霍尔传感器的原理及应用

合集下载

霍尔传感器的应用以及原理

霍尔传感器的应用以及原理

霍尔传感器的应用以及原理1. 引言霍尔传感器是一种常见的传感器,广泛应用于电子设备和工业控制领域。

它通过测量磁场变化来检测物体的位置、速度和方向等信息。

本文将介绍霍尔传感器的原理以及它在不同领域的应用。

2. 霍尔传感器原理霍尔传感器的工作原理基于霍尔效应,即当电流通过晶体管和金属片时,会形成一个垂直于电流和磁场方向的电压差。

这个电压差叫做霍尔电压,它与外界磁场的强度和方向成正比。

通过测量霍尔电压的变化,可以得到与磁场相关的信息。

霍尔传感器通常由霍尔元件、增益放大器和输出电路组成。

霍尔元件是一个具有霍尔电压特性的磁敏器件,一般采用半导体材料制造。

增益放大器用于放大霍尔电压的信号,使其可以被检测和处理。

输出电路根据需求将电信号转换成数字信号或模拟信号输出。

3. 霍尔传感器的应用3.1 位置检测霍尔传感器可以通过测量磁场的变化来检测物体的位置。

在自动门控制系统中,可以使用霍尔传感器来检测人员的位置,实现自动开关门。

在机械制造中,霍尔传感器可以被用来监测机械臂的位置,控制其准确移动。

3.2 速度检测通过测量磁场变化的频率,霍尔传感器可以检测物体的速度。

在汽车中,霍尔传感器常被用来测量车轮的转速,用于ABS(防抱死制动系统)和发动机管理系统等。

此外,在电动机控制领域,霍尔传感器也经常被应用于测量电动机的转速。

3.3 方向检测霍尔传感器通过测量磁场的方向,可以检测物体的方向。

在磁罗盘中,霍尔传感器用于检测地球的磁场方向,提供导航和定位功能。

在游戏手柄中,霍尔传感器可以检测游戏手柄的倾斜方向,实现精确的游戏控制。

3.4 磁场检测由于霍尔传感器对磁场的敏感性,它也可以用来检测磁场的强度和方向。

在磁共振成像仪中,霍尔传感器被用于检测强磁场的均匀性,确保图像质量。

在磁力计中,霍尔传感器可以测量磁场的强度,用于测量磁体的磁场强度。

4. 总结霍尔传感器是一种应用广泛的传感器,它通过测量磁场变化来获得与位置、速度和方向等相关的信息。

霍尔式传感器原理及应用

霍尔式传感器原理及应用

•纯金属中自由电子浓度过高,霍尔效应微弱,无实用价值 •半导体是霍尔元件的常用材料 •材料的厚度 d 愈小,则 KH 就愈大、灵敏度愈高
2. 霍尔传感器的应用
VH KHIBsin
(3-48)
•式(3-48)可知,改变 I 或 B,或两者同
取决于材质、元件尺寸,并受温度变化影响;
—式—中它K沿H—与时—电霍流改尔的常变相数反均,方表向会示运单引动位起磁感V应H强的度和变化
•可以广泛应用于测量: 位移 可转化为位移的力和加速度 磁场变化
•应用中不用永久磁铁产生的磁场,而是用一个可变电流作激磁的 可变磁场,输出电压就决定于控制电流和激磁电流的乘积
——霍尔元件就成了一种两个模拟信号的乘法器
The End
感谢观看
霍尔式传感器原理 及应用
1. 基本原理
•厚度为 d 的N型半导体薄片上垂直 作用了磁感应强度为 B 的磁场 •若在一个方向上通以电流 I •N型半导体中多数载流子为电子
——它沿与电流的相反方向运动
•带电粒子在磁场中的运动会受到洛伦兹力 FL 的作用 •洛伦兹力 FL 的方向由左手定则决定 •洛伦兹力的作用结果,使带电粒子偏向 c,d 电极 •在垂直于 B 和 I 的方向上产生一感应电动势 VH
取决于材质、元件尺寸,并受温度变化影响;
霍尔元件置•利于两用相该反方原向的理磁可场中以做成各种传感元件
在磁场和控制电流的作用下,输出端有电压输出 N型半导体中多数载流子为电子 材料的厚度 d 愈小,则 KH 就愈大、灵敏度愈高
霍尔传感器的结构 霍尔芯片一般用非磁性金属、陶瓷或环氧树脂封装
在磁场和控制电流的作用下,输出端有电压输出 位移 使用时,I 和 B 都可作为输入信号,输出信号正比于两者的乘积

