数学考研:一元函数微分学的知识点和常考题型

合集下载

考研微积分学习指导-一元函数微分学

考研微积分学习指导-一元函数微分学

1.3 导数与微分一、知识要点(一) 导数概念1. 设函数()x f y =在点0x 的某邻域内有定义,当自变量x 在0x 处取得改变量x ∆(0≠∆x )时,函数相应取得增量00()()y f x x f x ∆=+∆-()()xx f x x f x ∆-∆+→∆000lim存在,则称函数()y f x =在点0x 处可导,0x 为()x f y =的可导点,并称此极限为函数()y f x =在点0x 处的导数,记为 00000()()limlimx x x x f x x f x yy x x=∆→∆→+∆-∆'==∆∆ 或0()f x ',x x dy dx=,()x x df x dx =2.如果令x x x ∆+=0,则当0→∆x 时,0x x →,于是,导数0()f x '的定义又可以表示为()()()000limx x x f x f x f x x →-='→3.若上述极限不存在,则称()x f 在0x 点处不可导或不存在导数,0x 为()x f 的不可导点.特别当上述极限为无穷大时,此时导数不存在,或称()x f 在点0x 处的导数为无穷大.4.如果函数()x f y =在开区间()b a ,内每一点处都可导,则称()x f y =在()b a ,内可导.此时,对于任意的()b a x ,∈,都存在唯一确定的导数()x f '.因此,()x f '是x 的函数,称为()x f 的导函数,简称为导数.导函数()x f '也可记为y '或dx dy 或()dxx df(二)导数的几何意义1.函数()x f y =在点0x 处可导,则其导数()0x f '为曲线()x f y =在点()()00,x f x 处的切线斜率.特别的,若()00='x f ,则曲线()x f y =在点()()00,x f x 的切线平行于OX 轴;若()∞='0x f ,则曲线()x f y =在点()()00,x f x 的切线垂直于OX 轴.2.曲线()x f y =在点()()00,x f x 处的切线方程为()()000x x x f y y -'=-当()00='x f 时,切线方程为00=-y y 当()∞='0x f 时,切线方程为00=-x x 3.曲线()x f y =在点()()00,x f x 处的法线方程为()()0001x x x f y y -'-=- ()()00≠'x f (三)函数的可导性与连续性的关系1.函数()x f y =在0x 处可导,则在0x 处连续. 因()xyx f x ∆∆='→∆00lim存在,故有()00lim lim lim lim 00000=⋅'=∆∆∆=⎪⎭⎫⎝⎛∆∆∆=∆→∆→∆→∆→∆x f x x y x x y y x x x x . 因此,()x f 在点0x 连续.2.函数()x f 在点0x 连续,()x f 在点0x 不一定可导.(四)求导法则设函数()x u 和()x v 在点x 处可导,则()()u x v x ±、()()u x v x ⋅和()()u x v x 也在该点可导(对于商的情形,要求()0v x ≠)且有。

