2017-2018学年人教A版高中数学选修2-1习题:第二章2.3-2.3.1双曲线及其标准方程 Word版含答案
2017-2018学年人教A版高中数学选修2-1配套练习:本册学业质量检测检测2 含解析 精品

本册学业质量标准检测(二)本套检测题仅供教师参考备用,学生书中没有。
时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2017·贵州六盘水月考)命题“若x 2<1,则-1<x <1”的逆否命题是导学号 21325097( D )A .若x 2≥1,则x ≥1若x ≤-1B .若-1<x <1,则x 2<1C .若x >1或x <-1,则x 2>1D .若x ≥1或x ≤-1,则x 2≥1 2.已知命题p :∃x ∈R ,使sin x =52;命题q :∀x ∈R ,都有x 2+x +1>0.给出下列结论:①命题“p ∧q ”是真命题; ②命题“p ∧(¬q )”是假命题; ③命题“(¬p )∨q ”是真命题; ④命题“(¬p )∨(¬q )”是假命题. 其中正确的是导学号 21325098( B ) A .②④B .②③C .③④D .①②③[解析] 因为对任意实数x ,|sin x |≤1,而sin x =52>1,所以p 为假;因为x 2+x +1=0的判别式Δ<0,所以q 为真.因而②③正确.3.已知向量a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以是导学号 21325099( A )A .2,12B .-13,12C .-3,2D .2,2[解析] 已知a ∥b ,则∃t ∈R ,使得b =t a (t ≠0),可得⎩⎪⎨⎪⎧tλ+t =62μ-1=02t =2λ,解得⎩⎪⎨⎪⎧ t =2λ=2μ=12或⎩⎪⎨⎪⎧t =-3λ=-3μ=12.4.与向量(-3,-4,5)共线的单位向量是导学号 21325100( A ) A .(3210,4210,-22)和(-3210,-4210,22)B .(3210,4210,-22)C .(-3210,-4210,22)D .(3210,4210,22)和(-3210,-4210,-22)[解析] 所求的单位向量e 与(-3,-4,5)方向相同或相反,且|e |=1,求得(3210,4210,-22)和(-3210,-4210,22). 5.如图,在三棱锥A -BCD 中,DA ,DB ,DC 两两垂直,且DB =DC ,E 为BC 中点,则AE →·BC →等于导学号 21325101( A )A .0B .1C .2D .3[解析] ∵AE →·BC →=12(AB →+AC →)·(DC →-DB →)=12(DB →-DA →+DC →-DA →)·(DC →-DB →) =12(DB →-2DA →+DC →)·(DC →-DB →) =12DB →·DC →-12DB →2-DA →·DC →+DA →·DB →+12DC →2-12DC →·DB → ∵DA ,DB ,DC 两两垂直,且DB =DC , ∴AE →·BC →=0.故选A .6.如图,在正方体ABCD -A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点, 若P 到直线BC 与直线C 1D 1的距离相等,则动点P 的轨迹所在的曲线是导学号 21325102( D )A .直线B .圆C .双曲线D .抛物线[解析] ∵P 到直线BC 与直线C 1D 1的距离相等,又ABCD -A 1B 1C 1D 1是正方体,∴D 1C 1⊥侧面BCC 1B 1.∴D 1C 1⊥PC 1,∴PC 1为P 到直线D 1C 1的距离,即PC 1等于P 到直线BC 的距离,由圆锥曲线的定义知,动点P 的轨迹所在的曲线是抛物线.7.下列命题中,真命题是导学号 21325103( C ) A .存在x ∈R ,sin 2x 2+cos 2x 2=12B .任意x ∈(0,π),sin x >cos xC .任意x ∈(0,+∞),x 2≥x -14D .∃x 0∈[0,π2]使得sin x 0>x 0[解析] 本题主要考查全称命题与特称命题真假的判断.对于A 选项:∀x ∈R ,sin 2x2+cos 2x 2=1,故A 为假命题;对于B 选项:存在x =π6,sin x =12,cos x =32,sin x <cos x ,故B为假命题;C 项,x 2-x +14=(x -12)2,对,x ∈(0,+∞)(x -12)2≥0恒成立,故C 项正确;对于D 选项:在单位圆中,可知对任意x ∈[0,π2]都有sin x <x .故D 为假命题.综上可知,C 为真命题.8.已知矩形ABCD ,P A ⊥平面ABCD ,则以下等式中可能不成立的是导学号 21325104( B )A .DA →·PB →=0 B .PC →·BD →=0 C .PD →·AB →=0 D .P A →·CD →=0[解析] ①⎭⎪⎬⎪⎫DA ⊥AB DA ⊥P A ⇒DA ⊥平面P AB ⇒DA ⊥PB ⇒DA →·PB →=0;②同①知AB →·PD →=0;③P A ⊥平面ABCD ⇒P A ⊥CD ⇒P A →·CD →=0; ④若BD →·PC →=0,则BD ⊥PC ,又BD ⊥P A ,∴BD ⊥平面P AC ,故BD ⊥AC ,但在矩形ABCD 中不一定有BD ⊥AC ,故选B .9.命题p :函数y =log a (ax +2a )(a >0且a ≠1)的图象必过定点(-1,1);命题q :如果函数y =f (x )的图象关于(3,0)对称,那么函数y =f (x -3)的图象关于原点对称,则有导学号 21325105( C )A .“p 且q ”为真B .“p 或q ”为假C .p 真q 假D .p 假q 真[解析] p :x =-1,y =log a (-a +2a )=1为真命题q :若y =x +3,则y =f (x -3)=x 图象关于原点对称,但y =x +3的图象不关于(3,0)对称,故q 为假,∴选C .10.方程xy 2+x 2y =1所表示的曲线导学号 21325106( D ) A .关于x 轴对称 B .关于y 轴对称 C .关于原点对称D .关于直线y =x 对称[解析] 设P (x 0,y 0)是曲线xy 2+x 2y =1上的任意一点,则x 0y 20+x 20y 0=1.点P 关于直线y =x 的对称点为P ′(y 0,x 0),∴y 0x 20+y 20x 0=x 0y 20+x 20y 0=1,∴点P ′在曲线xy 2+x 2y =1上,故该曲线关于直线y =x 对称.11.(2017·福建福州八县一中期末)如图,在二面角α-l -β的棱l 上有A 、B 两点,直线AC 、BD 分别在这个二面角的两个半平面内,且都垂直于AB ,若二面角α-l -β的大小为π3,AB =AC =2,BD =3,则CD =导学号 21325107( A )A .11B .14C .25D .23[解析] ∵CA ⊥AB ,BD ⊥AB ,∴CA →·AB →=BD →·AB →=0, ∵〈AC →,BD →〉=π3,∴〈CA →,BD →〉=23π.∵CD →=CA →+AB →+BD →,∴CD →2=CA →2+AB →2+BD →2+2CA →·AB →+2CA →·BD →+2AB →·BD →=22+22+32+0+2×2×3×cos 23π+0=11,∴CD =11.故选A .12.(2017·福州市八县一中高二期末)如图,F 1、F 2分别是双曲线的左、右焦点,过F 1的直线与双曲线的左、右两支分别交于A 、B 两点,若△ABF 2为等边三角形,则该双曲线的离心率为导学号 21325108( C )A .3B .5C .7D .3[解析] 根据双曲线的定义,可得|BF 1|-|BF 2|=2a , ∵△ABF 2是等边三角形,即|BF 2|=|AB |, ∴|BF 1|-|BF 2|=2a ,即|BF 1|-|AB |=|AF 1|=2a 又∵|AF 2|-|AF 1|=2a , ∴|AF 2|=|AF 1|+2a =4a ,∵△AF 1F 2中,|AF 1|=2a ,|AF 2|=4a ,∠F 1AF 2=120°, ∴|F 1F 2|2=|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|cos120°,即4c 2=4a 2+16a 2-2×2a ×4a ×(-12)=28a 2,解之得c =7a ,由此可得双曲线C 的离心率e =ca=7.故选C .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知p :x -1x ≤0,q :4x +2x -m ≤0,若p 是q 的充分条件,则实数m 的取值范围是_m ≥6__.导学号 21325109[解析] 由x -1x ≤0,即⎩⎪⎨⎪⎧x (x -1)≤0x ≠0,得0<x ≤1,由题设知,当0<x ≤1时,4x +2x -m ≤0,即4x +22≤m 恒成立,易知y =4x +2x (0<x ≤1)的最大值为6,所以m ≥6.14.已知点A 、B 、C 的坐标分别为(0,1,0)、(-1,0,-1)、(2,1,1),点P 的坐标为(x,0,z ),若P A ⊥AB ,P A ⊥AC ,则P 点的坐标为_(-1,0,2)__.导学号 21325110[解析] 由已知,AB →=(-1,-1,-1),AC →=(2,0,1),P A →=(-x,1,-z ), 由⎩⎪⎨⎪⎧P A →·AB →=0P A →·AC →=0,得⎩⎪⎨⎪⎧ x -1+z =0-2x -z =0,解得⎩⎪⎨⎪⎧x =-1z =2.∴P (-1,0,2).15.如果过两点A (a,0)和B (0,a )的直线与抛物线y =x 2-2x -3没有交点,那么实数a 的取值范围是___(-∞,-134)___.导学号 21325111 [解析] 过A 、B 两点的直线为:x +y =a 与抛物线y =x 2-2x -3联立得x 2-x -a -3=0,因为直线x 与抛物线没有交点,则方程无解.即Δ=1+4(a +3)<0,解之a <-134. 16.边长为1的等边三角形ABC 中,沿BC 边高线AD 折起,使得折后二面角B -AD-C 为60°,点D 到平面ABC 的距离为10导学号 21325112 [解析] 如图所示,AD ⊥平面BCD ,AD =32,BD =CD =BC =12,∴V A -BCD =13×AD ×S △BCD .又∵V A -BCD =V D -ABC =13×h ×S △ABC ,∴由等积法可解得h =1510. 三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)如图,设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22.求椭圆的标准方程.导学号 21325113[解析] 设F 1(-c,0),F 2(c,0),其中c 2=a 2-b 2. 由|F 1F 2||DF 2|=22,得|DF 1|=|F 1F 2|22=22c . 从而S △DF 1F 2=12|DF 1|·|F 1F 2|=22c 2=22,故c =1.