霍尔传感器的原理和应用

霍尔传感器的原理和应用

霍尔传感器的原理和应用1. 霍尔传感器的原理霍尔传感器是一种基于霍尔效应的传感器,通过测量电磁场的变化来检测物体的位置、运动或者其他属性。

其原理主要基于霍尔效应的存在。

1.1 霍尔效应的概念霍尔效应是指当通过一块导体中的电流流过时,如果将该导体放置于磁场中,该磁场会产生一个力,使得电子在导体中聚集在一边,导致在导体两侧产生一种电势差。

这种现象就是霍尔效应。

1.2 霍尔传感器的结构霍尔传感器通常由霍尔元件、磁场源和信号处理电路组成。

其中,霍尔元件是关键部件,其结构包括霍尔片、上下两个触点和引线。

霍尔片是一种特殊材料,能够对磁场产生敏感。

当磁场作用于霍尔片时,霍尔片上的电荷会发生积聚,从而产生一定的电势差。

1.3 霍尔传感器的工作原理当磁场作用于霍尔传感器时,霍尔片上的电荷会发生积聚,从而产生电势差。

这种电势差可以被测量,并转化为相应的信号。

该信号可以通过信号处理电路进行放大、滤波和解调等处理,以便得到相关的测量结果。

2. 霍尔传感器的应用霍尔传感器由于其特殊的原理和结构,在许多领域都有广泛的应用。

2.1 位置检测由于霍尔传感器能够对磁场的变化进行敏感测量,因此在位置检测方面有很好的应用。

比如,在汽车领域中,霍尔传感器可以用来检测车速、转向角度,以及车辆的位置等信息。

2.2 运动检测霍尔传感器可以用来检测物体的运动状态。

在工业自动化领域中,霍尔传感器常常被用来监测机器的转速、转向等参数。

另外,霍尔传感器还被广泛应用于航空航天领域中,用于检测飞机、卫星等设备的姿态、位置等信息。

2.3 流量测量由于霍尔传感器对电流的变化敏感,因此能够用来测量流体的流量。

在工业领域中,霍尔传感器常常被用来监测管道内流体的流速和流量,以实现对流体控制和管理的目的。

2.4 磁场测量由于霍尔传感器对磁场的变化具有很好的感知能力,因此可以用来测量磁场的大小和方向。

在科学研究领域中,霍尔传感器常常被用来测量磁场的强度和分布,以研究磁场的性质和应用。

.霍尔门磁传感器的原理与应用

.霍尔门磁传感器的原理与应用

霍尔门磁传感器或称霍尔开关,是一种可以检测磁场变化并转化为电信号的传感器。

它通常被应用于门窗磁控报警系统、电子开关和电机控制等领域。

本文将详细介绍霍尔门磁传感器的原理、结构与应用。

一、霍尔门磁传感器的原理1. 霍尔效应:霍尔效应是指在导电材料中,当有电流通过时,如果受到外部磁场的作用,会在垂直于电流方向上产生电势差。

这种现象是由美国物理学家爱德华·霍尔于1879年首先发现的。

霍尔效应是霍尔门磁传感器能够探测磁场变化的基础。

2. 霍尔元件:霍尔元件是霍尔门磁传感器的核心部件,通常由半导体材料制成。

当磁场作用于霍尔元件时,会在元件两侧产生电势差,这一电势差可以被检测电路所读取,从而转化为相应的信号输出。

3. 灵敏度调节:由于不同的应用场景对磁场的灵敏度要求不同,霍尔门磁传感器通常具有灵敏度调节功能。

用户可以通过调节传感器上的旋钮或设置参数来改变传感器的灵敏度。

二、霍尔门磁传感器的结构1. 外壳:霍尔门磁传感器的外壳通常由耐高温、耐腐蚀的材料制成,以确保其稳定可靠地工作在不同的环境中。

