霍尔元件原理及型号介绍

霍尔元件原理及型号介绍
霍尔元件原理及型号介绍

万联芯城销售原装进口霍尔元件,为终端客户提供一站式报价,所售电子元器件均为原装正品,现货库存,客户只需提交物料清单,即可获得优势报价,最快可当天发货。万联芯城,以良心做好良芯,上万种元件物料,轻松对应用户多种物料需求,为用户节省成本。点击进入万联芯城

点击进入万联芯城

霍尔元件是应用霍尔效应的半导体。一般用于电机中测定转子转速,如录像机的磁鼓,电脑中的散热风扇等;是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广泛的应用。霍尔元件灵敏度的物理意义是表示在单位磁感应强度相单位控制电流时的霍尔电势大小。

霍尔元件工作原理

霍尔元件应用霍尔效应的半导体。

所谓霍尔效应,是指磁场作用于载流金属导体、半导体中的载流子时,产生横向电位差的物理现象。金属的霍尔效应是1879年被美国物理学家霍尔发现的。当电流通过金属箔片时,若在垂直于电流的方向施加磁场,则金属箔片两侧面会出现横向电位差。半导体中的霍尔效应比金属箔片中更为明显,而铁磁金属在居里温度以下将呈现极强的霍尔效应。

利用霍尔效应可以设计制成多种传感器。霍尔电位差UH的基本关系为:

UH=RHIB/d (1) RH=1/nq(金属)(2)

式中 RH――霍尔系数;n――单位体积内载流子或自由电子的个数;q――电子电量;I――通过的电流;B――垂直于I的磁感应强度;d――导体的厚度。

对于半导体和铁磁金属,霍尔系数表达式和式(2)不同,此处从略。

由于通电导线周围存在磁场,其大小和导线中的电流成正比,故可以利用霍尔元件测量出磁场,就可确定导线电流的大小。利用这一原理可以设计制成霍尔电流传感器。其优点是不和被测电路发生电接触,不影响被测电路,不消耗被测电源的功率,特别适合于大电流传感。

若把霍尔元件置于电场强度为E、磁场强度为H的电磁场中,则在该元件中将产生电流I,元件上同时产生的霍尔电位差和电场强度E成正比,如果再测出该电磁场的磁场强度,则电磁场的功率密度瞬时值P可由P=EH确定。

利用这种方法可以构成霍尔功率传感器。

如果把霍尔元件集成的开关按预定位置有规律地布置在物体上,当装在运动物体上的永磁体经过它时,可以从测量电路上测得脉冲信号。根据脉冲信号列可以传感出该运动物体的位移。若测出单位时间内发

出的脉冲数,则可以确定其运动速度。

霍尔效应及其霍尔灵敏度原理

将金属片置于磁场中,让磁场垂直通过薄片平面。沿薄片的纵向通以电流,则在薄片的两侧面会出现微弱的电压。这就是霍尔效应,横向产生的电压叫霍尔电压,符号VH。

霍尔系数RH=(en)-1=C;n为薄片中载流子的浓度,e为电子带电量,d 为薄片的厚度。

KH——霍尔灵敏度,它表示该元件产生霍尔效应的强弱,即在单位磁感应强度B和单位控制电流I时,产生霍尔电压的大小。

霍尔元件的灵敏度与哪些因素有关

霍尔效应中霍尔元件的灵敏度与霍尔元件的厚度和载流子的浓度两个因素有关

霍尔传感器工作原理

半导体薄片置于磁感应强度为 B 的磁场中,磁场方向垂直于薄片,如图所示。当有电流 I 流过薄片时,在垂直于电流和磁场的方向上将产生电动势 EH ,这种现象称为霍尔效应,该电动势称为霍尔电势,上述半导体薄片称为霍尔元件。 原理简述如下:激励电流 I 从 a 、 b 端流入,磁场 B 由正上方作用于薄片,这时电子 e 的运动方向与电流方向相反,将受到洛仑兹力 FL 的作用,向内侧偏移,该侧形成电子的堆积,从而在薄片的 c 、 d 方向产生电场 E 。电子积累得越多, FE 也越大,在半导体薄片 c 、 d 方向的端面之间建立的电动势 EH 就是霍尔电势。 由图可以看出,流入激励电流端的电流 I 越大、作用在薄片上的磁场强度B 越强,霍尔电势也就越高。磁场方向相反,霍尔电势的方向也随之改变,因此霍尔传感器能用于测量静态磁场或交变磁场。 半导体薄片置于磁感应强度为 B 的磁场中,磁场方向垂直于薄片,如图所示。当有电流 I 流过薄片时,在垂直于电流和磁场的方向上将产生电动势 EH ,这种现象称为霍尔效应,该电动势称为霍尔电势,上述半导体薄片称为霍尔元件。 原理简述如下:激励电流 I 从 a 、 b 端流入,磁场 B 由正上方作用于薄片,这时电子 e 的运动方向与电流方向相反,将受到洛仑兹力 FL 的作用,向内侧偏移,该侧形成电子的堆积,从而在薄片的 c 、 d 方向产生电场 E 。电子积累得越多, FE 也越大,在半导体薄片 c 、 d 方向的端面之间建立的电动势 EH 就是霍尔电势。 由图可以看出,流入激励电流端的电流 I 越大、作用在薄片上的磁场强度B 越强,霍尔电势也就越高。磁场方向相反,霍尔电势的方向也随之改变,因此霍尔传感器能用于测量静态磁场或交变磁场。