从而|DF 1|=22. 由DF 1⊥F 1F 2,得|DF 2|2=|DF 1|2+|F 1F 2|2=92,因此|DF 2|=322,所以2a =|DF 1|+|DF 2|=22,故a =2,b 2=a 2-c 2=1.因此,所求椭圆的标准方程为x 22+y 2=1.18.(本小题满分12分)(2017·江苏徐州高二检测)在R 上定义运算⊗:x ⊗y =x (1-y ).若命题p “存在x 0>2,不等式(x 0-a )⊗x 0>a +2成立”为假命题,求实数a 的取值范围.导学号 21325114[思路分析] 先写出特称命题的否定,即转化为全称命题,将问题转化为恒成立问题,再利用相应知识建立方程或不等式求解.[解析] 因为命题p “存在x 0>2,不等式(x 0-a )⊗x 0>a +2成立”为假命题,所以p 的否定为真命题,即“任意x >2,不等式(x -a )⊗x ≤a +2都成立”为真命题.由题意得(x -a )⊗x =(x -a )(1-x ),故不等式(x -a )⊗x ≤a +2可化为(x -a )(1-x )≤a +2,化简得x 2-(a +1)x +2a +2≥0.故原命题等价于x 2-(a +1)x +2a +2≥0在(2,+∞)上恒成立. 由二次函数f (x )=x 2-(a +1)x +2a +2的图象,知其对称轴为x =a +12,则⎩⎪⎨⎪⎧a +12≤2,f (2)≥0或⎩⎨⎧a +12>2,f (a +12)≥0,解得a ≤3或3<a ≤7.综上,实数a 的取值范围为(-∞,7].19.(本小题满分12分)(2017·山西太原高二检测)已知抛物线C :y 2=4x ,点M (m,0)在x 轴的正半轴上,过点M 的直线l 与抛物线C 相交于A ,B 两点,O 为坐标原点.导学号 21325115(1)若m =1,且直线l 的斜率为1,求以AB 为直径的圆的方程;(2)是否存在定点M ,使得不论直线l 绕点M 如何转动,1|AM |2+1|BM |2恒为定值? [解析] (1)当m =1时,M (1,0),此时,点M 为抛物线C 的焦点,直线l 的方程为y =x -1,设A ,B 两点坐标为A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y 2=4x ,y =x -1,消去y 得,x 2-6x +1=0,∴x 1+x 2=6,y 1+y 2=x 1+x 2-2=4,∴圆心坐标为(3,2). 又|AB |=x 1+x 2+2=8.∴圆的半径为4,∴圆的方程为(x -3)2+(y -2)2=16.(2)若存在这样的点M ,使得1|AM |2+1|BM |2为定值,由题意可设直线l 的方程为x =ky +m , 则直线l 的方程与抛物线C :y 2=4x 联立,消去x 得,y 2-4ky -4m =0,则y 1y 2=-4m ,y 1+y 2=4k , ∴1|AM |2+1|BM |2=1(x 1-m )2+y 21+1(x 2-m )2+y 22 =1(k 2+1)y 21+1(k 2+1)y 22=y 21+y 22(k 2+1)y 21y 22=(y 1+y 2)2-2y 1y 2(k 2+1)y 21y 22=16k 2+8m (k 2+1)·16m 2=2k 2+m 2m 2(k 2+1), 因此要与k 无关,只需令m2=1,即m =2,此时1|AM |2+1|BM |2=14. ∴存在定点M (2,0),不论直线l 绕点M 如何转动,1|AM |2+1|BM |2恒为定值. 20.(本小题满分12分)如图,四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,AC ∩BD =O ,A 1C 1∩B 1D 1=O 1,四边形ACC 1A 1和四边形BDD 1B 1均为矩形.导学号 21325116(1)证明:O 1O ⊥底面ABCD ;(2)若∠CBA =60°,求二面角C 1-OB 1-D 的余弦值.[解析] (1)证明:∵四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等, ∴四边形ABCD 和四边形A 1B 1C 1D 1均为菱形.∵AC ∩BD =O ,A 1C 1∩B 1D 1=O 1, ∴O 、O 1分别为BD 、B 1D 1中点.∵四边形ACC 1A 1和四边形BDD 1B 1为矩形, ∴OO 1∥CC 1∥BB 1且CC 1⊥AC ,BB 1⊥BD , ∴OO 1⊥BD ,OO 1⊥AC ,又∵AC ∩BD =O 且AC ,BD ⊂底面ABCD , ∴OO 1⊥底面ABCD .(2)解法一:过O 1作B 1O 的垂线交B 1O 于点E ,连接EO 1、EC 1.不妨设四棱柱ABCD -A 1B 1C 1D 1的边长为2a .∵OO 1⊥底面ABCD 且底面ABCD ∥面A 1B 1C 1D 1, ∴OO 1⊥平面A 1B 1C 1D 1,又∵O 1C 1⊂平面A 1B 1C 1D 1,∴O 1C 1⊥OO 1, ∵四边形A 1B 1C 1D 1为菱形,∴O 1C 1⊥O 1B 1,又∵O 1C 1⊥OO 1且OO 1∩O 1C 1=O 1,O 1O ,O 1B 1⊂平面OB 1D ., ∴O 1C 1⊥平面OB 1D ,又∵B 1O ⊂平面OB 1D ,∴B 1O ⊥O 1C 1,又∵B 1O ⊥O 1E 且O 1C 1∩O 1E =O 1,O 1C 1,O 1E ⊂平面O 1EC 1, ∴B 1O ⊥面O 1EC 1,∴∠O 1EC 1为二面角C 1-OB 1-D 的平面角, cos ∠O 1EC 1=O 1EEC 1,∵∠CBA =60°且四边形ABCD 为菱形,∴O 1C 1=a ,B 1O 1=3a ,OO 1=2a ,B 1O =B 1O 21+OO 21=7a ,则O 1E =B 1O 1·sin ∠O 1B 1O =B 1O 1·O 1O B 1O =3a ·2a 7a=2217a ,再由△O 1EC 1的勾股定理可得EC 1=O 1E 2+O 1C 21=127a 2+a 2=197a , 则cos ∠O 1EC 1=O 1E EC 1=2217a 197a =25719,所以二面角C 1-OB 1-D 的余弦值为25719.解法二:∵四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,∴四边形ABCD 是菱形,∴AC ⊥BD ,又O 1O ⊥平面ABCD ,从而OB 、OC 、OO 1两两垂直,以O 为坐标原点,OB 、OC 、OO 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,不妨设AB =2,∵∠ABC=60°,∴OB =3,OC =1,于是各相关点的坐标O (0,0,0)、B 1(3,0,2)、C 1(0,1,2),易知n 1=(0,1,0)为平面BDD 1B 1的一个法向量, 设n 2=(x ,y ,z )是平面OB 1C 1的一个法向量, 则⎩⎪⎨⎪⎧n 2·OB 1→=0n 2·OC 1→=0,即⎩⎨⎧3x +2z =0y +2z =0.取z =-3,则x =2,y =23, ∴n 2=(2,23,-3).设二面角C 1-OB 1-D 的大小为θ,易知θ为锐角, ∴cos θ=|n 1·n 2||n 1||n 2|=25719,∴二面角C 1-OB 1-D 的余弦值为25719.21.(本小题满分12分)(2017·北京理,16)如图,在四棱锥P -ABCD 中,底面ABCD 为正方体,平面P AD ⊥平面ABCD ,点M 在线段PB 上,PD ∥平面MAC ,P A =PD =6,AB =4.导学号 21325117(1)求证:M 为PB 的中点; (2)求二面角B -PD -A 的大小;(3)求直线MC 与平面BDP 所成角的正弦值. [解析] (1)证明:设AC ,BD 交于点E ,连接ME , 因为PD ∥平面MAC ,平面MAC ∩平面PDB =ME , 所以PD ∥ME .因为四边形ABCD 是正方形, 所以E 为BD 的中点, 所以M 为PB 的中点.(2)解:如图,取AD 的中点O ,连接OP ,OE .因为P A =PD ,所以OP ⊥AD .又因为平面P AD ⊥平面ABCD ,且OP ⊂平面P AD ,所以OP ⊥平面ABCD .因为OE ⊂平面ABCD ,所以OP ⊥OE .因为四边形ABCD 是正方形,所以OE ⊥AD .如图,建立空间直角坐标系O -xyz ,则P (0,0,2),D (2,0,0),B (-2,4,0),BD →=(4,-4,0),PD →=(2,0,-2).设平面BDP 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·BD →=0,n ·PD →=0, 即⎩⎨⎧4x -4y =0,2x -2z =0.令x =1,则y =1,z = 2.于是n =(1,1,2).平面P AD 的法向量为p =(0,1,0),所以cos 〈n ,p 〉=n ·p |n ||p |=12. 由题意知二面角B -PD -A 为锐角,所以它的大小为π3. (3)解:由题意知M (-1,2,22),C (2,4,0),MC →=(3,2,-22). 设直线MC 与平面BDP 所成角为α,则sin α=|cos 〈n ,MC →〉|=|n ·MC →||n ||MC →|=269, 所以直线MC 与平面BDP 所成角的正弦值为269. 22.(本小题满分12分)(2017·全国Ⅰ理,20)已知椭圆C :x 2a 2+y 2b2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3(-1,32),P 4(1,32)中恰有三点在椭圆C 上.导学号 21325118 (1)求C 的方程.(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.[解析] (1)解:由于P 3,P 4两点关于y 轴对称,故由题设知椭圆C 经过P 3,P 4两点.又由1a 2+1b 2>1a 2+34b2知,椭圆C 不经过点P 1, 所以点P 2在椭圆C 上.因此⎩⎨⎧ 1b 2=1,1a 2+34b 2=1, 解得⎩⎪⎨⎪⎧a 2=4,b 2=1. 故椭圆C 的方程为x 24+y 2=1. (2)证明:设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为(t ,4-t 22),(t ,-4-t 22),则k 1+k 2=4-t 2-22t -4-t 2+22t=-1,得t =2,不符合题设. 从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1. 而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+(m -1)(x 1+x 2)x 1x 2. 由题设k 1+k 2=-1, 故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0.即(2k +1)·4m 2-44k 2+1+(m -1)·-8km 4k 2+1=0, 解得k =-m +12. 当且仅当m >-1时,Δ>0,于是l :y =-m +12x +m , 即y +1=-m +12(x -2), 所以l 过定点(2,-1).。