一元函数微分学内容概要总结

一元函数微分学内容概要总结

一元函数微分学内容概要总结
一元函数微分学是微积分的重要内容之一,主要研究函数的变化率、斜率、极值、凹凸性等性质。

以下是一元函数微分学的内容概要总结:
1. 导数与微分,导数是函数在某一点的变化率,表示函数曲线在该点的切线斜率,常用符号表示为f'(x)或者dy/dx。

微分是函数在某一点附近的线性近似,常用符号表示为dy。

2. 函数的求导,通过求导可以得到函数在某一点的导数,可以通过极限的定义或者导数的运算法则进行求导。

3. 导数的应用,导数可以用来求函数的极值,判断函数的增减性和凹凸性,求曲线的渐近线,解决最优化问题等。

4. 微分方程,微分方程是关于未知函数及其导数的方程,是自然科学和工程技术中描述变化规律的重要数学工具。

5. 泰勒公式,泰勒公式是函数在某点附近的多项式逼近公式,可以用来近似计算函数的值。

6. 函数的高阶导数,除了一阶导数外,函数还可以有二阶导数、三阶导数等高阶导数,可以描述函数的曲率、加速度等性质。

7. 微分学与积分学的关系,微分学和积分学是微积分的两大分支,它们之间通过微积分基本定理建立了联系,即导数与原函数的
关系。

以上是一元函数微分学的内容概要总结,涵盖了导数与微分、
函数的求导、导数的应用、微分方程、泰勒公式、高阶导数以及微
分学与积分学的关系等内容。

希望能对你有所帮助。

(超级总结吐血推荐)考研数学二经典知识点题型技巧总结(高数线代)综合网上及个人线代心得

(超级总结吐血推荐)考研数学二经典知识点题型技巧总结(高数线代)综合网上及个人线代心得

高等数学(数二>一.重点知识标记高等数学科目大纲章节知识点题型重要度等级高等数学第一章函数、极限、连续1 .等价无穷小代换、洛必达法则、泰勒展开式求函数的极限★★★★★2 .函数连续的概念、函数间断点的类型3 .判断函数连续性与间断点的类型★★★第二章一元函数微分学1 .导数的定义、可导与连续之间的关系按定义求一点处的导数,可导与连续的关系★★★★2 .函数的单调性、函数的极值讨论函数的单调性、极值★★★★3.闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用★★★★★第三章一元函数积分学1 .积分上限的函数及其导数变限积分求导问题★★★★★2 .有理函数、三角函数有理式、简单无理函数的积分计算被积函数为有理函数、三角函数有理式、简单无理函数的不定积分和定积分★★第四章多元函数微分学1 .隐函数、偏导数、的存在性以及它们之间的因果关系2 .函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连续性的讨论与它们之间的因果关系★★3 .多元复合函数、隐函数的求导法求偏导数,全微分★★★★★第五章多元函数积分学1. 二重积分的概念、性质及计算2.二重积分的计算及应用★★第六章常微分方程1.一阶线性微分方程、齐次方程,2.微分方程的简单应用,用微分方程解决一些应用问题★★★★一、函数、极限、连续部分:极限的运算法则、极限存在的准则(单调有界准则和夹逼准则>、未定式的极限、主要的等价无穷小、函数间断点的判断以及分类,还有闭区间上连续函数的性质(尤其是介值定理>,这些知识点在历年真题中出现的概率比较高,属于重点内容,但是很基础,不是难点,因此这部分内容一定不要丢分。

二、微分学部分:主要是一元函数微分学和多元函数微分学,其中一元函数微分学是基础亦是重点。

一元函数微分学,主要掌握连续性、可导性、可微性三者的关系,另外要掌握各种函数求导的方法,尤其是复合函数、隐函数求导。

第二章 一元函数微分学

第二章 一元函数微分学

第二章 一元函数微分学一.与导数的定义有关的考点 先回顾导数的定义: 设函数()x f y =在()x U内有定义,如果极限()()x x x f x f x x 000lim--→存在,则称()x f y =在x 0处可导,x 0称为函数()x f 的可导点,且称上述极限值为函数()x f 在x 0处的导数,记为:|0x dx dy x =或|0x dx dfx =;或简记为()x f 0'. 注意导数的本质是瞬时变化率,它还有另外两种常见的等价定义: 1.()x f 0'=()()xf x f x x x ∆-∆+→∆000lim;2.()()()00lim.x fh f f x hx xx →+-'=;要特别关注0x =处的导数有特殊形式:()()()00lim.x f x f f x→-'=(更特别地,()()()()()000lim.00x f x f f f x→-'==如。

要知道两个重要的结论:1.可导必连续;2。

函数()x f y =在x 0处可导的充要条件是()()//00.f x f x -+=对于分段函数在分段点处的可导性,一定从要考察其左、右导出发.例1.已知()x f 0'=A ,试求下列极限的值 (1)()());(lim000A xf x f x x x -=∆-∆-→∆(2)。