霍尔元件测速原理说明及应用

霍尔测速 测速是工农业生产中经常遇到的问题,学会使用单片机技术设计测速仪表具有很重要的意义。要测速,首先要解决是采样的问题。在使用模拟技术制作测速表时,常用测速发电机的方法,即将测速发电机的转轴与待测轴相连,测速发电机的电压高低反映了转速的高低。使用单片机进行测速,可以使用简单的脉冲计数法。只要转轴每旋转一周,产生一个或固定的多个脉冲,并将脉冲送入单片机中进行计数,即可获得转速的信息。 下面以常见的玩具电机作为测速对象,用CS3020设计信号获取电路,通过电压比较器实现计数脉冲的输出,既可在单片机实验箱进行转速测量,也可直接将输出接到频率计或脉冲计数器,得到单位时间内的脉冲数,进行换算即可得电机转速。这样可少用硬件,不需编程,但仅是对霍尔传感器测速应用的验证。 1 脉冲信号的获得 霍尔传感器是对磁敏感的传感元件,常用于开关信号采集的有CS3020、CS3040等,这种传感器是一个3端器件,外形与三极管相似,只要接上电源、地,即可工作,输出通常是集电极开路(OC)门输出,工作电压范围宽,使用非常方便。如图1所示是CS3020的外形图,将有字面对准自己,三根引脚从左向右分别是Vcc,地,输出。 图1 CS3020外形图 使用霍尔传感器获得脉冲信号,其机械结构也可以做得较为简单,只要在转轴的圆周上粘上一粒磁钢,让霍尔开关靠近磁钢,就有信号输出,转轴旋转时,就会不断地产生脉冲信号输出。如果在圆周上粘上多粒磁钢,可以实现旋转一周,获得多个脉冲输出。在粘磁钢时要注意,霍尔传感器对磁场方向敏感,粘之前可以先手动接近一下传感器,如果没有信号输出,可以换一个方向再试。这种传感器不怕灰尘、油污,在工业现场应用广泛。 2 硬件电路设计 测速的方法决定了测速信号的硬件连接,测速实际上就是测频,因此,频率测量的一些原则同样适用于测速。 通常可以用计数法、测脉宽法和等精度法来进行测试。所谓计数法,就是给定一个闸门时间,在闸门时间内计数输入的脉冲个数;测脉宽法是利用待测信号的脉宽来控制计数门,对一个高精度的高频计数信号进行计数。由于闸门与被测信号不能同步,因此,这两

传感器原理——基于霍尔传感器的转速测量系统设计

. 传感器原理及应用期末课程设计题目基于霍尔传感器的转速测量电路设计 姓名小波学号8888888888 院(系)电子电气工程学院 班级清华大学——电子信息 指导教师牛人职称博士后 二O一一年七月十二日

摘要:转速是发动机重要的工作参数之一,也是其它参数计算的重要依据。针对工业上常见的发动机设计了以单片机STC89C51为控制核心的转速测量系统。系统利用霍尔传感器作为转速检测元件,并利用设计的调理电路对霍尔转速传感器输出的信号进行滤波和整形,将得到的标准方波信号送给单片机进行处理。实际测试表明,该系统能满足发动机转速测量要求。 关键词:转速测量,霍尔传感器,信号处理,数据处理

Abstract: The rotate speed is one of the important parameters for the engine, and it is also the important factor that calculates other parameters. The rotate speed measurement system for the common engine is designed with the single chip STC89C51. The signal of the rotate speed is sampled by the Hall sensor, and it is transformed into square wave which will be sent to single chip computer. The result of the experiment shows that the measurement system is able to satisfy the requirement of the engine rotate speed measurement. Key words:rotate speed measurement, Hall sensor, signal processing, data processing

霍尔传感器用法

一、霍尔电流电压传感器、变送器的基本原理与使用方法 1.霍尔器件 霍尔器件是一种采用半导体材料制成的磁电转换器件。如果在输入端通入控 制电流I C ,当有一磁场B穿过该器件感磁面,则在输出端出现霍尔电势V H 。 如图1-1所示。 霍尔电势V H 的大小与控制电流I C 和磁通密度B的乘积成正比,即:V H =K H I C Bsin Θ 霍尔电流传感器是按照安培定律原理做成,即在载流导体周围产生一正比于该电流的磁场,而霍尔器件则用来测量这一磁场。因此,使电流的非接触测量成为可能。 通过测量霍尔电势的大小间接测量载流导体电流的大小。因此,电流传感器经过了电-磁-电的绝缘隔离转换。 2.霍尔直流检测原理 如图1-2所示。由于磁路与霍尔器件的输出具有良好的线性关系,因此霍尔 器件输出的电压讯号U 0可以间接反映出被测电流I 1 的大小,即:I 1 ∝B 1 ∝U 我们把U 0定标为当被测电流I 1 为额定值时,U 等于50mV或100mV。这就制成 霍尔直接检测(无放大)电流传感器。

3.霍尔磁补偿原理 原边主回路有一被测电流I1,将产生磁通Φ1,被副边补偿线圈通过的电流I2所产生的磁通Φ2进行补偿后保持磁平衡状态,霍尔器件则始终处于检测零磁通的作用。所以称为霍尔磁补偿电流传感器。这种先进的原理模式优于直检原理模式,突出的优点是响应时间快和测量精度高,特别适用于弱小电流的检测。霍尔磁补偿原理如图1-3所示。 从图1-3知道:Φ 1=Φ 2 I 1N 1 =I 2 N 2 I 2=N I /N 2 ·I 1 当补偿电流I 2流过测量电阻R M 时,在R M 两端转换成电压。做为传感器测量电 压U 0即:U =I 2 R M 按照霍尔磁补偿原理制成了额定输入从0.01A~500A系列规格的电流传感器。 由于磁补偿式电流传感器必须在磁环上绕成千上万匝的补偿线圈,因而成本增加;其次,工作电流消耗也相应增加;但它却具有直检式不可比拟的较高精度和快速响应等优点。 4.磁补偿式电压传感器 为了测量mA级的小电流,根据Φ 1=I 1 N 1 ,增加N 1 的匝数,同样可以获得高磁 通Φ 1 。采用这种方法制成的小电流传感器不但可以测mA级电流,而且可以测电压。 与电流传感器所不同的是在测量电压时,电压传感器的原边多匝绕组通过串 联一个限流电阻R 1,然后并联连接在被测电压U 1 上,得到与被测电压U 1 成比 例的电流I 1 ,如图1-4所示。

霍尔元件原理及型号介绍

万联芯城销售原装进口霍尔元件,为终端客户提供一站式报价,所售电子元器件均为原装正品,现货库存,客户只需提交物料清单,即可获得优势报价,最快可当天发货。万联芯城,以良心做好良芯,上万种元件物料,轻松对应用户多种物料需求,为用户节省成本。点击进入万联芯城 点击进入万联芯城

霍尔元件是应用霍尔效应的半导体。一般用于电机中测定转子转速,如录像机的磁鼓,电脑中的散热风扇等;是一种基于霍尔效应的磁传感器,已发展成一个品种多样的磁传感器产品族,并已得到广泛的应用。霍尔元件灵敏度的物理意义是表示在单位磁感应强度相单位控制电流时的霍尔电势大小。 霍尔元件工作原理 霍尔元件应用霍尔效应的半导体。 所谓霍尔效应,是指磁场作用于载流金属导体、半导体中的载流子时,产生横向电位差的物理现象。金属的霍尔效应是1879年被美国物理学家霍尔发现的。当电流通过金属箔片时,若在垂直于电流的方向施加磁场,则金属箔片两侧面会出现横向电位差。半导体中的霍尔效应比金属箔片中更为明显,而铁磁金属在居里温度以下将呈现极强的霍尔效应。 利用霍尔效应可以设计制成多种传感器。霍尔电位差UH的基本关系为: UH=RHIB/d (1) RH=1/nq(金属)(2)