2017-2018学年人教A版高中数学选修2-1配套练习:本册学业质量检测检测1 含解析 精品

本册学业质量标准检测(一)时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2017·甘肃金昌市永昌一中高二期末)若命题p :0是偶数,命题q :2是3的约数.则下列命题中为真的是导学号 21325075( B )A .p 且qB .p 或qC .非pD .非p 且非q[解析] 命题p :0是偶数为真命题. 命题q :2是3的约数为假命题,则p 且q 为假命题,p 或q 为真命题,非p 为假命题,非p 且非q 为假命题, 故选B .2.(2017·广州市华美实验中学月考)在空间四边形OABC 中,OA →+AB →-CB →等于导学号 21325076( C )A .OA →B .AB →C .OC →D .AC →[解析] 根据向量的加法、减法法则,得OA →+AB →-CB →=OB →-CB →=OB →+BC →=OC →.故选C .3.(2017·湖南澧县一中高二期中测试)下列说法中正确的是导学号 21325077( B ) A .“x >5”是“x >3”的必要条件B .命题“∀x ∈R ,x 2+1>0”的否定是“∃x ∈R ,x 2+1≤0”C .∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数D .设p 、q 是简单命题,若p ∨q 是真命题,则p ∧q 也是真命题[解析] 命题“∀x ∈R ,x 2+1>0”的否定是“∃x ∈R ,x 2+1≤0”,故选B . 4.已知A 、B 、C 三点不共线,对于平面ABC 外的任一点O ,下列条件中能确定点M 与点A 、B 、C 一定共面的是导学号 21325078( D )A .OM →=OA →+OB →+OC → B .OM →=2OA →-OB →-OC →C .OM →=OA →+12OB →+13OC →D .OM →=12OA →+13OB →+16OC →[解析] 若点M 与点A 、B 、C 一定共面,则OM →=xOA →+yOB →+zOC →且x +y +z =1,故选D .5.已知方程x 21+k +y 24-k=1表示双曲线,则k 的取值范围是导学号 21325079( B )A .-1<k <4B .k <-1或k >4C .k <-1D .k >4[解析] 由题意,得(1+k )(4-k )<0,∴(k +1)(k -4)>0,∴k >4或k <-1.6.设l 、m 、n 均为直线,其中m 、n 在平面α内,则“l ⊥α”是“l ⊥m 且l ⊥n ”的导学号 21325080( A )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[解析] ∵l ⊥α,m ⊂α,n ⊂α,∵l ⊥m 且l ⊥n ,故充分性成立;又l ⊥m 且l ⊥n 时,m 、n ⊂α,不一定有m 与n 相交,∴l ⊥α不一定成立,∴必要性不成立,故选A .7.(2017·广东广州高二检测)设p :2x 2-3x +1≤0,q :x 2-(2a +1)x +a (a +1)≤0,若¬p 是¬q 的必要不充分条件,则实数a 的取值范围是导学号 21325081( A )A .[0,12]B .(0,12)C .(-∞,0]∪[12,+∞)D .(-∞,0)∪(12,+∞)[解析] 由2x 2-3x +1≤0,得12≤x ≤1,¬p 为x <12或x >1,由x 2-(2a +1)x +a (a +1)≤0得a ≤x ≤a +1,¬q 为x <a 或x >a +1.若¬p 是¬q 的必要不充分条件,应有⎩⎪⎨⎪⎧a ≤12,a +1>1或⎩⎪⎨⎪⎧a +1≥1,a <12,所以0≤a ≤12.故选A .8.如图所示,椭圆的中心在原点,焦点F 1、F 2在x 轴上,A 、B 是椭圆的顶点,P 是椭圆上一点,且PF 1⊥x 轴,PF 2∥AB ,则此椭圆的离心率是导学号 21325082( B )A .12B .55C .13D .22[解析] 点P 的坐标(-c ,b 2a ),于是k AB =-b a ,kPF 2=-b 22ac ,由k AB =kPF 2得b =2c ,故e =c a =55.9.已知a 、b 是两异面直线,A 、B ∈a ,C 、D ∈b ,AC ⊥b ,BD ⊥b 且AB =2,CD =1,则直线a 、b 所成的角为导学号 21325083( B )A .30°B .60°C .90°D .45°[解析] 由于AB →=AC →+CD →+DB →, ∴AB →·CD →=(AC →+CD →+DB →)·CD →=CD →2=1.cos 〈AB →,CD →〉=AB →·CD →|AB →|·|CD →|=12⇒〈AB →,CD →〉=60°,故选B .10.设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A 、B 两点.若|AF |=3|BF |,则l 的方程为导学号 21325084( C )A .y =x -1或y =-x +1B .y =33(x -1)或y =-33(x -1) C .y =3(x -1)或y =-3(x -1) D .y =22(x -1)或y =-22(x -1) [解析] 由抛物线方程y 2=4x 知焦点F (1,0),准线x =-1,设直线l :x =my +1,代入y 2=4x 中消去x 得,y 2-4my -4=0.由根与系数的关系得,y 1+y 2=4m ,y 1y 2=-4, 设A (x 1,y 1),B (x 2,y 2),则y 1>0>y 2, ∵|AF |=3|BF |,∴y 1=-3y 2,由⎩⎪⎨⎪⎧y 1y 2=-4y 1=-3y 2,解得y 2=-23,∴y 1=2 3.∴m =y 1+y 24=33,∴直线l 的方程为x =33y +1. 由对称性知,这样的直线有两条. 即y =±3(x -1).11.(2017·山东淄博高二检测)双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为导学号 21325085( B )A .x 24-y 24=1B .y 24-x 24=1C .y 24-x 28=1D .x 28-y 24=1[解析] 由题意知,焦点在y 轴上,且2a +2b =22c ,即a +b =2c ,又a =2,且a 2+b 2=c 2,所以a =2,b =2.所以双曲线的标准方程为y 24-x 24=1.12.在三棱锥P -ABC 中,AB ⊥BC ,AB =BC =12P A ,点O 、D 分别是AC 、PC 的中点,OP ⊥底面ABC ,则直线OD 与平面PBC 所成角的正弦值为导学号 21325086( D )A .216 B .833C .21060D .21030[解析] ∵OP ⊥平面ABC ,OA =OC ,AB =BC , ∴OA ⊥OB ,OA ⊥OP ,OB ⊥OP .以O 为原点,建立如图所示的空间直角坐标系O -xyz .设AB =a ,则A (22a,0,0)、B (0,22a,0)、C (-22a,0,0). 设OP =h ,则P (0,0,h ), ∵P A =2a ,∴h =142a . ∴OD →=(-24a,0,144a ).由条件可以求得平面PBC 的法向量n =(-1,1,77), ∴cos 〈OD →,n 〉=OD →·n |OD →||n |=21030.设OD 与平面PBC 所成的角为θ, 则sin θ=|cos 〈OD →,n 〉|=21030.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.(2017·江苏阜宁中学高二期中测试)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线为y =34x ,则此双曲线的离心率为__54__.导学号 21325087 [解析] 由题意知b a =34,∴b 2a 2=916,∴c 2-a 2a 2=916,∴e 2=2516,∴e =54.14.已知在空间四边形OABC 中,OA →=a 、OB →=b 、OC →=c ,点M 在OA 上,且OM =3MA ,N 为BC 中点,用a 、b 、c 表示MN →,则MN →等于__-34a +12b +12c __.导学号 21325088[解析] 显然MN →=ON →-OM →=12(OB →+OC →)-34OA →=12b +12c -34a .15.(2017·安徽蚌埠市高二期末)椭圆x 212+y 24=1的左、右焦点分别为F 1,F 2,过焦点F 1的直线交该椭圆于A ,B 两点,若△ABF 2的内切圆面积为π,A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则|y 1-y 2|的值为 6 .导学号 21325089[解析] ∵椭圆x 212+y 24=1的左、右焦点分别为F 1,F 2,a =23,b =2,c =22,过焦点F 1的直线交该椭圆于A (x 1,y 1),B (x 2,y 2)两点,△ABF 2的内切圆面积为π, ∴△ABF 2内切圆半径r =1.△ABF 2面积S =12×1×(AB +AF 2+BF 2)=2a =43,∴ABF 2面积S =12|y 1-y 2|×2c =12|y 1-y 2|×2×22=43,∴|y 1-y 2|= 6.故答案为 6.16.过二面角α-l -β内一点P 作P A ⊥α于A ,作PB ⊥β于B ,若P A =5,PB =8,AB =7,则二面角α-l -β的度数为_120°__.导学号 21325090[解析] 设P A →=a ,PB →=b ,由条件知|a |=5,|b |=8,|AB →|=7, ∴AB 2=|AB →|2=|b -a |2 =|b |2+|a |2-2a ·b =64+25-2a ·b =49, ∴a ·b =20,∴cos 〈a ,b 〉=a ·b |a |·|b |=12, ∴〈a ,b 〉=60°,∴二面角α-l -β为120°.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)(2017·江苏阜宁中学高二期中测试)已知命题p :“方程x 2a -1+y 27-a=1表示焦点在y 轴上的椭圆”;命题q :“∃x ∈R ,使得x 2-(a -1)x +1<0”.导学号 21325091(1)若命题p 为真命题,求实数a 的取值范围; (2)若命题p ∧q 为真命题,求实数a 的取值范围. [解析] (1)若命题p 为真命题,则有⎩⎪⎨⎪⎧a -1>07-a >07-a >a -1,∴1<a <4.故实数a 的取值范围是(1,4).(2)若命题p ∧q 为真命题,则p 真、q 真,由(1)知p 真,1<a <4. 若q 真,则不等式x 2-(a -1)x +1<0有解,即Δ=(a -1)2-4>0, ∴a 2-2a -3>0,∴a >3或a <-1. 