()());4(3lim000A xx f x f x x x =∆∆--∆+→∆例2.研究函数()||x x f =在0=x 处的可导性. 解:因为()()()/000lim lim 1000x x f x f x f x x---→→---===-- 同理,可求得()10/=+f .由于()()00//f f +-≠,所以()||x x f =在0=x 处不可导。

(记住这个结论)练习:设()()2,0,1,0.axe xf x b x x ⎧≤⎪=⎨->⎪⎩在0x =处可导,求,a b 的值. 解:(一)因为()f x 在0x =处可导,从而()f x 在0x =处也连续.所以,()()0lim lim ,x x f x f x -+→→=即 1.b = (二)()()()/00010limlim ;0ax x x f x f e fa x x---→→--===- ()()()()22/001120limlim lim 2.0x x x f x f x x xfx xx+--+→→→----====-- 由()()//00f f -+=,得2a =-.例3. 已知()x x f 2=,试求()x f 在2=x 处的导数.解:因为2224lim lim(2)42x x x x x →→-=+=-,所以,()2 4.f '=由此例可见,在导数存在的情况下,求导问题就归结为求一个0型的极限.故求导就是求极限,不必多举例,今后很少针对具体函数计算在一点处的导数值. 如把函数在一点x 0处可导的概念推广到一个区间,则可得到导函数的概念.大家要牢记基本导数表(共十五、六条)。

考研数学强化复习:高数典型题型归纳

考研数学强化复习:高数典型题型归纳

凯程考研历史悠久,专注考研,科学应试,严格管理,成就学员!考研数学强化复习:高数典型题型归纳在考研强化复习阶段,考研数学学科的复习相信大家对于基本的概念、知识点都已经掌握了,接下来进入到进行题目的练习。

但是做题并不意味着题海战术,决不能陷进题海战术。

建议大家在复习的时候,边做题、边总结、边思考。

下面,凯程考研小编就给大家整理分享一下高等数学的各章节的常见题型:函数、极限与连续求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。