式中 RH――霍尔系数;n――单位体积内载流子或自由电子的个数;q――电子电量;I――通过的电流;B――垂直于I的磁感应强度;d――导体的厚度。 对于半导体和铁磁金属,霍尔系数表达式和式(2)不同,此处从略。 由于通电导线周围存在磁场,其大小和导线中的电流成正比,故可以利用霍尔元件测量出磁场,就可确定导线电流的大小。利用这一原理可以设计制成霍尔电流传感器。其优点是不和被测电路发生电接触,不影响被测电路,不消耗被测电源的功率,特别适合于大电流传感。 若把霍尔元件置于电场强度为E、磁场强度为H的电磁场中,则在该元件中将产生电流I,元件上同时产生的霍尔电位差和电场强度E成正比,如果再测出该电磁场的磁场强度,则电磁场的功率密度瞬时值P可由P=EH确定。 利用这种方法可以构成霍尔功率传感器。 如果把霍尔元件集成的开关按预定位置有规律地布置在物体上,当装在运动物体上的永磁体经过它时,可以从测量电路上测得脉冲信号。根据脉冲信号列可以传感出该运动物体的位移。若测出单位时间内发

霍尔元件测量磁场

4.1.1. 霍尔元件测量磁场 置于磁场中的载流导体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场。这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。根据霍尔效应,人们用半导体材料制成霍尔元件,它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点。利用它可以测量磁场;可以研究半导体中载流子的类别和特性等;也可以利用它制作传感器,用于磁读出头、隔离器,转速仪等。量子霍耳效应更是当代凝聚态物理领域最重要的发现之一,它在建立国际计量的自然基准方面也起了重要的作用。 【实验目的】 1.了解霍耳效应法测量磁场的原理和方法。 2.测定所用霍耳片的霍耳灵敏度。 3.用霍耳效应法测量通电螺线管轴线上的磁场。 4.用霍耳效应法测量通电线圈和亥姆霍兹线圈轴线上的磁场,验证磁场叠加原理,验证亥姆霍兹线圈中央存在均匀磁场。 【实验原理】 1.霍耳效应及其测磁原理 把一块半导体薄片(锗片或硅片等)放在磁感应强度大小为B 的磁场中(B 的方向沿z 轴方向),如图4.5.1所示。从薄片的四个 侧面A 、A ’、D 、D ’上分别引出两对 电极,沿纵向(即x 轴正向)通以电流 I H ,则在薄片的两个横向面D 、D ’之间 就会产生电势差,这种现象称为“霍耳 效应”,产生的电势差称为霍耳电势差。 根据霍耳效应制成的磁电变换元件称为 霍耳元件。霍耳效应是由洛伦兹力引起 的,当放在垂直于磁场方向的半导体薄片 通以电流后,薄片内定向移动的载流子 受到洛伦兹力F B : B v F B ?=q (4.5.1) 式中,q 、v 分别是载流子的电荷和移动速度。载流子受力偏转的结果使电荷在D 、D ’两端 面积聚而形成电场(图4.5.1中设载流子是负电荷,故F B 沿y 轴负方向),这个电场又给载流子一个与F B 反设方向的电场力F E 。设E 表示电场强度,U DD ’表示D 、D ’间的电势差,b 表示薄片宽度,则 b U q qE F DD E ' == (4.5.2) 达到稳定状态时,电场力和洛伦兹力平衡,有 E B F F = 即 b U q qvB DD ' = 图4.5.1 霍尔效应原理图

霍尔传感器的工作原理

两种霍尔传感器的工作原理 霍尔电流传感器是根据霍尔原理制成的.它有两种工作方式,即磁平衡式和直式.霍尔电流传感器一般由原边电路、聚磁环、霍尔器件、(次级线圈)和放大电路等组成. 1 直放式电流传感器(开环式) 众所周知,当电流通过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,它可以通过磁芯聚集感应到霍尔器件上并使其有一信号输出.这一信号经信号放大器放大后直接输出,一般的额定输出标定为4V. 2 磁平衡式电流传感器(闭环式) 磁平衡式电流传感器也称补偿式传感器,即主回路被测电流Ip在聚磁环处所产生的磁场通过一个次级线圈,电流所产生的磁场进行补偿,从而使霍尔器件处于检测零磁通的工作状态。 磁平衡式电流传感器的具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被聚磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动相应的功率管并使其导通,从而获得一个补偿电流Is.这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小.当与I H与匝数相乘与“原边电流与匝数相乘”所产生的磁场相等时, I H不再增加,这时的霍尔器件起指示零磁通的作用,此时可以通过I H来平衡.被测电流的任何变化都会破坏这一平衡.一旦磁场失去平衡,霍尔器件就有信号输出.经功率放大后,立即就有相应的电流I H流过次级绕组以对失衡的磁场进行补偿.从磁场失衡到再次平衡,所需的时间理论上不到1μs,这是一个动态平衡的过程。