又∵1<a <4,∴3<a <4. 故实数a 的取值范围是(3,4).18.(本小题满分12分)(2017·浙江绍兴高二检测)已知抛物线y 2=4x 截直线y =2x +m 所得弦长|AB |=3 5.导学号 21325092(1)求m 的值;(2)设P 是x 轴上的点,且△ABP 的面积为9,求点P 的坐标. [思路分析] (1)由弦长公式建立关于m 的方程求解; (2)设出P 点坐标,根据面积S =12|AB |·d 求解.[解析] (1)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =2x +m ,y 2=4x 得4x 2+4(m -1)x +m 2=0, 由根与系数的关系得x 1+x 2=1-m ,x 1·x 2=m 24,∴|AB |=1+k 2(x 1+x 2)2-4x 1x 2 =1+22(1-m )2-4×m 24=5(1-2m ),∵|AB |=35,∴5(1-2m )=35,解得m =-4. (2)设P (a,0),P 到直线AB 的距离为d , 则d =|2a -0-4|22+(-1)2=2|a -2|5,又S △ABP =12|AB |·d ,则d =2·S △ABP |AB |,∴2|a -2|5=2×935,∴|a -2|=3, ∴a =5或a =-1,故点P 的坐标为(5,0)或(-1,0).19.(本小题满分12分)设双曲线C :x 2a 2-y 2=1(a >0)与直线l :x +y =1相交于两个不同的点A 、B .导学号 21325093(1)求双曲线C 的离心率e 的取值范围;(2)设直线l 与y 轴的交点为P ,且P A →=512PB →,求a 的值.[解析] (1)由C 与l 相交于两个不同的点,故知方程组⎩⎪⎨⎪⎧x 2a 2-y 2=1x +y =1,有两组不同的实数解,消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0.①所以⎩⎪⎨⎪⎧1-a 2≠04a 4+8a 2(1-a 2)>0, 解得0<a <2且a ≠1,双曲线的离心率e =1+a 2a =1a 2+1, ∵0<a <2且a ≠1,∴e >62,且e ≠2,即离心率e 的取值范围为(62,2)∪(2,+∞)(2)设A (x 1,y 1)、B (x 2,y 2)、P (0,1),∵P A →=512PB →,∴(x 1,y 1-1)=512(x 2,y 2-1).由此得x 1=512x 2,由于x 1、x 2都是方程①的根,且1-a 2≠0,所以1712x 2=-2a 21-a 2,512x 22=-2a 21-a 2.消去x 2得,-2a 21-a 2=28960.由a >0,所以a =1713.20.(本小题满分12分)(2017·安徽蚌埠市高二期末)已知直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AC =BC =2,AA 1=4,D 是棱AA 1的中点.如图所示.导学号 21325094(1)求证:DC 1⊥平面BCD ; (2)求二面角A -BD -C 的大小.[解析] (1)证明:如图所示建立空间直角坐标系.由题意知C (0,0,0)、A (2,0,0)、B (0,2,0)、D (2,0,2)、A 1(2,0,4)、C 1(0,0,4). ∴DC 1→=(-2,0,2),DC →=(-2,0,-2),DB →=(-2,2,-2). ∵DC 1→·DC →=0,DC 1→·DB →=0. ∴DC 1⊥DC ,DC 1⊥DB . 又∵DC ∩DB =D , ∴DC 1⊥平面BDC .(2)设n =(x ,y ,z )是平面ABD 的法向量. 则n ·AB →=0,n ·AD →=0, 又AB →=(-2,2,0),AD →=(0,0,2),∴⎩⎪⎨⎪⎧-2x +2y =0,2z =0,取y =1,得n =(1,1,0). 由(1)知, DC 1→=(-2,0,2)是平面DBC 的一个法向量, 记n 与DC 1→的夹角为θ, 则cos θ=-22·22=-12,结合三棱柱可知,二面角A -BD -C 是锐角, ∴所求二面角A -BD -C 的大小是π3.21.(本小题满分12分)(2017·内蒙古乌兰察布市集宁一中高二期末)椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点A (1,32),离心率为12,左、右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B两点.导学号 21325095(1)求椭圆C 的方程;(2)当△F 2AB 的面积为1227时,求直线的方程.[解析] (1)∵椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点A (1,32),∴1a 2+94b 2=1①,又∵离心率为12,∴c a =12,∴b 2a 2=34②,联立①②得a 2=4,b 2=3. ∴椭圆的方程为:x 24+y 23=1.(2)①当直线的倾斜角为π2时,A (-1,32),B (-1,-32),S △ABF 2=12|AB |×|F 1F 2|=12×3×2≠1227,不适合题意.②当直线的倾斜角不为π2时,设直线方程l :y =k (x +1),代入x 24+y 23=1,得:(4k 2+3)x 2+8k 2x +4k 2-12=0设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8k 24k 2+3,x 1x 2=4k 2-124k 2+3,∴|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+k 2)[64k 4(4k 2+3)2-4(4k 2-12)4k 2+3]=12(1+k 2)4k 2+3.点F 2到直线l 的距离d =|k +k |1+k 2, ∴S △ABF 2=12|AB |·d =12|k |1+k 24k 2+3=1227,化为17k 4+k 2-18=0,解得k 2=1,∴k =±1, ∴直线方程为:x -y +1=0或x +y +1=0.22.(本小题满分12分)如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.导学号 21325096(1)证明:BE ⊥DC ;(2)求直线BE 与平面PBD 所成角的正弦值;(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -P 的余弦值.[解析] 解法一:依题意,以点A 为原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2),由E 为棱PC 的中点, 得E (1,1,1).(1)BE →=(0,1,1)、DC →=(2,0,0),故BE →·DC →=0,所以BE ⊥DC .(2)BD →=(-1,2,0)、PB →=(1,0,-2),设n =(x ,y ,z )为平面PBD 的法向量,则⎩⎪⎨⎪⎧n ·BD →=0n ·PB →=0,即⎩⎪⎨⎪⎧-x +2y =0x -2z =0, 不妨令y =1,可得n =(2,1,1)为平面PBD 的一个法向量, 于是有cos 〈n ,BE →〉=n ·BE →|n |·|BE →|=26×2=33.所以,直线BE 与平面PBD 所成角的正弦值为33. (3)向量BC →=(1,2,0),CP →=(-2,-2,2),AC →=(2,2,0),AB →=(1,0,0),由点F 在棱PC 上,设CF →=λCP →,0≤λ≤1.故BF →=BC →+CF →=BC →+λCP →=(1-2λ,2-2λ,2λ),由BF ⊥AC ,得BF →·AC →=0,因此,2(1-2λ)+2(2-2λ),解得λ=34,即BF →=(-12,12,32).设n 1=(x 1,y 1,z 1)为平面F AB 的法向量,则⎩⎪⎨⎪⎧ n 1·AB →=0n 1·B F →=0,即⎩⎪⎨⎪⎧x 1=0-12x 1+12y 1+32z 1=0, 不妨令z 1=1,可得n 1=(0,-3,1)为平面F AB 的一个法向量,取平面ABP 的法向量n 2=(0,1,0),则cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-310×1=-31010. 易知,二面角F -AB -P 是锐角,所以其余弦值为31010. 解法二:(1)证明:如图,取PD 中点M ,连接EM 、AM .由于E 、M 分别为PC 、PD 的中点,故EM ∥DC ,且EM =12DC ,又由已知,可得EM ∥AB 且EM =AB ,故四边形ABEM 为平行四边形,所以BE ∥AM .因为P A ⊥底面ABCD ,故P A ⊥CD ,而CD ⊥DA ,从而CD ⊥平面P AD ,因为AM ⊂平面P AD ,于是CD ⊥AM ,又BE ∥AM ,所以BE ⊥CD .(2)连接BM ,由(1)有CD ⊥平面P AD ,得CD ⊥PD ,而EM ∥CD ,故PD ⊥EM ,又因为AD =AP ,M 为PD 的中点,故PD ⊥AM ,可得PD ⊥BE ,所以PD ⊥平面BEM ,故平面BEM ⊥平面PBD ,所以,直线BE 在平面PBD 内的射影为直线BM ,而BE ⊥EM ,可得∠EBM 为锐角,故∠EBM 为直线BE 与平面PBD 所成的角.依题意,有PD =22,而M 为PD 中点,可得AM =2,进而BE =2,故在直角三角形BEM 中,tan ∠EBM =EM BE =AB BE =12,因此sin ∠EBM =33. 所以,直线BE 与平面PBD 所成角的正弦值为33. (3)如图,在△P AC 中,过点F 作FH ∥P A 交AC 于点H ,因为P A ⊥底面ABCD ,故FH ⊥底面ABCD ,从而FH ⊥AC ,又BF ⊥AC ,得AC ⊥平面FHB ,因此AC ⊥BH ,在底面ABCD 内,可得CH =3HA ,从而CF =3FP .在平面PDC 内,作FG ∥DC 交PD 于点G ,于是DG =3GP ,由于DC ∥AB ,故GF ∥AB ,所以A 、B 、F 、G 四点共面,由AB ⊥P A ,AB ⊥AD ,得AB ⊥平面P AD ,故AB ⊥AG ,所以∠P AG 为二面角F -AB -P 的平面角.在△P AG 中,P A =2,PG =14PD =22,∠APG =45°,由余弦定理可得AG =102,cos ∠P AG =31010. 所以,二面角F -AB -P 的余弦值为31010.。
2017-2018学年人教A版高中数学选修2-1配套练习:2-3双曲线2-3-2 第2课时 含解析 精品