一元函数微分学求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足....。

”,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。

一元函数积分学计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。

向量代数和空间解析几何计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。

多元函数的微分学判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。

考研数学二(一元函数的导数与微分概念及其计算)模拟试卷5(题后

考研数学二(一元函数的导数与微分概念及其计算)模拟试卷5(题后

考研数学二(一元函数的导数与微分概念及其计算)模拟试卷5(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设函数y=f(x)可微,且曲线y=f(x)在点(x0,f(x0))处的切线与直线y=2-x 垂直,则=A.-1.B.0.C.1.D.不存在.正确答案:B解析:由题设可知f’(x0)=1,又△y-dy=o(△x),dy=f’(x0)△x=△x,于是,故应选(B).知识模块:一元函数的导数与微分概念及其计算2.设曲线y=x2+ax+b和2y=-1+xy3在点(1,-1)处相切,其中a,b是常数,则A.a=0,b=2.B.a=1,b=-3.C.a=-3,b=1.D.a=-1,b=-1.正确答案:D解析:曲线y=x2+ax+b在点(1,-1)处的斜率y’=(x2+ax+b)’|x=1=2+a.将方程2y=-1+xy3对x求导得2y’=y3+3xy2y’.由此知,该曲线在(1,-1)处的斜率y’(1)为2y’(1)=(-1)3+3y’(1),y’(1)=1.因这两条曲线在(1,-1)处相切,所以在该点它们的斜率相同,即2+a=1,a=-1.又曲线y=x2+ax+b过点(1,-1),所以1+a+b=-1,b=-2-a=-1.因此选(D).知识模块:一元函数的导数与微分概念及其计算3.设f(x0)≠0,f(x)在x=x0连续,则f(x)在x0可导是|f(x)|在x0可导的( )条件.A.充分非必要.B.充分必要.C.必要非充分.D.既非充分也非必要.正确答案:B解析:由f(x0)≠0f(x0)>0或f(x0)<0,因f(x)在点x0处连续,则f(x)在x0某邻域是保号的,即,当|x-x0|<δ时,因此应选(B).知识模块:一元函数的导数与微分概念及其计算4.设f(x)在点x=x0处可导,且f(x0)=0,则f’(x0)=0是|f(x)|在x0可导的( )条件.A.充分非必要.B.充分必要.C.必要非充分.D.既非充分也非必要.正确答案:B解析:按定义|f(x)|在x0可导存在,即均存在且相等因此应选(B).知识模块:一元函数的导数与微分概念及其计算5.设F(x)=g(x)φ(x),φ(x)在x=a连续但不可导,又g’(a)存在,则g(a)=0是F(x)在x=a可导的( )条件.A.充分必要.B.充分非必要.C.必要非充分.D.既非充分也非必要.正确答案:A解析:①因为φ’(a)不存在,所以不能对g(x)φ(x)用乘积的求导法则;②当g(a)≠0时,若F(x)在x=a可导,可对用商的求导法则.(Ⅰ)若g(a)=0,按定义考察即F’(a)=g’(a)φ(a).(Ⅱ)再用反证法证明:若F’(a)存在,则必有g(a)=0.若g(a)≠0,由商的求导法则即知φ(x)在x=a可导,与假设条件φ(a)=在x=a处不可导矛盾.因此应选(A).知识模块:一元函数的导数与微分概念及其计算6.函数f(x)=(x2-x-2)|x2-x|的不可导点有A.3个.B.2个.C.1个.D.0个.正确答案:B解析:函数|x|,|x-1|,|x+1|分别仅在x=0,x=1,x=-1不可导且它们处处连续.f(x)=(x2-x-2)|x||x-1||x+1|,只需考察x=0,1,-1是否可导.考察x=0,令g(x)=(x2-x-2)|x2-1|,则f(x)=g(x)|x|,g’(0)存在,g(0)≠0,φ(x)=|x|在x=0连续但不可导,故f(x)在x=0不可导.考察x=1,令g(x)=(x2-x-2)|x2+x|,φ(x)=|x-1|,则g’(1)存在,g(1)≠0,φ(x)在x=1连续但不可导,故f(x)=g(x)φ(x)在x=1不可导.考察x=-1,令g(x)=(x2-x-2)|x2-x|,φ(x)=|x+1|,则g’(-1)存在,g(-1)=0,φ(x)在x=-1连续但不可导,故f(x)=g(x)φ(x)在x=-1可导.因此选(B).知识模块:一元函数的导数与微分概念及其计算7.设f(x+1)=a f(x)总成立,f’(0)=b,a≠1,b≠1为非零常数,则f(x)在点x=1处A.不可导.B.可导且f’(1)=a.C.可导且f’(1)=b.D.可导且f’(1)=ab.正确答案:D解析:按定义考察=af’(0)=ab,ab≠a,ab≠b.因此,应选(D).知识模块:一元函数的导数与微分概念及其计算填空题8.请用等价、同阶、低阶、高阶回答:设f(x)在x0可微,f’(x0)≠0,则△x→0时f(x)在x=x0处的微分与△x比较是__________无穷小,△y=f(x0+△x)-f(x0)与△x比较是_______无穷小,△y-df(x)|x=x0与△x比较是________无穷小.正确答案:同阶;同阶;高阶解析:△df(x)|x=x0=f’(x0)△x,由=f’(x0)≠0知这时df(x)|x=x0与△x是同阶无穷小量;按定义=f’(x0)≠0,故△y与△x也是同阶无穷小量;按微分定义可知差△y-df(x)|x=x0=o(△x)(△x→0)是比△x高阶的无穷小.知识模块:一元函数的导数与微分概念及其计算9.设y=f(lnx)ef(x),其中f(x)可微,则dy=__________.正确答案:ef(x)[ f’(lnx)+f’(x)f(lnx)]dx解析:利用一阶微分形式不变性,可得dy=d[f(lnx)ef(x)]=ef(x)[df(lnx)]+f(lnx)def(x)=ef(x)[f’(lnx)dlnx]+f(lnx)ef(x)df(x)=ef( x)[ f’(lnx)+f’(x)f(lnx)]dx.知识模块:一元函数的导数与微分概念及其计算10.设y=f(x)可导,且y’≠0.若y=f(x)二阶可导,则=________.正确答案:解析:知识模块:一元函数的导数与微分概念及其计算11.对数螺线r=eθ在点(r,θ)=处的切线的直角坐标方程为_______.正确答案:解析:对数螺线的参数方程为于是它在点处切线的斜率为当θ=时x=0,y=.因此该切线方程为. 知识模块:一元函数的导数与微分概念及其计算解答题解答应写出文字说明、证明过程或演算步骤。