2. 传感元件:传感元件是霍尔门磁传感器的核心部件,它通常为霍尔元件。

传感元件的选择和制造工艺会直接影响传感器的灵敏度和稳定性。

3. 输出端口:霍尔门磁传感器的输出端口通常为开关量输出,常见的有正常开关、NC(Normally Closed)和NO(Normally Open)等类型。

用户可以根据实际需求选择合适的输出类型。

4. 供电接口:霍尔门磁传感器通常需要外部供电,供电电压的稳定性和电流的大小需要符合传感器的工作要求。

5. 灵敏度调节装置:为了适应不同的工作环境和需求,霍尔门磁传感器通常具有灵敏度调节装置,用户可以通过调节该装置来改变传感器的灵敏度。

三、霍尔门磁传感器的应用1. 门窗磁控报警系统:霍尔门磁传感器可以应用于门窗磁控报警系统中,通过安装在门窗上,当门窗打开时,磁场的变化会被传感器检测到,并触发报警器发出警报。

霍尔传感器原理与应用

霍尔传感器原理与应用

霍尔传感器原理霍尔传感器是一种磁传感器。

用它可以检测磁场及其变化,可在各种与磁场有关的场合中使用。

霍尔传感器以霍尔效应为其工作基础,是由霍尔元件和它的附属电路组成的集成传感器。

霍尔传感器在工业生产、交通运输和日常生活中有着非常广泛的应用。

一、霍尔效应霍尔元件霍尔传感器(一)霍尔效应如图1所示,在半导体薄片两端通以控制电流I,并在薄片的垂直方向施加磁感应强度为B 的匀强磁场,则在垂直于电流和磁场的方向上,将产生电势差为UH的霍尔电压,它们之间的关系为。

其中d 为薄片的厚度,k称为霍尔系数,它的大小与薄片的材料有关。

上述效应称为霍尔效应,它是德国物理学家霍尔于1879年研究载流导体在磁场中受力的性质时发现的。

(二)霍尔元件根据霍尔效应,人们用半导体材料制成的元件叫霍尔元件。

它具有对磁场敏感、结构简单、体积小、频率响应宽、输出电压变化大和使用寿命长等优点,因此,在测量、自动化、计算机和信息技术等领域得到广泛的应用。

(三)霍尔传感器由于霍尔元件产生的电势差很小,故通常将霍尔元件与放大器电路、温度补偿电路及稳压电源电路等集成在一个芯片上,称之为霍尔传感器。

霍尔传感器也称为霍尔集成电路,其外形较小,如图2所示,是其中一种型号的外形图。

二、霍尔传感器的分类霍尔传感器分为线性型霍尔传感器和开关型霍尔传感器两种。

(一)线性型霍尔传感器由霍尔元件、线性放大器和射极跟随器组成,它输出模拟量。

(二)开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。

三、霍尔传感器的特性(一)线性型霍尔传感器的特性输出电压与外加磁场强度呈线性关系,如图3所示,可见,在B1~B2的磁感应强度范围内有较好的线性度,磁感应强度超出此范围时则呈现饱和状态。

(二)开关型霍尔传感器的特性如图4所示,其中BOP为工作点“开”的磁感应强度,BRP为释放点“关”的磁感应强度。

当外加的磁感应强度超过动作点Bop时,传感器输出低电平,当磁感应强度降到动作点Bop 以下时,传感器输出电平不变,一直要降到释放点BRP时,传感器才由低电平跃变为高电平。