工作原理主要是霍尔效应原理. 一、以零磁通闭环产品原理为例: 1、当原边导线经过电流传感器时,原边电流 IP 会产生磁力线,原边磁力线集中在磁芯气隙周围,内置在磁芯气隙中的霍尔电片可产生和原边磁力线成正比的,大小仅为几毫伏的感应电压,通过后续电子电路可把这个微小的信号转变成副边电流IS,并存在以下关系式:IS* NS= IP*NP 其中,IS—副边电流;IP—原边电流;NP—原边线圈匝数;NS—副边线圈匝数; NP/NS—匝数比,一般取 NP=1。 电流传感器的输出信号是副边电流IS,它与输入信号(原边电流IP)成正比,IS 一般很小,只有 10~400mA。如果输出电流经过测量电阻 RM,则可以得到一个与原边电流成正比的大小为几伏的电压输出信号。 2、传感器供电电压 VA VA 指电流传感器的供电电压,它必须在传感器所规定的范围内。超过此范围,传感器不能正常工作或可靠性降低,另外,传感器的供电电压VA又分为正极供电电压VA+和负极供电电压VA-。要注意单相供电的传感器,其供电电压VAmin是双相供电电压VAmin的2倍,所以其测量范围要相供高于双电的传感器。 3、测量范围 Ipmax 测量范围指电流传感器可测量的最大电流值,测量范围一般高于标准额定值 IPN。二、电流传感器主要特性参数1、标准额定值 IPN 和额定输出电流 ISN IPN 指电流传感器所能测试的标准额定值,用有效值表示(A.r.m.s),IPN 的大小与传感器产品的型号有关。ISN指电流传感器额定输出电流,一般为10~400mA,当然根据某些型号具体可能会有所不同。 2、偏移电流 ISO 偏移电流也叫残余电流或剩余电流,它主要是由霍尔元件或电子电路中运算放大器工作状态不稳造成的。电流传感器在生产时,在25℃,IP=0时的情况下,偏移电流已调至最小,但传感器在离开生产线时,都会产生一定大小的偏移电流。产品技术文档中提到的精度已考虑了偏移电流增加的影响。 3、线性度 线性度决定了传感器输出信号(副边电流IS)与输入信号(原边电流IP)在测量范围内成正比的程度。 4、温度漂移 偏移电流ISO是在25℃时计算出来的,当霍尔电极周边环境温度变化时,ISO会产生变化。因此,考虑偏移电流ISO的最大变化是很重要的,其中,IOT是指电流传感器性能表中的温度漂移值。5、过载电流传感器的过载能力是指发生电流过载时,在测量范围之外,原边电流仍会增加,而且过载电 流的持续时间可能很短,而过载值有可能超过传感器的允许值,过载电流值传感器一般测量不出来,但不会对传感器造成损坏。

霍尔元件工作原理

? ?? ?? ? _ ?? ? ? ? P ? ?? 8 ? ?? ? ? ?-? ? ) ? / % - ?? ? ? ? ? 8 ? + ? %)? ? +??/ ?,-? 8" ? _9. ? _ 9. ?? ?, ? ? 9. f..h ,h% h 6LQ?f9 -/..( ?( ? 9R( ?? ? ? ? ? γ ? < ? ? ? ? - 1

" ? - ? ?/ ?? ? ? ? ) -?ū ?ū ?? ?) ? ( ?3 ? t ? ? ? - ( ? ? 8 ? J ? ? q ? 8 ? , ¥h 9. êh-Rh6¥ .9. ?¥ -2 6¥.( ? Γ "?? ? ? J ?? 8 ?

?? ? ? c ? ? ? ?? γ( + ?,S ū ?/ ) c -? ?? ??/ ? ? ? ǎ ? ?? J ?? 8 ? JJ? ?? ( ?( + ?-? ??/ ū ??ū ? ?) ? - ?W ? ??? - #? ? ?,V - ?-? "?/ ? ?/ ?3 # ?-? ? ? - ? ?? ?,S *?/ ,V *?/ ? ,V ?H? ?? - ? ? -?,V ?),S ?,S ? ? ? ? γ/ -? / ??? ? ? " ?γ ? ??? ?"? - ? ?? ? ? ? XV - W ? ? ? ? ? ? ? s ? . ? ?

? s ? γ 1Sh,S 1Vh,V ?1S(?? ,S(?? ? 1V( ? ,V( ? ? ? ? )1S ? μ?? 1V ? ? ,V γ ? ? ? ,S ? ? $ ) ? ? ) ? ? D ? ? ( XV ? /(0? /_ ? ?? 026 ??? ,*%7 ? ? ?< ? ? ? ? J ?( XV E ? ?& ? ? & ? s Εs s ? ? ?9?/?P ? F ? ? ? ? G ?/? 2 ?? ǎ ? Z? ?? 2 H ? 3 ? ? ǎ ? ǎ I ? ? ?? a .+] ? ? ?? a .+] J ?/Z ? ??$V

霍尔齿轮转速传感器的工作原理和优点

霍尔齿轮转速传感器的工作原理和优点 作者: 发布时间:2009-11-25 来源: 关键字:霍尔转速传感器 霍尔转速传感器的主要工作原理是霍尔效应,也就是当转动的金属部件通过霍尔传感器的磁场时会引起电势的变化,通过对电势的测量就可以得到被测量对象的转速值。霍尔转速传感器的主要组成部分是传感头和齿圈,而传感头又是由霍尔元件、永磁体和电子电路组成的。 霍尔转速传感器的工作原理 霍尔转速传感器在测量机械设备的转速时,被测量机械的金属齿轮、齿条等运动部件会经过传感器的前端,引起磁场的相应变化,当运动部件穿过霍尔元件产生磁力线较为分散的区域时,磁场相对较弱,而穿过产生磁力线较为几种的区域时,磁场就相对较强。 霍尔转速传感器就是通过磁力线密度的变化,在磁力线穿过传感器上的感应元件时,产生霍尔电势。霍尔转速传感器的霍尔元件在产生霍尔电势后,会将其转换为交变电信号,最后传感器的内置电路会将信号调整和放大,输出矩形脉冲信号。 霍尔转速传感器的测量方法 霍尔转速传感器的测量必须配合磁场的变化,因此在霍尔转速传感器测量非铁磁材质的设备时,需要事先在旋转物体上安装专门的磁铁物质,用以改变传感器周围的磁场,这样霍尔转速传感器才能准确的捕捉到物质的运动状态。 霍尔转速传感器主要应用于齿轮、齿条、凸轮和特质凹凸面等设备的运动转速测量。高转速磁敏电阻转速传感器除了可以测量转速以外,还可以测量物体的位移、周期、频率、扭矩、机械传动状态和测量运行状态等。 霍尔转速传感器目前在工业生产中的应用很是广泛,例如电力、汽车、航空、纺织和石化等领域,都采用霍尔转速传感器来测量和监控机械设备的转速状态,并以此来实施自动化管理与控制。 霍尔转速传感器的应用优势 霍尔转速传感器的应用优势主要有三个,一是霍尔转速传感器的输出信号不会受到转速值的影响,二是霍尔转速传感器的频率相应高,三是霍尔转速传感器对电磁波的抗干扰能力强,因此霍尔转速传感器多应用在控制系统的转速检测中。 同时,霍尔转速传感器的稳定性好,抗外界干扰能力强,如抗错误的干扰信号等,因此不易因环境的因素而产生误差。霍尔转速传感器的测量频率范围宽,