第二章 2.3 2.3.2 第2课时A 级 基础巩固一、选择题1.若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,那么k 的取值范围是导学号 21324611( D )A .(-153,153)B .(0,153)C .(-153,0) D .(-153,-1) [解析] 由⎩⎪⎨⎪⎧y =kx +2x 2-y 2=6,得(1-k 2)x 2-4kx -10=0.由题意,得⎩⎪⎨⎪⎧1-k 2≠0Δ=16k 2+40(1-k 2)>04k1-k 2>010k 2-1>0,解得-153<k <-1. 2.(2017·甘肃金昌市永昌一中高二期末)直线y =x +3与曲线y 29-x |x |4=1导学号 21324612( D )A .没有交点B .只有一个交点C .有两个交点D .有三个交点[解析] 当x ≥0时,曲线y 29-x |x |4=1方程可化为:y 29-x 24=1①将y =x +3代入①得:5x 2-24x =0,解得x =0或x =245, 即此时直线y =x +3与曲线y 29-x |x |4=1有两个交点;当x <0时,曲线y 29-x |x |4=1方程可化为:y 29+x 24=1②将y =x +3代入②得:13x 2+24x=0,解得x =0(舍去)或x =-2413,即此时直线y =x +3与曲线y 29-x |x |4=1有一个交点;综上所述直线y =x +3与曲线y 29-x |x |4=1有三个交点.故选D .3.(2017·天津文,5)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点A 在双曲线的渐近线上,△OAF 是边长为2的等边三角形(O 为原点),则双曲线的方程为导学号 21324613( D )A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 2=1D .x 2-y 23=1[解析] 根据题意画出草图如图所示(不妨设点A 在渐近线y =bax 上).由△AOF 的边长为2的等边三角形得到∠AOF =60°,c =|OF |=2. 又点A 在双曲线的渐近线y =ba x 上,∴ba =tan 60°= 3. 又a 2+b 2=4, ∴a =1,b =3,∴双曲线的方程为x 2-y 23=1.故选D .4.若ab ≠0,则ax -y +b =0和bx 2+ay 2=ab 所表示的曲线只可能是下图中的导学号 21324614( C )[解析] 方程可化为y =ax +b 和x 2a +y2b =1.从B ,D 中的两椭圆看a ,b ∈(0,+∞),但B 中直线有a <0,b <0矛盾,应排除;D 中直线有a <0,b >0矛盾,应排除;再看A 中双曲线的a <0,b >0,但直线有a >0,b >0,也矛盾,应排除;C 中双曲线的a >0,b <0和直线中a 、b 一致.应选C .5.(2017·福建龙岩市高二期末)已知点P 在以点F 1,F 2分别为左、右焦点的双曲线x 2a2-y 2b 2=1(a >0,b >0)上,且满足PF 1→·PF 2→=0,tan ∠PF 1F 2=13,则该双曲线的离心率是导学号 21324615( D )A .52B .3C .5D .102[分析] 由已知得PF 1⊥PF 2,由tan ∠PF 1F 2=13,得PF 2PF 1=13,设PF 2=x ,则PF 1=3x ,F 1F 2=2c =10x ,由双曲线定义得2a =PF 1-PF 2=3x -x =2x ,由此能求出该双曲线的离心率.[解析] 如图,∵点P 在以点F 1,F 2分别为左、右焦点的双曲线x 2a 2-y 2b 2=1(a >0,b >0)上,且满足PF 1→·PF 2→=0,∴PF 1⊥PF 2,∵tan ∠PF 1F 2=13,∴PF 2PF 1=13,设PF 2=x ,则PF 1=3x ,∴F 1F 2=2c =PF 21+PF 22=9x 2+x 2= 10x ,由双曲线定义得2a =PF 1-PF 2=3x -x =2x , ∴该双曲线的离心率e =c a =2c 2a =102.故选D .6.设P 是双曲线x 2a 2-y 29=1上一点,双曲线的一条渐近线方程为3x -2y =0,F 1、F 2分别是双曲线的左、右焦点.若|PF 1|=3,则|PF 2|=导学号 21324616( C )A .1或5B .6C .7D .9[解析] ∵双曲线的一条渐近线方程为3x -2y =0, ∴b a =32,∵b =3,∴a =2. 又||PF 1|-|PF 2||=2a =4, ∴|3-|PF 2||=4.∴|PF 2|=7或|PF 2|=-1(舍去). 二、填空题7.已知直线l :x -y +m =0与双曲线x 2-y 22=1交于不同的两点A 、B ,若线段AB 的中点在圆x 2+y 2=5上,则m 的值是_±1__.导学号 21324617[解析] 由⎩⎪⎨⎪⎧x -y +m =0x 2-y 22=1,消去y 得x 2-2mx -m 2-2=0.Δ=4m 2+4m 2+8=8m 2+8>0.设A (x 1,y 1),B (x 2,y 2).则x 1+x 2=2m ,y 1+y 2=x 1+x 2+2m =4m ,∴线段AB 的中点坐标为(m,2m ),又∵点(m,2m )在圆x 2+y 2=5上,∴5m 2=5,∴m =±1.8.(2017·安徽合肥高二检测)过双曲线x 220-y 25=1的右焦点的直线被双曲线所截得的弦长为5,这样的直线有_1__条.导学号 21324618[解析] 依题意得右焦点F (5,0),所以过F 且垂直x 轴的直线是x =5,代入x 220-y 25=1,得y =±52,所以此时弦长为52×2= 5.当不垂直于x 轴时,如果直线与双曲线有两个交点,则弦长一定比5长.因为两顶点间距离为45,即左右两支上的点的最短距离是45,所以如果交于两支的话,弦长不可能为5,故只有一条.三、解答题9.(2017·福建八县一中高二期末测试)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的焦距为4,且过点(-3,26).导学号 21324619(1)求双曲线方程和其渐近线方程;(2)若直线l :y =kx +2与双曲线C 有且只有一个公共点,求实数k 的取值范围. [解析] (1)由题意得⎩⎪⎨⎪⎧a 2+b 2=49a 2-24b2=1,解得⎩⎪⎨⎪⎧a 2=1b 2=3.∴双曲线方程为x 2-y 23=1,其渐近线方程为y =±3x .(2)由⎩⎪⎨⎪⎧y =kx +2x 2-y 23=1,得(3-k 2)x 2-4kx -7=0,由题意得⎩⎪⎨⎪⎧3-k 2≠0Δ=16k 2+28(3-k 2)=0,∴k 2=7,∴k =±7.当直线l 与双曲线C 的渐近线y =±3x 平行,即k =±3时,直线l 与双曲线C 只有一个公共点,∴k =±7或k =±3.10.(2017·山东荷泽高二检测)已知双曲线C :x 2a 2-y 2b 2=1的离心率为3,点(3,0)是双曲线的一个顶点.导学号 21324620(1)求双曲线的方程;(2)经过双曲线右焦点F 2作倾斜角为30°的直线l ,直线l 与双曲线交于不同的A ,B 两点,求AB 的长.[解析] (1)∵双曲线C :x 2a 2-y 2b 2=1的离心率为3,点(3,0)是双曲线的一个顶点,∴ca =3,a =3,解得c =3,又c 2=a 2+b 2,b =6, ∴双曲线的方程为x 23-y 26=1.(2)双曲线x 23-y 26=1的右焦点为F 2(3,0),∴直线l 的方程为y =33(x -3), 联立⎩⎨⎧x 23-y 26=1,y =33(x -3),得5x 2+6x -27=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-65,x 1x 2=-275,所以|AB |=1+13·(-65)2-4×(-275)=1635.B 级 素养提升一、选择题1.(2017·全国Ⅰ文,5)已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为导学号 21324621( D )A .13B .12C .23D .32[解析] 因为F 是双曲线C :x 2-y 23=1的右焦点,所以F (2,0).因为PF ⊥x 轴,所以可设P 的坐标为(2,y P ). 因为P 是C 上一点,所以4-y 2P3=1,解得y P =±3,所以P (2,±3),|PF |=3.又因为A (1,3),所以点A 到直线PF 的距离为1, 所以S △APF =12×|PF |×1=12×3×1=32.故选D .2.(2017·浙江杭州高三模拟)设离心率为e 的双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,直线l 过点F 且斜率为k ,则直线l 与双曲线C 的左、右两支相交的充要条件是导学号 21324622( C )A .k 2-e 2>1B .k 2-e 2<1C .e 2-k 2>1D .e 2-k 2<1[解析] 直线l 与双曲线C 的左、右两支相交的充要条件是直线l 的斜率-b a <k <ba,两边平方得,k 2<b 2a 2=c 2-a2a2=e 2-1,即e 2-k 2>1.3.已知实数4、m 、9构成一个等比数列,则圆锥曲线x 2m +y 2=1的离心率为导学号 21324623( C )A .306B .7C .306或7 D .56或7 [解析] ∵4、m 、9成等比数列,∴m 2=36,∴m =±6.当m =6时,圆锥曲线方程为x 26+y 2=1,其离心率为306;当m =-6时,圆锥曲线方程为y 2-x 26=1,其离心率为7,故选C .4.(2017·甘肃金昌市永昌一中高二期末)从双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 引圆x 2+y 2=a 2的切线,切点为T ,延长FT 交双曲线右支于P 点,若M 为线段FP 的中点,O 为坐标原点,则|MO |-|MT |与b -a 的关系为导学号 21324624( C )A .|MO |-|MT |>b -aB .|MO |-|MT |<b -aC .|MO |-|MT |=b -aD .|MO |-|MT |与b -a 无关[解析] 如图所示,设F ′是双曲线的右焦点,连接PF ′.∵点M ,O 分别为线段PF ,FF ′的中点. 由三角形的中位线定理可得:|OM |=12|PF ′|=12(|PF |-2a )= =|MF |-a ,∴|OM |-|MT |=|MF |-|MT |-a =|FT |-a ,连接OT ,则OT ⊥FT ,在Rt △FOT 中,|OF |=c ,|OT |=a , ∴|FT |=|OF |2-|OT |2=c 2-a 2=b . ∴|OM |-|MT |=b -a .故选C . 二、填空题5.(2017·北京文,10)若双曲线x 2-y 2m=1的离心率为3,则实数m =_2__.导学号 21324625[解析] 由双曲线的标准方程知a =1,b 2=m ,c =1+m , 故双曲线的离心率e =ca =1+m =3,∴1+m =3,解得m =2.6.(2016·浙江高考)设双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是导学号 21324626三、解答题7.已知曲线C :x 2-y 2=1和直线l :y =kx -1.