===uO 1 2 x(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法:○1任取x1,x2∈D,且x1<x2;○2作差f(x1)-f(x2);○3变形(通常是因式分解和配方);○4定号(即判断差f(x1)-f(x2)的正负);○5下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.8.函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:○1首先确定函数的定义域,并判断其是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .⑵奇偶性:定义(注意区间是否关于原点对称,比较f(x) 与f(-x)的关系)f(x) -f(-x)=0⇔ f(x) =f(-x) ⇔f(x)为偶函数;f(x)+f(-x)=0⇔ f(x) =-f(-x) ⇔f(x)为奇函数。

注:①若f(x)为偶函数,则f(x) =f(-x)= f(|x|);②若f(x)为奇函数且定义域中含0,则f(0)=0.如:若·为奇函数,则实数f x a aa xx()=+-+= 2221(∵为奇函数,,又,∴f x x R R f ()()∈∈=000 即·,∴)a a a 22210100+-+==⑶周期性: ①若f(x+T)=f(x)且T ≠0的常数,则T 是函数f(x)的周期;②若f(x+a)=f(x+b) ,a 、b 为常数且a ≠b,则b- a 是函数f(x)的周期。

1.定义 函数的周期性的定义及常用结论一般地,对于函数f(x),如果对于定义域中的任意一个x 的值. 若f(x +T)=f(x)(T≠0),则f(x)是周期函数,T 是它的一个周期; 若f(x +a)=f(x +b)(a≠b),则f(x)是周期函数,|b -a|是它的一个周期; 2.函数的周期性的定义及常用结论一般地,对于函数f(x),如果对于定义域中的任意一个x 的值. 若f(x +T)=f(x)(T≠0),则f(x)是周期函数,T 是它的一个周期; 若f(x +a)=f(x +b)(a≠b),则f(x)是周期函数,|b -a|是它的一个周期; 3.有关对称性的几个重要结论一般地,对于函数f(x),如果对于定义域内的任意一个x 的值.若f(x +a)=f(b -x),则函数f(x)的图象关于直线x =a +b2对称.特别地,若f(a +x)=f(a -x),则函数f(x)的图象关于直线x =a 对称;若f(a +x)=-f(b -x),则函数f(x)的图象关于点(0, a +b2)中心对称.特别地,若f(a +x)=-f(a -x),则函数f(x)的图象关于点(a,0)中心对称.4.对称性与周期性之间的关系周期性与对称性是相互联系、紧密相关的.一般地,若f(x)的图象有两条对称轴x =a 和x =b(a≠b),则f(x)必为周期函数,且2|b -a|是它的一个周期;若f(x)的图象有两个对称中心(a,0)和(b,0)(a≠b),则f(x)必为周期函数,且2|b -a|为它的一个周期;若f(x)的图象有一条对称轴x =a 和一个对称中心(b,0)(a≠b),则f(x)为周期函数,且4|b -a|是它的一个周期.⑷对称性:①若f(x+a)=f(b-x),则函数f(x)关于直线x=2b a +对称;( 即:‘一均二等’的原则)②若函数y=f(x+a)和函数y=f(b-x),则函数y=f(x+a)和函数y=f(b-x)关于直线x=2a b -对称. ③你还知道函数y=f(x)关于直线x=0(即y 轴),直线y=0(即x 轴),原点。

9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有: 1) 凑配法 2) 待定系数法 3) 换元法 4) 消参法10.函数最大(小)值(定义见课本p36页)○1 利用二次函数的性质(配方法)求函数的最大(小)值 ○2 利用图象求函数的最大(小)值○3 利用函数单调性的判断函数的最大(小)值: 如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b); 如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b); 例题:1.求下列函数的定义域:⑴y =⑵y =2.设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _3.若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是4.函数22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x = 5.求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈(3)y x =y 6.已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式7.已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

8.设()f x 是R 上的奇函数,且当[0,)x ∈+∞时,()(1f x x =,则当(,0)x ∈-∞时()f x =()f x 在R 上的解析式为 9.求下列函数的单调区间: ⑴ 223y x x =++⑵y ⑶ 261y x x =--10.判断函数13+-=x y 的单调性并证明你的结论.11.设函数2211)(x x x f -+=判断它的奇偶性并且求证:)()1(x f xf -=.。

相关文档
最新文档