实验五用霍尔元件测量磁场

实验五用霍耳元件测量磁场 一、实验目的 1.了解霍耳效应的产生机理。 2.掌握用霍耳元件测量磁场的基本方法。 二、实验仪器 霍尔效应实验仪。 三、实验原理 1、什么叫做霍耳效应? 若将通有电流的导体置于磁场B之中,磁场B(沿z轴)垂直于电流I H(沿x轴)的方 向,如图1 U H,这个现象称 为霍耳效应。 图1 霍耳效应原理 这一效应对金属来说并不显著,但对半导体非常显著。霍耳效应可以测定载流子浓度及载流子迁移率等重要参数,以及判断材料的导电类型,是研究半导体材料的重要手段。还可以用霍耳效应测量直流或交流电路中的电流强度和功率以及把直流电流转成交流电流并对它进行调制、放大。用霍耳效应制作的传感器广泛用于磁场、位置、位移、转速的测量。(1)用什么原理来解释霍耳效应产生的机理? 霍耳电势差是这样产生的:当电流I H通过霍耳元件(假设为P型)时,空穴有一定的漂移速度v,垂直磁场对运动电荷产生一个洛沦兹力 ) (B v F? =q B(1)式中q为电子电荷。洛沦兹力使电荷产生横向的偏转,由于样品有边界,所以有些偏转的载流子将在边界积累起来,产生一个横向电场E,直到电场对载流子的作用力F E=q E与磁场作用的洛沦兹力相抵消为止,即 E B v q q= ?) ((2)这时电荷在样品中流动时将不再偏转,霍耳电势差就是由这个电场建立起来的。

如果是N 型样品,则横向电场与前者相反,所以N 型样品和P 型样品的霍耳电势差有不同的符号,据此可以判断霍耳元件的导电类型。 (2)如何用霍耳效应侧磁场? 设P 型样品的载流子浓度为p ,宽度为b ,厚度为d 。通过样品电流I H =pqvbd ,则空穴的速度v =I H /pqvbd ,代入(2)式有 pqbd B I E H = ?=B v (3) 上式两边各乘以b ,便得到 d B I R pqd B I Eb U H H H H == = (4) pq R H 1= 称为霍耳系数。在应用中一般写成 U H =K H I H B . (5) 比例系数K H =R H /d =1/pqd 称为霍耳元件灵敏度,单位为mV/(mA ·T)。一般要求K H 愈大愈好。K H 与载流子浓度p 成反比。半导体内载流子浓度远比金属载流子浓度小,所以都用半导体材料作为霍耳元件。K H 与片厚d 成反比,所以霍耳元件都做的很薄,一般只有0.2mm 厚。 由(5)式可以看出,知道了霍耳片的灵敏度K H ,只要分别测出霍耳电流I H 及霍耳电势差U H 就可算出磁场B 的大小。这就是霍耳效应测磁场的原理。 2、如何消除霍耳元件副效应的影响? 在实际测量过程中,还会伴随一些热磁副效应,它使所测得的电压不只是U H ,还会附加另外一些电压,给测量带来误差。 这些热磁效应有埃廷斯豪森效应,是由于在霍耳片两端有温度差,从而产生温差电动势U E ,它与霍耳电流I H 、磁场B 方向有关;能斯特效应,是由于当热流通过霍耳片(如1,2端)在其两侧(3,4端)会有电动势U N 产生,只与磁场B 和热流有关;里吉-勒迪克效应,是当热流通过霍耳片时两侧会有温度差产生,从而又产生温差电动势U R ,它同样与磁场B 及热流有关。 除了这些热磁副效应外还有不等位电势差U 0,它是由于两侧(3,4端)的电极不在同一等势面上引起的,当霍耳电流通过1,2端时,即使不加磁场,3和4端也会有电势差U 0产生,其方向随电流I H 方向而改变。 因此,为了消除副效应的影响,在操作时我们要分别改变I H 的方向和B 的方向,记下四组电势差数据,作运算并取平均值: 由于U E 方向始终与U H 相同,所以换向法不能消除它,但一般U E <

《霍尔元件通用技术条件》编制说明

《霍尔元件通用技术条件》编制说明 (征求意见稿) 一、工作简况 1、任务来源 本项目是工业和信息化部行业标准制修订计划(工信厅科[2017] 70号),计划编号:2017-0581T-JB,项目名称“霍尔元件通用技术条件”进行修订,标准起草牵头单位:沈阳仪表科学研究院有限公司,计划应完成时间2019年。 2、主要工作过程 起草(草案、调研)阶段: 沈阳仪表科学研究院有限公司接受本标准的修订任务后,于2018年1月组织成立了标准编制工作组,制定了标准修订计划,修订工作组对霍尔元件的定义、基本参数、要求、试验方法、检验规则、标志、包装及贮存等进行了总结和归纳。 在参照了国外相关标准和1999年发布的《霍尔元件通用技术条件》的基础上,根据各参编单位提出的意见,工作组经全方位的讨论、研究、修改及补充,确立了本《工作组讨论稿》的结构框架及基本内容。 2018年8月2日和8月9日在沈阳仪表科学研究院有限公司分别召开两次编制工作组会议。会上对标准工作组讨论稿进行了逐字逐句的讨论,工作组根据各位成员的意见,对标准进行修改,形成本征求意见稿及编制说明。 征求意见阶段: 审查阶段: 报批阶段: 3、主要参加单位和工作组成员及其所做的工作等 本标准由沈阳仪表科学研究院有限公司、国家仪器仪表元器件质量监督检验中心、传感器国家工程研究中心、中国仪器仪表协会传感器分会、海宁嘉晨汽车电子技术有限公司、杭州电子科技大学等单位共同起草。 工作组主要成员:徐丹辉、李洪儒、张阳、于振毅、王松亭、郑楠、钱正洪、白茹。 工作安排:徐丹辉任修订工作组组长,全面负责标准修订工作,李洪儒、钱正洪负责对各阶段标准的审核。李洪儒、张阳负责与参编单位沟通、协调工作组内的意见。王松亭、郑楠、白茹负责标准资料收集、确定标准相关技术参数等工作。于振毅负责对资料进行总结和归纳、对各方面意见及建议的归纳分析,并提出内部修改意见。