导学号 21324627 (1)若l 与C 有两个不同的交点,求实数k 的取值范围;(2)若l 与C 交于A 、B 两点,O 是坐标原点,且△AOB 的面积为2,求实数k 的值.[解析] (1)由⎩⎪⎨⎪⎧y =kx -1x 2-y 2=1,得(1-k 2)x 2+2kx -2=0.∵直线与双曲线有两个不同的交点,∴⎩⎪⎨⎪⎧1-k 2≠04k 2+8(1-k 2)>0, 解得-2<k <2,且k ≠±1,∴k 的取值范围为(-2,-1)∪(-1,1)∪(1,2). (2)结合(1),设A (x 1,y 1)、B (x 2,y 2).则x 1+x 2=-2k1-k 2,x 1x 2=-21-k 2,∴|AB |=1+k 2|x 1-x 2| =1+k 2·(-2k 1-k 2)2+81-k 2=(1+k 2)(8-4k 2)(1-k 2)2.∵点O 到直线l 的距离d =11+k 2, ∴S △AOB =12|AB |d =128-4k 2(1-k 2)2=2,即2k 4-3k 2=0. ∴k =0或k =±62.∴适合题意的k 的取值为0、62、-62. 8.(2017·南昌高二检测)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0).如图,B 是右顶点,F是右焦点,点A 在x 轴正半轴上,且满足|OA →|,|OB →|,|OF →|成等比数列,过F 作双曲线C 在第一、三象限的渐近线的垂线l ,垂足为P . 导学号 21324628(1)求证:P A →·OP →=P A →·FP →.(2)若l 与双曲线C 的左右两支分别相交于点E ,D ,求双曲线离心率e 的取值范围. [解析] (1)双曲线的渐近线为y =±ba x ,F (c,0),所以直线l 的斜率为-ab ,所以直线l :y =-ab(x -c ).由⎩⎨⎧y =-ab(x -c ),y =ba x ,得P (a 2c ,ab c),因为|OA →|,|OB →|,|OF →|成等比数列, 所以x A ·c =a 2,所以x A =a 2c,A (a 2c ,0),P A →=(0,-ab c), OP →=(a 2c ,ab c),FP →=(-b 2c ,ab c ),所以P A →·OP →=-a 2b 2c 2,P A →·FP →=-a 2b 2c 2,则P A →·OP →=P A →·FP →. (2)由⎩⎪⎨⎪⎧y =-a b (x -c ),b 2x 2-a 2y 2=a 2b 2,得(b 2-a 4b 2)x 2+2a 4b 2cx -(a 4c 2b2+a 2b 2)=0,x 1x 2=-(a 4c 2b2+a 2b 2)b 2-a 4b2, 因为点E ,D 分别在左右两支上,所以-(a 4c 2b2+a 2b 2)b 2-a 4b 2<0,所以b 2>a 2,所以e 2>2,所以e > 2.C 级 能力拔高已知直线y =ax +1与双曲线3x 2-y 2=1交于A 、B 两点.导学号 21324629 (1)若以AB 为直径的圆过坐标原点,求实数a 的值;(2)是否存在这样的实数a ,使A 、B 两点关于直线y =12x 对称?若存在,请求出a 的值;若不存在,请说明理由.[解析] (1)由⎩⎪⎨⎪⎧y =ax +13x 2-y 2=1,消去y 得,(3-a 2)x 2-2ax -2=0.①依题意⎩⎪⎨⎪⎧3-a 2≠0Δ>0,即-6<a <6且a ≠±3② 设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=2a3-a 2③x 1x 2=-23-a 2④∵以AB 为直径的圆过原点,∴OA ⊥OB . ∴x 1x 2+y 1y 2=0,但y 1y 2=a 2x 1x 2+a (x 1+x 2)+1, 由③④知,∴(a 2+1)·-23-a 2+a ·2a3-a 2+1=0.解得a =±1且满足②.(2)假设存在实数a ,使A 、B 关于y =12x 对称,则直线y =ax +1与y =12x 垂直,∴a =-2.直线l 的方程为y =-2x +1. 将a =-2代入③得x 1+x 2=4. ∴AB 中点横坐标为2, 纵坐标为y =-2×2+1=-3.但AB 中点(2,-3)不在直线y =12x 上.即不存在实数a ,使A 、B 关于直线y =12x 对称.。
人教版A版高中数学高二选修2-1 2.3聚焦双曲线的渐近线

聚焦双曲线的渐近线的问题河南孙尚广在双曲线的几何性质中,渐近线是双曲线所特有的性质,因此学好双曲线的渐近线对学习双曲线的几何性质有很大的帮助。
在学习这部分内容时,应注意以下几点:(1)明确双曲线的渐近线是哪两条直线。
过双曲线实轴的两个端点与虚轴的两个端点分别作对称轴的平行线,它们围成一个矩形,其两条对角线所在直线即为双曲线的渐近线。
画双曲线时,应先画出它的渐近线。
(2)理解“渐进”两字的含义,当双曲线的各支向外延伸时,与这两条直线逐渐接近,接近的程度是无限的。
也可以这样理解:当双曲线上的动点M 沿着双曲线无限远离双曲线的中心时,点M 到这条直线的距离逐渐变小而无限趋近于0。
(3)掌握根据双曲线的标准方程求出它的渐近线方程的方法。
最简单且实用的方法是:把双曲线标准方程中等号右边的1改成0,就得到了此双曲线的渐近线方程。
(4)掌握根据双曲线的渐近线方程求出双曲线方程的方法。
我们不妨先看下面这个具体的例子。
例:求与双曲线116922=-y x 有共同的渐近线,并且过点A (28,6)的双曲线的方程。
解法1:由于双曲线的方程是116922=-y x ,所以其渐近线的方程是x y 34±=,容易判断点A (28,6)在直线x y 34=的上方,故所求双曲线的焦点在y 轴上,所以设双曲线的方程是12222=-bx a y 。
根据已知条件有⎪⎪⎩⎪⎪⎨⎧=+-=1128363422a b b a ,解得642=a ,362=b 。
所以所求双曲线方程是1366422=-x y 。
解法2:实际上,与双曲线116922=-y x 有共同渐近线的双曲线方程都可以表示t y x =-16922(0≠t )的形式。
当0>t 时,所求双曲线的焦点在x 轴上,这时其渐近线方程是x x tt y 3434±=±=; 当0<t 时,所求双曲线的焦点在y 轴上,这时双曲线的标准方程是1)(9)(1622=---t x t y ,其渐近线方程是x x tt y 3434±=--±=。
高中数学选修2-1第二章课后习题解答编辑版

新课程标准数学选修2—1第二章课后习题解答第二章 圆锥曲线与方程 2.1曲线与方程 练习(P37)1、是. 容易求出等腰三角形ABC 的边BC 上的中线AO 所在直线的方程是0x =.2、3218,2525a b ==.3、解:设点,A M 的坐标分别为(,0)t ,(,)x y . (1)当2t ≠时,直线CA 斜率 20222CA k t t-==-- 所以,122CB CA t k k -=-=由直线的点斜式方程,得直线CB 的方程为 22(2)2t y x --=-. 令0x =,得4y t =-,即点B 的坐标为(0,4)t -.由于点M 是线段AB 的中点,由中点坐标公式得4,22t tx y -==.由2t x =得2t x =,代入42ty -=,得422xy -=,即20x y +-=……①(2)当2t =时,可得点,A B 的坐标分别为(2,0),(0,2) 此时点M 的坐标为(1,1),它仍然适合方程①由(1)(2)可知,方程①是点M 的轨迹方程,它表示一条直线. 习题2.1 A 组(P37)1、解:点(1,2)A -、(3,10)C 在方程2210x xy y -++=表示的曲线上;点(2,3)B -不在此曲线上2、解:当0c ≠时,轨迹方程为12c x +=;当0c =时,轨迹为整个坐标平面. 3、以两定点所在直线为x 轴,线段AB 垂直平分线为y 轴,建立直角坐标系,得点M 的轨迹方程为224x y +=.4、解法一:设圆22650x y x +-+=的圆心为C ,则点C 的坐标是(3,0). 由题意,得CM AB ⊥,则有1CM AB k k =-.所以,13y yx x⨯=--(3,0)x x ≠≠ 化简得2230x y x +-=(3,0)x x ≠≠当3x =时,0y =,点(3,0)适合题意;当0x =时,0y =,点(0,0)不合题意.解方程组 222230650x y x x y x ⎧+-=⎪⎨+-+=⎪⎩, 得5,3x y == 所以,点M 的轨迹方程是2230x y x +-=,533x ≤≤. 解法二:注意到OCM ∆是直角三角形,利用勾股定理,得2222(3)9x y x y ++-+=, 即2230x y x +-=. 其他同解法一. 习题2.1 B 组(P37)1、解:由题意,设经过点P 的直线l 的方程为1x ya b+=. 因为直线l 经过点(3,4)P ,所以341a b+= 因此,430ab a b --=由已知点M 的坐标为(,)a b ,所以点M 的轨迹方程为430xy x y --=. 2、解:如图,设动圆圆心M 的坐标为(,)x y .由于动圆截直线30x y -=和30x y +=所得弦分别为AB ,CD ,所以,8AB =,4CD =. 过点M 分别 作直线30x y -=和30x y +=的垂线,垂足分别为E ,F ,则4AE =,2CF =.ME =,MF =.连接MA ,MC ,因为MA MC =, 则有,2222AE ME CF MF +=+所以,22(3)(3)1641010x y x y -++=+,化简得,10xy =. 因此,动圆圆心的轨迹方程是10xy =.2.2椭圆 练习(P42)1、14. 提示:根据椭圆的定义,1220PF PF +=,因为16PF =,所以214PF=. 2、(1)22116x y +=; (2)22116y x +=; (3)2213616x y +=,或2213616y x +=.3、解:由已知,5a =,4b =,所以3c =. (1)1AF B ∆的周长1212AF AF BF BF =+++.由椭圆的定义,得122AF AF a +=,122BF BF a +=. 所以,1AF B ∆的周长420a ==.(2)如果AB 不垂直于x 轴,1AF B ∆的周长不变化.这是因为①②两式仍然成立,1AF B ∆的周长20=,这是定值. 4、解:设点M 的坐标为(,)x y ,由已知,得直线AM 的斜率 1AM yk x =+(1)x ≠-; 直线BM 的斜率 1BM y k x =-(1)x ≠; 由题意,得2AMBMk k =,所以211y y x x =⨯+-(1,0)x y ≠±≠ 化简,得3x =-(0)y ≠因此,点M 的轨迹是直线3x =-,并去掉点(3,0)-.练习(P48)1、以点2B (或1B )为圆心,以线段2OA (或1OA 为半径画圆,圆与x 轴的两个交点分别为12,F F . 点12,F F 就是椭圆的两个焦点.这是因为,在22Rt B OF ∆中,2OB b =,22B F OA =所以,2OF c =. 同样有1OF c =. 