霍尔电流传感器工作原理

霍尔电流传感器工作原理

霍尔电流传感器工作原理一、引言霍尔电流传感器是一种常用的电流测量装置,它利用霍尔效应来实现电流的非接触式测量。

本文将详细介绍霍尔电流传感器的工作原理及其应用。

二、工作原理1. 霍尔效应霍尔效应是指在导电材料中,当通过它的一定电流时,垂直于电流方向的方向上会产生一种电势差,这种现象被称为霍尔效应。

霍尔效应的产生是由于电流携带的电荷在磁场中受到洛伦兹力的作用。

2. 霍尔元件霍尔元件是霍尔电流传感器的核心部件,它通常由半导体材料制成。

霍尔元件的结构包括一个薄片状的半导体材料,两侧分别连接正负极的电极,以及一个垂直于薄片的磁场。

3. 工作原理当电流通过霍尔元件时,电流携带的电荷在磁场中受到洛伦兹力的作用,导致霍尔元件两侧产生电势差。

根据霍尔效应的原理,电势差的大小与电流的大小成正比。

通过测量霍尔元件两侧的电势差,可以间接得知通过它的电流大小。

4. 信号处理为了得到准确的电流测量结果,霍尔电流传感器通常还需要进行信号处理。

信号处理的过程包括放大、滤波、线性化等步骤。

放大可以增加电势差的幅度,提高测量的灵敏度;滤波可以去除噪声,提高信号的质量;线性化可以使输出信号与输入电流之间呈线性关系,方便后续的数据处理和分析。

三、应用领域1. 电力系统霍尔电流传感器在电力系统中广泛应用于电流测量和保护。

通过测量电力系统中的电流,可以实时监测电力负荷的大小,保护电力设备免受过载和短路的损害。

2. 汽车工业在汽车工业中,霍尔电流传感器被用于测量电动机的电流。

通过监测电动机的电流,可以实时掌握电动机的工作状态,提高汽车的性能和安全性。

3. 工业自动化霍尔电流传感器在工业自动化领域中也有广泛的应用。

例如,在机械设备中,通过测量电机的电流,可以实现电机的负载监测和故障诊断。

4. 新能源领域随着新能源的快速发展,霍尔电流传感器在太阳能和风能等领域也得到了广泛应用。

通过测量新能源设备中的电流,可以实时监测能源的产生和消耗情况,为新能源的管理和优化提供支持。

霍尔传感器 原理及应用

霍尔传感器 原理及应用

霍尔传感器原理及应用
霍尔传感器作为一种常用的传感器器件,其运作原理是基于霍尔效应。

霍尔效应是指当通过导体的电流在垂直于电流方向上施加一个磁场时,会在导体的侧边产生一种电势差。

具体而言,霍尔传感器中通常包含一片装有霍尔元件(霍尔晶体)的芯片。

当通过芯片中的引脚加上一定的电流时,霍尔元件内部产生一个与施加磁场相对应的电势差。

电势差的大小与施加磁场的强度成正比,方向则取决于磁场的方向。

根据霍尔传感器的工作原理,它可以用于检测磁场的强度和方向。

常见的应用包括磁力计、转速传感器、位置传感器等。

以下是一些常见的应用示例:
1. 磁力计:霍尔传感器可以测量磁场的强度,因此被广泛用于磁力计中,用来检测和测量物体的磁性。

2. 转速传感器:霍尔传感器也可以用于测量物体的转速。

通过将传感器安装在旋转物体附近,并将传感器上的电流引脚连接到适当的电路中,可以通过测量输出电势差的频率来计算旋转物体的转速。

3. 位置传感器:借助霍尔传感器,可以实现非接触式的位置检测。

例如,将传感器安装在机械设备上,用来检测设备的位置并实时监控运动状况。

4. 电流测量:霍尔传感器也可用作电流传感器。

通过将传感器
固定在电流导体附近,可以测量通过导体的电流,并将其转换为相应的电压信号。

总之,霍尔传感器是一种基于霍尔效应的传感器器件,其应用广泛,可以用于测量磁场的强度和方向,实现转速测量、位置检测和电流测量等功能。

霍尔传感器的原理与应用

霍尔传感器的原理与应用

霍尔传感器的原理与应用1. 霍尔传感器的原理霍尔传感器是一种基于霍尔效应原理工作的传感器,通过检测磁场的变化来实现信号输出。

霍尔效应是指当电流通过导体时,在垂直于电流方向上会形成一种电势差,这种电势差就是霍尔电势差,也称为霍尔效应。

霍尔传感器的主要原理如下:1.当电流通过霍尔元件时,垂直于电流方向的磁场会产生电势差。

2.电势差的大小与磁场的强度成正比,与电流的大小无关。

3.通过测量电势差的变化,可以得到磁场的强度信息。

2. 霍尔传感器的应用霍尔传感器由于其独特的原理和优良的性能,在各个领域都有广泛的应用。

以下列举了几个常见的应用领域:2.1 汽车行业•制动系统:霍尔传感器可以用来检测制动踏板的位置,实现制动灯的控制。