霍尔电流传感器工作原理

霍尔电流传感器工作原理 1、直放式(开环)电流传感器(CS系列) 当原边电流I P流过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,产生的磁场聚集在磁环内,通过磁环气隙中霍尔元件进行测量并放大输出,其输出电压V S精确的反映原边电流I P。一般的额定输出标定为4V。 2、磁平衡式(闭环)电流传感器(CSM系列) 磁平衡式电流传感器也称补偿式传感器,即原边电流Ip在聚磁环处所产生的磁场通过一个次级线圈电流所产生的磁场进行补偿,其补偿电流Is精确的反映原边电流Ip,从而使霍尔器件处于检测零磁通的工作状态。 具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动功率管并使其导通,从而获得一个补偿电流Is。这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小。当与Ip与匝数相乘所产生的磁场相等时,Is不再增加,这时的霍尔器件起到指示零磁通的作用,此时可以通过Is来测试Ip。当Ip变化时,平衡受到破坏,霍尔器件有信号输出,即重复上述过程重新达到平衡。被测电流的任何变化都会破坏这一平衡。一旦磁场失去平衡,霍尔器件就有信号输出。经功率放大后,立即就有相应的电流流过次级绕组以对失衡的磁场进行补偿。从磁场失衡到再次平衡,所需的时间理论上不到1μs,这是一个动态平衡的过程。因此,从宏观上看,次级的补偿电流安匝数在任何时间都与初级被测电流的安匝数相等。 3、霍尔电压(闭环)传感器(VSM系列)

霍尔电压传感器的工作原理与闭环式电流传感器相似,也是以磁平衡方式工作的。原边电压VP通过限流电阻Ri产生电流,流过原边线圈产生磁场,聚集在磁环内,通过磁环气隙中霍尔元件输出信号控制的补偿电流IS流过副边线圈产生的磁场进行补偿,其补偿电流IS精确的反映原边电压VP。 4、交流电流传感器(A-CS系列) 交流电流传感器主要测量交流信号灯电流。是将霍尔感应出的交流信号经过AC-DC及其他转换,变为0~4V、0~20mA(或4~20mA)的标准直流信号输出供各种系统使用。

霍尔传感器的原理及应用

第八章霍尔传感器 课题:霍尔传感器的原理及应用课时安排:2 课次编号:12 教材分析 难点:开关型霍尔集成电路的特性 重点:霍尔传感器的应用 教学目的和要求1、了解霍尔传感器的工作原理; 2、了解霍尔集成电路的分类; 3、掌握线性型和开关型霍尔集成电路的特性; 4、掌握霍尔传感器的应用。 采用教学方法和实施步骤:讲授、课堂互动、分析教具:各种霍尔元 件、霍尔传感器 各教学环节和内容 演示1: 将小型蜂鸣器的负极接到霍尔接近开关的OC门输出 端,正极接V cc端。在没有磁铁靠近时,OC门截止,蜂鸣 器不响。 当磁铁靠近到一定距离(例如3mm)时,OC门导通, 蜂鸣器响。将磁铁逐渐远离霍尔接近开关到一定距离(例 如5mm)时,OC门再次截止,蜂鸣器停响。 演示2: 将一根导线穿过10A霍尔电流传感器的铁芯,通入0.1~1A电流,观察霍尔IC的输出电压的变化,基本与输入电流成正比。 从以上演示,引入第一节霍尔效应、霍尔元件的工作原理。 第一节霍尔元件的工作原理及特性 一、工作原理 金属或半导体薄片置于磁感应强度为B的磁场中,磁场方向垂直于薄片,当有电流I流过薄片时,在垂直于电流和磁场的方向上将产生电动势E H,这种现象称为霍尔效应(Hall Effect),该电动势称为霍尔电动势(Hall EMF),上述半导体薄片称为霍尔元件(Hall Element)。用霍尔元件做成的传感器称为霍尔传感器(Hall Transducer)。

图8-1霍尔元件示意图 a)霍尔效应原理图b)薄膜型霍尔元件结构示意图c)图形符号d)外形霍尔属于四端元件: 其中一对(即a、b端)称为激励电流端,另外一对(即c、d端)称为霍尔电动势输出端,c、d端一般应处于侧面的中点。 由实验可知,流入激励电流端的电流I越大、作用在薄片上的磁场强度B越强,霍尔电动势也就越高。霍尔电动势E H可用下式表示 E H=K H IB(8-1)式中K H——霍尔元件的灵敏度。 若磁感应强度B不垂直于霍尔元件,而是与其法线成某一角度θ时,实际上作用于霍尔元件上的有效磁感应强度是其法线方向(与薄片垂直的方向)的分量,即B cosθ,这时的霍尔电动势为 E H=K H IB cosθ(8-2) 从式(8-2)可知,霍尔电动势与输入电流I、磁感应强度B成正比,且当B的方向改变时,霍尔电动势的方向也随之改变。如果所施加的磁场为交变磁场,则霍尔电动势为同频率的交变电动势。 目前常用的霍尔元件材料是N型硅,霍尔元件的壳体可用塑料、环氧树脂等制造。 二、主要特性参数 (1)输入电阻R i恒流源作为激励源的原因:霍尔元件两激励电流端的直流电阻称为输入电阻。它的数值从几十欧到几百欧,视不同型号的元件而定。温度升高,输入电阻变小,从而使输入电流I ab变大,最终引起霍尔电动势变大。使用恒流源可以稳定霍尔原件的激励电流。 (2)最大激励电流I m激励电流增大,霍尔元件的功耗增大,元件的温度升高,从而引起霍尔电动势的温漂增大,因此每种型号的元件均规定了相应的最大激励电流,它的数值从几毫安至十几毫安。 提问:霍尔原件的最大激励电流I m为宜。 A.0mA B.±0.1 mA C.±10mA D.100mA (4)最大磁感应强度B m磁感应强度超过B m时,霍尔电动势的非线性误差将明显增大,B m的数值一般小于零点几特斯拉。 提问:为保证测量精度,图8-3中的线性霍尔IC的磁感应强度不宜超过为宜。 A.0T B.±0.10T C.±0.15T D.±100Gs