2、(1)焦点坐标为(8,0)-,(8,0); (2)焦点坐标为(0,2),(0,2)-.3、(1)2213632x y +=; (2)2212516y x +=.4、(1)22194x y += (2)22110064x y +=,或22110064y x +=.5、(1)椭圆22936x y +=的离心率是3,椭圆2211612x y +=的离心率是12,12>,所以,椭圆2211612x y +=更圆,椭圆22936x y +=更扁;(2)椭圆22936x y +=,椭圆221610x y +=,因为35>,所以,椭圆221610x y +=更圆,椭圆22936x y +=更扁.6、(1)8(3,)5; (2)(0,2); (3)4870(,)3737--.7、7.习题2.2 A 组(P49)1、解:由点(,)M x y 10=以及椭圆的定义得,点M 的轨迹是以1(0,3)F -,2(0,3)F 为焦点,长轴长为10的椭圆.它的方程是2212516y x +=. 2、(1)2213632x y +=; (2)221259y x +=; (3)2214940x y +=,或2214940y x +=. 3、(1)不等式22x -≤≤,44y -≤≤表示的区域的公共部分;(2)不等式x -≤≤,101033y -≤≤表示的区域的公共部分. 图略.4、(1)长轴长28a =,短轴长24b =,离心率e =焦点坐标分别是(-,,顶点坐标分别为(4,0)-,(4,0),(0,2)-,(0,2);(2)长轴长218a =,短轴长26b =,离心率3e =,焦点坐标分别是(0,-,,顶点坐标分别为(0,9)-,(0,9),(3,0)-,(3,0).5、(1)22185x y +=; (2)2219x y +=,或221819y x +=;(3)221259x y +=,或221259y x +=. 6、解:由已知,椭圆的焦距122F F =.因为12PF F ∆的面积等于1,所以,12112P F F y ⨯⨯=,解得1P y =.代入椭圆的方程,得21154x +=,解得2x =±.所以,点P的坐标是(1)2±±,共有4个. 7、解:如图,连接QA . 由已知,得QA QP =. 所以,QO QA QO QP OP r +=+==. 又因为点A 在圆内,所以OA OP <根据椭圆的定义,点Q 的轨迹是以,O A 为焦点,r 为长轴长的椭圆. 8、解:设这组平行线的方程为32y x m =+. 把32y x m =+代入椭圆方程22149x y +=,得22962180x mx m ++-=. 这个方程根的判别式 223636(218)m m ∆=-- (1)由0∆>,得m -< 当这组直线在y轴上的截距的取值范围是(-时,直线与椭圆相交. (2)设直线与椭圆相交得到线段AB ,并设线段AB 的中点为(,)M x y .则 1223x x mx +==-. 因为点M 在直线32y x m =+上,与3mx =-联立,消去m ,得320x y +=.这说明点M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上. 9、222213.525 2.875x y +=.(第7题)10、地球到太阳的最大距离为81.528810⨯km ,最下距离为81.471210⨯km. 习题2.2 B 组(P50)1、解:设点M 的坐标为(,)x y ,点P 的坐标为00(,)x y ,则0x x =,032y y =. 所以0x x =,023y y = ……①. 因为点00(,)P x y 在圆上,所以22004x y += ……②.将①代入②,得点M 的轨迹方程为22449x y +=,即22149x y +=所以,点M 的轨迹是一个椭圆与例2相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为(,)P x y ,半径为R ,两已知圆的圆心分别为12,O O .分别将两已知圆的方程 22650x y x +++=,226910x y x +--= 配方,得 22(3)4x y ++=, 22(3)100x y -+= 当P 与1O :22(3)4x y ++=外切时,有12O P R =+ ……① 当P 与2O :22(3)100x y -+=内切时,有210O P R =- ……②①②两式的两边分别相加,得1212O P O P +=12= ……③ 化简方程③.先移项,再两边分别平方,并整理,得 12x =+ ……④ 将④两边分别平方,并整理,得 22341080x y +-= ……⑤将常数项移至方程的右边,两边分别除以108,得2213627x y += ……⑥由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,12 ……①由方程①可知,动圆圆心(,)P x y 到点1(3,0)O -和点2(3,0)O 距离的和是常数12, 所以点P 的轨迹方程是焦点为(3,0)-、(3,0),长轴长等于12的椭圆.并且这个椭圆的中心与坐标原点重合,焦点在x 轴上,于是可求出它的标准方程. 因为 26c =,212a =,所以3c =,6a =(第4题)所以236927b =-=.于是,动圆圆心的轨迹方程为2213627x y +=. 3、解:设d 是点M 到直线8x =的距离,根据题意,所求轨迹就是集合12MF P M d ⎧⎫==⎨⎬⎩⎭ 由此得12=将上式两边平方,并化简,得 223448x y +=,即2211612x y +=所以,点M 的轨迹是长轴、短轴长分别为8,. 4、解:如图,由已知,得(0,3)E -,F 因为,,R S T 是线段OF ,,R S T '''是线段CF 所以,(1,0),(2,0),(3,0)R S T ;933(4,),(4,),(4,)424R S T '''.直线ER 的方程是33y x =-;直线GR '的方程是3316y x =-+.联立这两个方程,解得 3245,1717x y ==.所以,点L 的坐标是3245(,)1717.同样,点M 的坐标是169(,)55,点N 的坐标是9621(,)2525.由作图可见,可以设椭圆的方程为22221x y m n +=(0,0)m n >> ……①把点,L M 的坐标代入方程①,并解方程组,得22114m =,22113n =. 所以经过点,L M 的椭圆方程为221169x y +=. 把点N 的坐标代入22169x y +,得22196121()()11625925⨯+⨯=,所以,点N 在221169x y +=上.因此,点,,L M N 都在椭圆221169x y +=上.2.3双曲线 练习(P55)1、(1)221169x y -=. (2)2213y x -=. (3)解法一:因为双曲线的焦点在y 轴上所以,可设它的标准方程为22221y x a b -=(0,0)a b >>将点(2,5)-代入方程,得222541a b-=,即22224250a b a b +-= 又 2236a b +=解方程组 222222425036a b a b a b ⎧+-=⎪⎨+=⎪⎩ 令22,m a n b ==,代入方程组,得425036mn m n m n +-=⎧⎨+=⎩解得 2016m n =⎧⎨=⎩,或459m n =⎧⎨=-⎩第二组不合题意,舍去,得2220,16a b ==所求双曲线的标准方程为2212016y x -=解法二:根据双曲线的定义,有2a =所以,a = 又6c =,所以2362016b =-=由已知,双曲线的焦点在y 轴上,所以所求双曲线的标准方程为2212016y x -=. 2、提示:根据椭圆中222a b c -=和双曲线中222a b c +=的关系式分别求出椭圆、双曲线的焦点坐标.3、由(2)(1)0m m ++>,解得2m <-,或1m >- 练习(P61)1、(1)实轴长2a =24b =;顶点坐标为-;焦点坐标为(6,0),(6,0)-;离心率4e =. (2)实轴长26a =,虚轴长218b =;顶点坐标为(3,0),(3,0)-;焦点坐标为-;离心率e (3)实轴长24a =,虚轴长24b =;顶点坐标为(0,2),(0,2)-;焦点坐标为-;离心率e =(4)实轴长210a =,虚轴长214b =;顶点坐标为(0,5),(0,5)-;焦点坐标为;离心率5e =2、(1)221169x y -=; (2)2213628y x -=. 3、22135x y -= 4、2211818x y -=,渐近线方程为y x =±. 5、(1)142(6,2),(,)33-; (2)25(,3)4习题2.3 A 组(P61)1、把方程化为标准方程,得2216416y x -=. 因为8a =,由双曲线定义可知,点P 到两焦点距离的差的绝对值等于16. 因此点P 到另一焦点的距离是17.2、(1)2212016x y -=. (2)2212575x y -= 3、(1)焦点坐标为12(5,0),(5,0)F F -,离心率53e =; (2)焦点坐标为12(0,5),(0,5)F F -,离心率54e =;4、(1)2212516x y -=. (2)221916y x -=(3)解:因为ce a==222c a =,因此2222222b c a a a a =-=-=.设双曲线的标准方程为 22221x y a a -=,或22221y x a a -=.将(5,3)-代入上面的两个方程,得222591a a -=,或229251a a-=. 解得 216a = (后一个方程无解).所以,所求的双曲线方程为2211616x y -=.5、解:连接QA ,由已知,得QA QP =. 所以,QA QO QP QO OP r -=-==. 又因为点A 在圆外,所以OA OP >.根据双曲线的定义,点Q 的轨迹是以,O A 为焦点,r 为实轴长的双曲线.6、22188x y -=. 习题2.3 B 组(P62)1、221169x y -= 2、解:由声速及,A B 两处听到爆炸声的时间差,可知,A B 两处与爆炸点的距离的差,因此爆炸点应位于以,A B 为焦点的双曲线上.使,A B 两点在x 轴上,并且原点O 与线段AB 的中点重合,建立直角坐标系xOy . 设爆炸点P 的坐标为(,)x y ,则 34031020PA PB -=⨯=. 即 21020a =,510a =.又1400AB =,所以21400c =,700c =,222229900b c a =-=.因此,所求双曲线的方程为221260100229900x y -=. 3、22221x y a b-=4、解:设点11(,)A x y ,22(,)B x y 在双曲线上,且线段AB 的中点为(,)M x y .设经过点P 的直线l 的方程为1(1)y k x -=-,即1y kx k =+-把1y kx k =+-代入双曲线的方程2212y x -=得222(2)2(1)(1)20k x k k x k ------=(220k -≠) ……①所以,122(1)22x x k k x k +-==- 由题意,得2(1)12k k k -=-,解得 2k =. 当2k =时,方程①成为22430x x -+=.根的判别式162480∆=-=-<,方程①没有实数解.