•转向系统:霍尔传感器可以用来检测方向盘的转动角度,实现转向信号的输出。

•电动机控制:霍尔传感器可以用来检测电动机的转速、转向等参数,实现精确的控制。

2.2 工业自动化•位置检测:霍尔传感器可以用来检测物体的位置,实现物体的定位和控制。

•流量测量:霍尔传感器可以用来测量流体的流量,实现精确的流量控制。

•速度检测:霍尔传感器可以用来检测物体的速度,实现物体的运动控制。

2.3 智能家居•门窗状态检测:霍尔传感器可以用来检测门窗的开关状态,实现安防监控和智能化控制。

•温度控制:霍尔传感器可以通过检测温度变化来实现温控系统的精确控制。

•环境监测:霍尔传感器可以用来检测环境的光照、湿度等信息,实现智能化的环境控制。

3. 霍尔传感器的优势与其他类型的传感器相比,霍尔传感器具有以下优势:•高可靠性:霍尔传感器不受环境干扰和电磁干扰,具有较高的稳定性和可靠性。

•高精度:霍尔传感器可以实现非接触式的测量,具有较高的精度和响应速度。

•小尺寸:霍尔传感器体积小,适合嵌入式应用和空间受限的场景。

•低功耗:霍尔传感器工作时只需要很小的电流,能有效降低功耗。

•长工作寿命:霍尔传感器没有机械部件,不易损坏,具有较长的工作寿命。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章霍尔传感器课题:霍尔传感器的原理及应用课时安排:2 课次编号:12 教材分析难点:开关型霍尔集成电路的特性重点:霍尔传感器的应用教学目的和要求1、了解霍尔传感器的工作原理;2、了解霍尔集成电路的分类;3、掌握线性型和开关型霍尔集成电路的特性;4、掌握霍尔传感器的应用。

采用教学方法和实施步骤:讲授、课堂互动、分析教具:各种霍尔元件、霍尔传感器各教学环节和内容演示1:将小型蜂鸣器的负极接到霍尔接近开关的OC门输出端,正极接V cc端。

在没有磁铁靠近时,OC门截止,蜂鸣器不响。

当磁铁靠近到一定距离(例如3mm)时,OC门导通,蜂鸣器响。

将磁铁逐渐远离霍尔接近开关到一定距离(例如5mm)时,OC门再次截止,蜂鸣器停响。

演示2:将一根导线穿过10A霍尔电流传感器的铁芯,通入0.1~1A电流,观察霍尔IC的输出电压的变化,基本与输入电流成正比。

从以上演示,引入第一节霍尔效应、霍尔元件的工作原理。

第一节霍尔元件的工作原理及特性一、工作原理金属或半导体薄片置于磁感应强度为B的磁场中,磁场方向垂直于薄片,当有电流I流过薄片时,在垂直于电流和磁场的方向上将产生电动势E H,这种现象称为霍尔效应(Hall Effect),该电动势称为霍尔电动势(Hall EMF),上述半导体薄片称为霍尔元件(Hall Element)。

用霍尔元件做成的传感器称为霍尔传感器(Hall Transducer)。

图8-1霍尔元件示意图a)霍尔效应原理图b)薄膜型霍尔元件结构示意图c)图形符号d)外形霍尔属于四端元件:其中一对(即a、b端)称为激励电流端,另外一对(即c、d端)称为霍尔电动势输出端,c、d端一般应处于侧面的中点。

由实验可知,流入激励电流端的电流I越大、作用在薄片上的磁场强度B越强,霍尔电动势也就越高。

霍尔电动势E H可用下式表示E H=K H IB(8-1)式中K H——霍尔元件的灵敏度。

若磁感应强度B不垂直于霍尔元件,而是与其法线成某一角度θ时,实际上作用于霍尔元件上的有效磁感应强度是其法线方向(与薄片垂直的方向)的分量,即B cosθ,这时的霍尔电动势为E H=K H IB cosθ(8-2)从式(8-2)可知,霍尔电动势与输入电流I、磁感应强度B成正比,且当B的方向改变时,霍尔电动势的方向也随之改变。

如果所施加的磁场为交变磁场,则霍尔电动势为同频率的交变电动势。

目前常用的霍尔元件材料是N型硅,霍尔元件的壳体可用塑料、环氧树脂等制造。

二、主要特性参数(1)输入电阻R i恒流源作为激励源的原因:霍尔元件两激励电流端的直流电阻称为输入电阻。

它的数值从几十欧到几百欧,视不同型号的元件而定。

温度升高,输入电阻变小,从而使输入电流I ab变大,最终引起霍尔电动势变大。

使用恒流源可以稳定霍尔原件的激励电流。

(2)最大激励电流I m激励电流增大,霍尔元件的功耗增大,元件的温度升高,从而引起霍尔电动势的温漂增大,因此每种型号的元件均规定了相应的最大激励电流,它的数值从几毫安至十几毫安。