考研数学高数真题分类—微分方程

考研数学高数真题分类—微分方程

一份好的考研复习资料,会让你的复习力上加力。

中公考研辅导老师为考生准备了【高等数学-微分方程知识点讲解和习题】,同时中公考研网首发2017考研信息,2017考研时间及各科目复习备考指导、复习经验,为2017考研学子提供一站式考研辅导服务。

微分方程综述:微分方程可以看做一元函数微积分学的应用与推广,主要考查考生的计算能力。

这一部分在考试中以大题与小题的形式交替出现,平均每年所占分值在8分左右.本章的主要知识点有:微分方程的阶、通解和特解等基本概念,可分离变量方程的求解,齐次方程的求解,一阶线性微分方程的求解,伯努利方程的求解,全微分方程的求解,可降阶的高阶微分方程的求解,高阶线性微分方程解的结构,高阶线性微分方程的求解,欧拉方程的求解.学习本章时,首先要熟悉各类方程的形式,记住它们的求解步骤,通过足量的练习以求熟练掌握.在此基础上,还需要具备结合微积分其它章节的知识或者根据问题的几何及物理背景抽象出数学模型,并建立微分方程的能力.一般来说,考生只要具备扎实的一元函数微积分的相关知识,学习本章的时候不会有太大的困难.本章常考的题型有:1.各种类型微分方程的求解,2.线性微分方程解的性质,3.综合应用. 常考题型一:一阶方程的求解1.可分离变量方程1.【2006-1 4分】微分方程(1)y x y x-'=的通解是 2.【2008-1 4分】微分方程0xy y '+=满足条件(1)1y =的解是y =3.【1998-2 3分】已知函数()y y x =在任意点x 处的增量21y x y x α∆∆=++,且当0x ∆→时,α是x ∆的高阶无穷小,(0)y π=,则(1)y 等于4.【1994-23分】微分方程2(4)0ydx x x dy +-=的通解为5.【2001-23分】微分方程11arcsin 2=-+'x y x y 满足12y ⎛⎫ ⎪⎝⎭=0的特解为( ).6.【2005-3 4分】微分方程0=+'y y x 满足初始条件2)1(=y 的特解为 .7.【2008-2 10分】设函数()y y x =由参数方程20()ln(1)t x x t y u du =⎧⎪⎨=+⎪⎩⎰确定,其中()x t 是初值问题020|0x t dx te dt x -=⎧-=⎪⎨⎪=⎩的解. 求22d y dx .【小结】:如果一个一阶微分方程可以写成()()g y dy f x dx =的形式,我们就称该微分方程为可分离变量的微分方程.对该方程的两端求不定积分()()g y dy f x dx =⎰⎰就得到微分方程的通解. 2.齐次方程8.【2007-3 4分】微分方程3d 1d 2y y y x x x ⎛⎫=- ⎪⎝⎭满足11x y ==的特解为y =________.9.【1996-3 6分】求微分方程dy dx =的通解. 10.【1993-1 5分】求微分方程22x y xy y '+=满足初始条件11y x ==的特解11.【1997-2 5分】求微分方程0)2()23(222=-+-+dy xy x dx y xy x 的通解.12.【1999-27分】求初始问题1(0,(0)0x y dx xdy x y =⎧+-=>⎪⎨=⎪⎩的解.13.【2014-1 4分】微分方程0)ln (ln '=-+y x y xy 满足3)1(e y =的解为.【小结】:如果一阶微分方程(,)dy f x y dx=中的函数(,)f x y 可以写成()y x ϕ的形式,则称该方程为齐次方程.对于齐次方程,我们引入新函数y u x =,则y ux =.由一元函数微分学的知识,可知dy xdu udx =+.代入原方程可得()du x u u dxϕ+=,整理得()du dx u u x ϕ=-.则原方程就被化为了可分离变量的方程,求解该方程得到未知函数u ,再由y ux =就可以得到未知函数y 的表达式.齐次方程是通过变量代换化为可分离变量方程的。