霍尔效应及霍尔元件基本参数的测量

霍尔效应及霍尔元件基本参数的测量 086041B班D组何韵 摘要:霍尔效应是磁电效应的一种,利用这一现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面.霍尔效应是研究半导体材料性能的基本方法.本实验的目的在于了解霍尔效应的原理及有关霍尔器件对材料的要求,使用霍尔效应试验组合 仪,采用“对称测量法”消除副效应的影响,经测量得到试样的V H —I M 和V H —I S 曲线,并通 过实验测定的霍尔系数,判断出半导体材料试样的导电类型、载流子浓度及载流子迁移率等重要参数. 关键词:霍尔效应hall effect,半导体霍尔元件semiconductor hall effect devices,对称测量法symmetrical measurement,载流子charge carrier,副效应secondary effect 美国物理学家霍尔(Hall,Edwin Herbert,1855-1938)于1879年在实验中发现,当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象便是霍尔效应.这个电势差也被叫做霍尔电势差.霍尔的发现震动了当时的科学界,许多科学家转向了这一领域,不久就发现了爱廷豪森(Ettingshausen)效应、能斯托(Nernst)效应、里吉-勒迪克(Righi-Leduc)效应和不等位电势差等四个伴生效应. 在霍尔效应发现约100年后,德国物理学家克利青(Klaus von Klitzing, 1943-)等在研究极低温度和强磁场中的半导体时发现了量子霍耳效应,这是当代凝聚态物理学令人惊异的进展之一,克利青为此获得了1985年的诺贝尔物理学奖.之后,美籍华裔物理学家崔琦(Daniel Chee Tsui,1939- )和美国物理学家劳克林(Robert https://www.360docs.net/doc/0617132622.html,ughlin,1950-)、施特默(Horst L. St rmer,1949-)在更强磁场下研究量子霍尔效应时发现了分数量子霍尔效应,这个发现使人们对量子现象的认识更进一步,他们为此获得了1998年的诺贝尔物理

霍尔传感器的工作原理、分类及应用

霍尔传感器是一种磁传感器。用它可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔传感器以霍尔效应为其工作基 霍尔传感器是一种磁传感器。用它可以检测磁场及其变化,可在各种与磁场有关的场合中使用。霍尔传感器以霍尔效应为其工作基础,是由霍尔元件和它的附属电路组成的集成传感器。霍尔传感器在工业生产、交通运输和日常生活中有着非常广泛的应用。 一、霍尔效应霍尔元件霍尔传感器 霍尔效应 如图1所示,在半导体薄片两端通以控制电流I,并在薄片的垂直方向施加磁感应强度为B 的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为UH的霍尔电压, 它们之间的关系为。 式中d 为薄片的厚度,k称为霍尔系数,它的大小与薄片的材料有关。上述效应称为霍尔效应,它是德国物理学家霍尔于1879年研究载流导体在磁场中受力的性质时发现的。 (二)霍尔元件 根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。它具有对磁场敏感、结构简单、

体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。 (三)霍尔传感器 由于霍尔元件产生的电势差很小,故通常将霍尔元件与放大器电路、温度补偿电路及稳压电源电路等集成在一个芯片上,称之为霍尔传感器。 霍尔传感器也称为霍尔集成电路,其外形较小,如图2所示,是其中一种型号的外形图。 二、霍尔传感器的分类 霍尔传感器分为线性型霍尔传感器和开关型霍尔传感器两种。 (一)线性型霍尔传感器由霍尔元件、线性放大器和射极跟随器组成,它输出模拟量。(二)开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。

霍尔元件基本参数测量

实验名称:霍尔组件基本参数测量 仪器与用具:TH-H 霍尔效应实验组合仪 实验目的:1、了解霍尔效应实验原理 2、学习“对称法”消除副效应影响的方法 3、测量霍尔系数、确定样品导电类型、计算霍尔组件灵敏度等 实验报告内容(原理预习、操作步骤、数据处理、误差分析、思考题解答) 【实验原理】: 通有电流I S 的半导体薄片置于与它垂直的磁场B 中,在薄片的两测就会产生电势差U H —霍尔电势差,这种现象叫霍尔效应。 霍尔效应产生的原因,是因为形成电流的载流子在磁场中运动时,受到洛沦兹力F=qv ×B 的作用,正、负电荷在样品两测边界聚集,形成横向电场E H —霍尔电场,产生霍尔电势差U H 。 载流子除受到洛沦兹力F=qv ×B 的作用外,还受横向电场力Fe=eE H 的作用,当受到洛沦兹力与横向电场力大小相等时,即 eE H =qv ×B (4.7.1) 样品两测边界聚集的电荷不再变化,达到平衡。 样品中电流强度: I S =nevbd ( 4.7.2) 样品中横向电场E h 可认为是匀强电场,则有: U H =E h b=ne 1=R H d B I s (4.7.3) 基本参数: 1、霍尔系数R H 霍尔系数定义: R H = ne 1 由材料的性质(载流子密度)决定,反映材料的霍尔效应强弱。 由(4.7.3)得 R H = IsB d U H 上式提供了测量霍尔系数R H 的方法。 2、根据R H 的符号判断样品导电类型N 、P 半导体材料有N 型和P 型两种,将测的U H 、I S 、B 带入 R H = IsB d U H 得数为正时,样品为P 型半导体,得数为正时,样品为P 型半导体。

霍尔电流传感器工作原理

1、直放式(开环)电流传感器(CS系列) 当原边电流IP流过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,产生的磁场聚集在磁环内,通过磁环气隙中霍尔元件进行测量并放大输出,其输出电压VS精确的反映原边电流IP。一般的额定输出标定为4V。 2、磁平衡式(闭环)电流传感器(CSM系列) 磁平衡式电流传感器也称补偿式传感器,即原边电流Ip在聚磁环处所产生的磁场通过一个次级线圈电流所产生的磁场进行补偿,其补偿电流Is精确的反映原边电流Ip,从而使霍尔器件处于检测零磁通的工作状态。 具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动功率管并使其导通,从而获得一个补偿电流Is。这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小。当与Ip与匝数相乘所产生的磁场相等时,Is不再增加,

这时的霍尔器件起到指示零磁通的作用,此时可以通过Is来测试Ip。当Ip变化时,平衡受到破坏,霍尔器件有信号输出,即重复上述过程重新达到平衡。被测电流的任何变化都会破坏这一平衡。一旦磁场失去平衡,霍尔器件就有信号输出。经功率放大后,立即就有相应的电流流过次级绕组以对失衡的磁场进行补偿。从磁场失衡到再次平衡,所需的时间理论上不到1μs,这是一个动态平衡的过程。因此,从宏观上看,次级的补偿电流安匝数在任何时间都与初级被测电流的安匝数相等。 3、霍尔电压(闭环)传感器(VSM系列) 霍尔电压传感器的工作原理与闭环式电流传感器相似,也是以磁平衡方式工作的。原边电压VP通过限流电阻Ri产生电流,流过原边线圈产生磁场,聚集在磁环内,通过磁环气隙中霍尔元件输出信号控制的补偿电流IS流过副边线圈产生的磁场进行补偿,其补偿电流IS精确的反映原边电压VP。 4、交流电流传感器(A-CS系列) 交流电流传感器主要测量交流信号灯电流。是将霍尔感应出的交流信号经过AC-DC及其他转换,变为0~4V、0~20mA(或4~20mA)的标准直流信号输出供各种系统使用。