提问:霍尔原件的最大激励电流I m为宜。

A.0mA B.±0.1 mA C.±10mA D.100mA(4)最大磁感应强度B m磁感应强度超过B m时,霍尔电动势的非线性误差将明显增大,B m的数值一般小于零点几特斯拉。

提问:为保证测量精度,图8-3中的线性霍尔IC的磁感应强度不宜超过为宜。

A.0T B.±0.10T C.±0.15T D.±100Gs第二节霍尔集成电路霍尔集成电路(又称霍尔IC)的优点:体积小、灵敏度高、输出幅度大、温漂小、对电源稳定性要求低等。

霍尔集成电路的分类:线性型和开关型两大类。

线性型的内部电路:霍尔元件和恒流源、线性差动放大器等做在一个芯片上,输出电压为伏级,比直接使用霍尔元件方便得多。

开关型霍尔集成电路的内部电路:霍尔元件、稳压电路、放大器、施密特触发器、OC门(集电极开路输出门)等电路做在同一个芯片上。

当外加磁场强度超过规定的工作点时,OC门由高阻态变为导通状态,输出变为低电平;当外加磁场强度低于释放点时,OC门重新变为高阻态,输出高电平。

图8-2线性型霍尔集成电路a)外形尺寸b)内部电路框图图8-3线性型霍尔集成电路输出特性图8-4开关型霍尔集成电路a)外形尺寸b)内部电路框图图8-5开关型霍尔集成电路的史密特输出特性注:1特斯拉(T)=104高斯(Gs)提问:磁铁从远到近,逐渐靠近图8-5所示的开关型霍尔IC,问,多少高斯时,输出翻转?成为什么电平?表8-1具有史密特特性的OC门输出状态与磁感应强度变化之间的关系B/T OC门输出状态OC门接法磁感应强度B的变化方向及数值0 →0.02 →0.023 →0.03 →0.02 →0.016 →0接上拉电阻R L高电平①高电平②低电平低电平低电平③高电平高电不接上拉电阻R L高阻态高阻态低电平低电平低电平高阻态高①:OC门输出的高电平电压由V CC决定;②、③:OC门的迟滞区输出状态必须视B的变化方向而定.第三节霍尔传感器的应用霍尔电动势是关于I、B、θ三个变量的函数,即E H=K H IB cosθ,使其中两个量不变,将第三个量作为变量,或者固定其中一个量、其余两个量都作为变量,三个变量的多种组合等。

1)维持I、θ不变,则E H=f(B),这方面的应用有:测量磁场强度的高斯计、测量转速的霍尔转速表、磁性产品计数器、霍尔角编码器以及基于微小位移测量原理的霍尔加速度计、微压力计等。

2)维持I、B不变,则E H=f(θ),这方面的应用有角位移测量仪等。

3)维持θ不变,则E H=f(IB),即传感器的输出E H与I、B的乘积成正比,这方面的应用有模拟乘法器、霍尔功率计、电能表等。

1.角位移测量仪角位移测量仪结构示意图如图8-8所示。

霍尔器件与被测物连动,而霍尔器件又在一个恒定的磁场中转动,于是霍尔电动势E H就反映了转角θ的变化。

图8-8角位移测量仪结构示意图1-极靴2-霍尔器件3-励磁线圈发散性思维:将图8-8的铁芯气隙减小到夹紧霍尔IC的厚度。

则B正比于U i,霍尔IC的U o正比于B,可以改造为霍尔电压传感器。

与交流互感器不同的是:可以测量直流电压,如右图所示。

4.霍尔接近开关在第四章里,曾介绍过接近开关的基本概念。

用霍尔接近开关也能实现接近开关的功能,但是它只能用于铁磁材料,并且还需要建立一个较强的闭合磁场。

霍尔接近开关应用示意图如图图8-12所示。

在图8-12b中,磁极的轴线与霍尔接近开关的轴线在同一直线上。

当磁铁随运动部件移动到距霍尔接近开关几毫米时,霍尔接近开关的输出由高电平变为低电平,经驱动电路使继电器吸合或释放,控制运动部件停止移动(否则将撞坏霍尔接近开关)起到限位的作用。