高等数学一元函数微分学考点

高等数学一元函数微分学考点

高等数学一元函数微分学考点高等数学一元函数微分学考点高等数学一元函数微分学考点大家生疏了吗?下面我为大家介绍高等数学一元函数微分学考点,希望能帮到大家!(一)导数与微分1.学问范围(1)导数概念导数的定义左导数与右导数函数在一点处可导的充分必要条件导数的几何意义与物理意义可导与连续的关系(2)求导法则与导数的基本公式导数的四则运算反函数的导数导数的基本公式(3)求导方法复合函数的求导法隐函数的求导法对数求导法由参数方程确定的函数的求导法求分段函数的导数(4)高阶导数高阶导数的定义高阶导数的计算(5)微分微分的定义微分与导数的关系微分法则一阶微分形式不变性2.要求(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,把握用定义求函数在一点处的导数的方法。

(2)会求曲线上一点处的切线方程与法线方程。

(3)娴熟把握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数。

(4)把握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。

(5)理解高阶导数的概念,会求简洁函数的阶导数。

(6)理解函数的'微分概念,把握微分法则,了解可微与可导的关系,会求函数的一阶微分。

(二)微分中值定理及导数的应用1.学问范围(1)微分中值定理罗尔(Rolle)定理拉格朗日(Lagrange)中值定理(2)洛必达(L‘Hospital)法则(3)函数增减性的判定法(4)函数的极值与极值点最大值与最小值(5)曲线的凹凸性、拐点(6)曲线的水平渐近线与铅直渐近线2.要求(1)理解罗尔定理、拉格朗日中值定理及它们的几何意义。

会用罗尔定理证明方程根的存在性。

会用拉格朗日中值定理证明简洁的不等式。

(2)娴熟把握用洛必达法则求各种型未定式的极限的方法。

(3)把握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的单调性证明简洁的不等式。

(4)理解函数极值的概念。

把握求函数的极值、最大值与最小值的方法,会解简洁的应用问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学考研:一元函数微分学的知识点和常考题型
【大纲内容】
导数和微分的概念
导数的几何意义和物理意义(数三经济意义)
函数的可导性与连续性之间的关系
平面曲线的切线和法线
导数和微分的四则运算基本初等函数的导数
复合函数、反函数、隐函数以及参数方程所确定的函数(数三不要求)的微分法
高阶导数
一阶微分形式的不变性
微分中值定理
洛必达法则
函数单调性的判别
函数的极值
函数图形的凹凸性、拐点及渐近线
函数图形的描绘
函数的最大值和最小值
弧微分、曲率的概念、曲率圆与曲率半径(数三不要求)
【大纲要求】
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义(数三经济意义),会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。

2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。

了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

3.了解高阶导数的概念,会求简单函数的高阶导数。

4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数(数三不要求)以及反函数的导数。

5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理(数三了解),了解并会用柯西(Cauchy)中值定理。

6.掌握用洛必达法则求未定式极限的方法。

7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用。

9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径。

(数三不要求)
【常考题型】
1.导数概念;
2.求给定函数的导数或微分(包括高阶导数)隐函数和由参数方程确定的函数求导;
3.函数的单调性和极值;
4.曲线的凹凸性与拐点;
5.利用微分中值定理证明有关命题和不等式或讨论方程在给定区间内的根的个数;
6.利用洛必达法则求极限;
7.几何、物理、经济等方面的最大值、最小值应用题。

解这类问题,主要是确定目标函数和约束条件,判定所讨论区间。

相关文档
最新文档