霍尔元件的工作原理及结构

霍尔元件的工作原理及结构 如图1所示.—块高为1、宽为5、厚为6的半导体。存外加磁场B作用下, 当商电流J流过时.运动屯子受洛伦兹力的作用而偏向一侧,使该侧形 成电子的积 累,与它对义的侧面由于电了浓度下降。出现了正电荷·。这样,在两 侧面间就形成了—‘个电场。运动 电子在受洛伦兹力的同时,又受电场力的作用.最后当这两力作用相等时,电子的积 累达到动态平衡,这时两侧之间建立电场,称霍尔电场民,相应的电压称 霍尔电压uEI。上述这种现象称霍尔效应。经分析推导得霍尔电压 式中M—半导体单位体积中的载流子数; ‘—一电子电量; K M——程尔元件灵饭度,J(M一1/MrJ。 二·、霍尔元件的材料及结构特点 根报雀尔效应原理做成的器件叫做程尔元件。霍尔元件—般采用具有N 型的锗、锑化钥

和砷化钢等十导体单品材料制成。锑化铜元件的输出较大.促受温度的影 响也较大。铬元件 的输小虽小,但它的温度性能和线性度却比较好。砷化姻元件的输出信号 没有锑化姻元件大, 但是受温度的影响印比锑化姻的要小,而且线性度也较好。因此,以砷化 钡为霍尔元件的材料 得到曾遏放用。 霍尔元件结构很简单、是‘种半导体凹端薄片,它由霍尔片、引线和壳 体组成。霍 尔片的相对两侧对称地焊上两对电极引出线,如图10—2(a)所示。其小,一对(altj端)称为激励电流 端25外一对(c、J端)称为霍尔电势输出端,引线焊接处要求接触电阻小,而量呈现纯电阻件 质(欧姆接触)。霍尔片—般用非磁件金届、陶瓷或环氧树脂封装。 (一)输入电阻R, 霍尔元件两激励电流端的直流电阻称为输入电阻。它的数值,队儿欧 到几百欧,视不问型 号的元件而定。温度升高,输入电阻变小,从而使输入电流变大,最终引 起猩尔屯势变化。 为广减少这种影响,最好采用恒流源作为激励源。 (二)输出电阻只。 两个留尔屯势输出端之间的电阻称为输出电阻,它的数值与输入电阻 属同一数量级,它也 随温度改变而改变。选择适当的负载电阻RL与之匹配,uJ以使出温度引起霍尔电势的漂移减

霍尔元件测磁场与实验报告

用霍尔元件测磁场 前言: 霍耳效应是德国物理学家霍耳(A.H.Hall 1855—1938)于1879年在他的导师罗兰指导下发现的。由于这种效应对一般的材料来讲很不明显,因而长期未得到实际应用。六十年代以来,随着半导体工艺和材料的发展,这一效应才在科学实验和工程技术中得到了广泛应用。 利用半导体材料制成的霍耳元件,特别是测量元件,广泛应用于工业自动化和电子技术等方面。由于霍耳元件的面积可以做得很小,所以可用它测量某点或缝隙中的磁场。此外,还可以利用这一效应来测量半导体中的载流子浓度及判别半导体的类型等。近年来霍耳效应得到了重要发展,冯﹒克利青在极强磁场和极低温度下观察到了量子霍耳效应,它的应用大大提高了有关基本常数测量的准确性。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍耳器件,会有更广阔的应用前景。了解这一富有实用性的实验,对今后的工作将大有益处。 教学目的: 1.了解霍尔效应产生的机理,掌握测试霍尔器件的工作特性。 2.掌握用霍尔元件测量磁场的原理和方法。 3.学习用霍尔器件测绘长直螺线管的轴向磁场分布。 教学重难点: 1. 霍尔效应 2. 霍尔片载流子类型判定。 实验原理 如右图所示,把一长方形半导体薄片放入磁场中, 其平面与磁场垂直,薄片的四个侧面分别引出两对电极(M、N和P、S),径电极M、N通以直流电流I H,则在P、S极所在侧面产生电势差,这一现象称为霍尔效应。这电势差叫做霍尔电势差,这样的小薄片就是霍尔片。

假设霍尔片是由n 型半导体材料制成的,其载流子为电子,在电极M 、N 上通过的电流由M 极进入,N 极出来(如图),则片中载流子(电子)的运动方向与电流I S 的方向相反为v,运动的载流子在磁场B 中要受到洛仑兹力f B 的作用,f B =e v ×B ,电子在f B 的作用下,在由N →M 运动的过程中,同时要向S 极所在的侧面偏转(即向下方偏转),结果使下侧面积聚电子而带负电,相应的上侧面积(P 极所在侧面)带正电,在上下两侧面之间就形成电势差V H ,即霍尔电势差。薄片中电子在受到f B 作用的同时,要受到霍尔电压产生的霍尔电场E H 的作用。f H 的方向与f B 的方向正好相反,E H =V H /b , b 是上下侧面之间的距离即薄片的宽度,当f H +f B =0时,电子受力为零达到稳定状态,则有 –e E H +(–e v ×B)=0 E H = - v ×B 因 v 垂直B ,故 E H =v B (v 是载流子的平均速度) 霍尔电压为 V H = b E H = b v B 。 设薄片中电子浓度为n ,则 I S =nedb v , v =I S /nedb 。 V H = I S B/ned =K H I S B 式中比例系数K H = 1/ned ,称为霍尔元件的灵敏度。 将V H =K H I S B 改写得 B = V H / K H I S 如果我们知道了霍尔电流I H ,霍尔电压V H 的大小和霍尔元件的灵敏度K H ,我们就可以算出磁感应强度B 。 实际测量时所测得的电压不只是V H ,还包括其他因素带来的附加电压。根据其产生的原因及特点,测量时可用改变I S 和B 的方向的方法,抵消某些因素的影响。例如测量时首先任取某一方向的I S 和B 为正,当改变它们的方向时为负,保持I S 、B 的数值不变,取(I S+,B +)、(I S-、B +)、(I S+、B -)、(I S-,B -)四种条件进行测量,测量结果分别为: V 1= V H +V 0+V E +V N +V RL V 2=-V H -V 0-V E +V N +V RL V 3=-V H +V 0-V E -V N -V RL V 4=V H -V 0+V E -V N -V RL 从上述结果中消去V 0,V N 和V RL ,得到 V H = 4 1 (V 1-V 2-V 3+V 4)-V E

相关文档
最新文档