图8-12霍尔接近开关应用示意图a)外形b)接近式c)滑过式d)分流翼片式1-运动部件2-软铁分流翼片提问:b)接近式c)滑过式哪一种不易损坏?为什么?在图8-12d中,磁铁和霍尔接近开关保持一定的间隙、均固定不动。

软铁制作的分流翼片与运动部件联动。

当它移动到磁铁与霍尔接近开关之间时,磁力线被屏蔽(分流),无法到达霍尔接近开关,所以此时霍尔接近开关输出跳变为高电平。

改变分流翼片的宽度可以改变霍尔接近开关的高电平与低电平的占空比。

发生性思维:电梯“平层”如何利用分流翼片的原理?霍尔传感器的其他用途:霍尔电压传感器、霍尔电流传感器、霍尔电能表、霍尔高斯计、霍尔液位计、霍尔加速度计等。

5.霍尔电流传感器能够测量直流电流,弱电回路与主回路隔离,能够输出与被测电流波形相同的“跟随电压”,容易与计算机及二次仪表接口,准确度高、线性度好、响应时间快、频带宽,不会产生过电压等。

(1)工作原理 用一环形(有时也可以是方形)导磁材料作成铁心,套在被测电流流过的导线(也称电流母线)上,将导线中电流感生的磁场聚集在铁心中。

在铁心上开一与霍尔传感器厚度相等的气隙,将霍尔线性IC 紧紧地夹在气隙中央。

电流母线通电后,磁力线就集中通过铁心中的霍尔IC ,霍尔IC 就输出与被测电流成正比的输出电压或电流。

霍尔电流传感器原理及外形如图8-13所示。

图8-13 霍尔电流传感器原理及外形a )基本原理b )外形1-被测电流母线 2-铁心 3-线性霍尔IC(2)技术指标及换算 霍尔电流传感器可以测量高达2000A 的电流;电流的波形可以是高达100kHz 的正弦波和电工技术较难测量的高频窄脉冲;它的低频端可以一直延伸到直流电;响应时间小于1µs ,电流上升率(d i /d t )大于200A/μs 。

被测电流称为一次测电流I P ,将霍尔电流传感器的输出电流称为“二次侧电流” I S (霍尔传感器中并不存在二次侧)。

“匝数比”概念:I S /I P 和N P /N S 。

在霍尔电流传感器中,N P 被定义为“一次测线圈”的匝数,一般取N P =1;N S 为厂家所设定的“二次侧线圈的匝数”。

因此有:PS S P I I N N (8-3) 依据霍尔电流传感器的额定技术参数和输出电流I S 以及式(8-3),就可以计算得到被测电流。

如果将一只负载电阻R S 并联在 “二次侧”的输出电流端,就可以得到一个与“一次测电流”(被测电流)成正比的、大小为几伏的电压输出信号。

隔离作用:霍尔电流传感器的“一次测”与“二次侧”电路之间的击穿电压可以高达6kV ,可直接将“二次侧”的输出信号接到计算机电路。

提问:有一个额定值很高的传感器(例如100A )、而欲测量的电流值又低于额定值很多时(例如10A ),如何提高测量准确度?可以把“一次测”导线在铁心中间多绕几圈。

例如,当用额定值为200A 的传感器去测量10A 的电流时,为提高准确度,可将“一次测”导线在传感器的铁心内孔中心绕10圈,即N P =10,则N P ×10A=100A ,达到传感器额定值的一半,从而提高了准确度。

缺点:当被测导线在铁心之间穿绕的匝数太多时,被测回路的感抗将增大许多,有可能人为地减小被测回路的电流,因此这种方法不予提倡。

例8-1 设某型号霍尔电流传感器的额定匝数比N P /N S =1/2000,标准额定电流值I PN =300A ,二次侧的负载电阻R S =30Ω。

现将被测电流母线在铁心中穿绕两圈,通电后,用电流表测得二次侧电流I S =0.15A ,求输出到弱电回路的电压U S 和被测电流I P 。

解 1)U S =R S ×I S =4.5V2)根据式(8-3),被测电流IP 为:A 150A 15.022000S P S =⨯==I N N I P课外学习指导安排每周二下午,在测控办公室进行答疑课外作业 P178:5、9检测教学目标实现程度考察学生能否利用霍尔IC 测量磁场和计算电流传感器的输入、输出。

相关文档
最新文档