所以,不能作一条直线l 与双曲线交于,A B 两点,且点P 是线段AB 的中点.2.4抛物线 练习(P67)1、(1)212y x =; (2)2y x =; (3)22224,4,4,4y x y x x y x y ==-==-.2、(1)焦点坐标(5,0)F ,准线方程5x =-; (2)焦点坐标1(0,)8F ,准线方程18y =-;(3)焦点坐标5(,0)8F -,准线方程58x =; (4)焦点坐标(0,2)F -,准线方程2y =;3、(1)a ,2pa -. (2),(6,-提示:由抛物线的标准方程求出准线方程. 由抛物线的定义,点M 到准线的距离等于9,所以 39x +=,6x =,y =±练习(P72)1、(1)2165y x =; (2)220x y =;(3)216y x =-; (4)232x y =-. 2、图形见右,x 的系数越大,抛物线的开口越大. 3、解:过点(2,0)M 且斜率为1的直线l 的方程 为2y x =-与抛物线的方程24y x =联立 224y x y x=-⎧⎨=⎩解得1142x y ⎧=+⎪⎨=+⎪⎩2242x y ⎧=-⎪⎨=-⎪⎩ 设11(,)A x y ,22(,)B x y,则AB ===4、解:设直线AB 的方程为x a =(0)a >.将x a =代入抛物线方程24y x =,得24y a =,即y =±. 因为22AB y ==⨯==, 所以,3a =因此,直线AB 的方程为3x =.习题2.4 A 组(P73)1、(1)焦点坐标1(0,)2F ,准线方程12y =-;(2)焦点坐标3(0,)16F -,准线方程316y =;(3)焦点坐标1(,0)8F -,准线方程18x =;(4)焦点坐标3(,0)2F ,准线方程32x =-.2、(1)28y x =-; (2),或(4,-3、解:由抛物线的方程22y px =(0)p >,得它的准线方程为2px =-. 根据抛物线的定义,由2MF p =,可知,点M 的准线的距离为2p . 设点M 的坐标为(,)x y ,则 22p x p +=,解得32p x =. 将32px =代入22y px =中,得y =. 因此,点M的坐标为3()2p,3(,)2p.4、(1)224y x =,224y x =-; (2)212x y =-(图略)5、解:因为60xFM ∠=︒,所以线段FM所在直线的斜率tan60k =︒. 因此,直线FM 的方程为1)y x =-与抛物线24y x =联立,得21)142y x y x ⎧=-⎪⎨=⎪⎩将1代入2得,231030x x -+=,解得,113x =,23x =把113x =,23x =分别代入①得1y =,2y =由第5题图知1(,33-不合题意,所以点M 的坐标为.因此,4FM ==6、证明:将2y x =-代入22y x =中,得2(2)2x x -=,化简得 2640x x -+=,解得3x = 则321y =±= 因为OB k =,OA k 所以15195OB OA k k -⋅===-- 所以 OA OB ⊥7、这条抛物线的方程是217.5x y = 8、解:建立如图所示的直角坐标系,设拱桥抛物线的方程为22x py =-, 因为拱桥离水面2 m ,水面宽4 m 所以 222(2)p =--,1p =因此,抛物线方程为22x y =- ……①水面下降1 m ,则3y =-,代入①式,得22(3)x =-⨯-,x =这时水面宽为m.习题2.2 B 组(P74)1、解:设垂线段的中点坐标为(,)x y ,抛物线上相应点的坐标为11(,)x y .根据题意,1x x =,12y y =,代入2112y px =,得轨迹方程为212y px =. 由方程可知,轨迹为顶点在原点、焦点坐标为(,0)8p的抛物线.2、解:设这个等边三角形OAB 的顶点,A B 在抛物线上,且坐标分别为11(,)x y ,22(,)x y ,则 2112y px =,2222y px =.又OA OB =,所以 22221122x y x y +=+ 即221212220x x px px -+-=,221212()2()0x x p x x -+-= 因此,1212()(2)0x x x x p -++= 因为120,0,20x x p >>>,所以12x x = 由此可得12y y =,即线段AB 关于x 轴对称.(第8题)因为x 轴垂直于AB ,且30AOx ∠=︒,所以11tan303y x =︒=. 因为2112y x p=,所以1y =,因此12AB y ==.3、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+. 直线BM 的斜率 (1)1BM yk x x =≠-. 由题意,得2AM BM k k -=,所以,2(1)11y y x x x -=≠±+-,化简,得2(1)(1)x y x =--≠± 第二章 复习参考题A 组(P80)1、解:如图,建立直角坐标系,使点2,,A B F 在x 轴上,2F 为椭圆的右焦点(记1F 为左焦点).因为椭圆的焦点在x 轴上,所以设它的标准方程为22221(0)x y a b a+=>>.则 22a c OA OF F A -=-=63714396810=+=,22a c OB OF F B +=+=637123848755=+=解得 7782.5a =,8755c =所以 b ===用计算器算得 7722b ≈因此,卫星的轨道方程是2222177837722x y +=. 2、解:由题意,得 12a c R r a c R r -=+⎧⎨+=+⎩, 解此方程组,得1221222R r r a r r c ++⎧=⎪⎪⎨-⎪=⎪⎩因此卫星轨道的离心率21122c r r e a R r r -==++. 3、(1)D ; (2)B .4、(1)当0α=︒时,方程表示圆.(2)当090α︒<<︒时,方程化成2211cos y x α+=. 方程表示焦点在y 轴上的椭圆. (第1题)(3)当90α=︒时,21x =,即1x =±,方程表示平行于y 轴的两条直线.(4)当90180α︒<≤︒时,因为cos 0α<,所以22cos 1x y α+=表示双曲线,其焦点在x 轴上. 而当180α=︒时,方程表示等轴双曲线. 5、解:将1y kx =-代入方程224x y -=得 2222140x k x kx -+--= 即 22(1)250k x kx -+-= ……① 222420(1)2016k k k ∆=+-=-令 0∆<,解得2k >,或2k <- 因为0∆<,方程①无解,即直线与双曲线没有公共点,所以,k 的取值范围为k >,或k <6、提示:设抛物线方程为22y px =,则点B 的坐标为(,)2p p ,点C 的坐标为(,)2pp -设点P 的坐标为(,)x y ,则点Q 的坐标为(,0)x .因为,PQ y ==2BC p =,OQ x =.所以,2PQ BC OQ =,即PQ 是BC 和OQ 的比例中项.7、解:设等边三角形的另外两个顶点分别是,A B ,其中点A 在x 轴上方.直线FA 的方程为 )32py x =-与22y px =联立,消去x ,得 220y p --=解方程,得 12)y p =,22)y p =把12)y p =代入)2py x =-,得 17(2x p =+.把22)y p =代入)32py x =-,得 27(2x p =-.所以,满足条件的点A 有两个17((2))2A p p +,27((2))2A p p -.根据图形的对称性,可得满足条件的点B 也有两个17((,2))2B p p +-,27((,2))2B p p --所以,等边三角形的边长是112)A B p =,或者222(2A B p =. 8、解:设直线l 的方程为2y x m =+.把2y x m =+代入双曲线的方程222360x y --=,得221012360x mx m +++=.1265m x x +=-,2123610m x x += ……①由已知,得 21212(14)[()4]16x x x x ++-= ……②把①代入②,解得 3m =±所以,直线l 的方程为23y x =±9、解:设点A 的坐标为11(,)x y ,点B 的坐标为22(,)x y ,点M 的坐标为(,)x y .并设经过点M 的直线l 的方程为1(2)y k x -=-,即12y kx k =+-.把12y kx k =+-代入双曲线的方程2212y x -=,得 222(2)2(12)(12)20k x k k x k ------=2(0)k -≠. ……①所以,122(12)22x x k k x k +-==- 由题意,得2(12)22k k k -=-,解得4k = 当4k =时,方程①成为 21456510x x -+=根的判别式25656512800∆=-⨯=>,方程①有实数解. 所以,直线l 的方程为47y x =-.10、解:设点C 的坐标为(,)x y .由已知,得 直线AC 的斜率 (5)5AC yk x x =≠-+ 直线BC 的斜率 (5)5BCy k x x =≠-由题意,得AC BC k k m =. 所以,(5)55y y m x x x ⨯=≠±+- 化简得,221(5)2525x y x m-=≠± 当0m <时,点C 的轨迹是椭圆(1)m ≠-,或者圆(1)m =-,并除去两点(5,0),(5,0)-; 当0m >时,点C 的轨迹是双曲线,并除去两点(5,0),(5,0)-;11、解:设抛物线24y x =上的点P 的坐标为(,)x y ,则24y x =.点P 到直线3y x =+的距离d ===当2y =时,d此时1x =,点P 的坐标是(1,2).12、解:如图,在隧道的横断面上,以拱顶为原点、拱高所在直线为y 轴 (向上),建立直角坐标系.设隧道顶部所在抛物线的方程 为22x py =-因为点(4,4)C -在抛物线上 所以 242(4)p =--解得 24p =-为24x y =-.设0.5EF h =+. 则(3, 5.5)F h -把点F 的坐标代入方程24x y =-,解得 3.25h =. 答:车辆通过隧道的限制高度为3.2 m.第二章 复习参考题B 组(P81)1、12PF F S ∆=2、解:由题意,得1PF x ⊥轴.把x c =-代入椭圆方程,解得 2b y a=±. 所以,点P 的坐标是2(,)b c a -(第12题)(第4题)直线OP 的斜率21b k ac=-. 直线AB 的斜率2b k a =-.由题意,得2b bac a =,所以,b c =,a =. 由已知及1F A a c =+,得a c +=所以(1c +=c =所以,a =,b =因此,椭圆的方程为221105x y +=. 3、解:设点A 的坐标11(,)x y ,点B 的坐标22(,)x y .由OA OB ⊥,得12120x x y y +=.由已知,得直线AB 的方程为25y x =-+. 则有 12125()250y y y y -++= ……①由25y x =-+与22y px =消去x ,得250y py p +-= ……② 12y y p +=-,125y y p =- ……③ 把③代入①,解得54p = 当54p =时,方程②成为245250y y +-=,显然此方程有实数根. 所以,54p = 4、解:如图,以连接12,F F 的直线为x 轴,线段12F F 的中点为原点,建立直角坐标系.对于抛物线,有176352922922p=+=, 所以,4584p =,29168p =.对于双曲线,有2080529c a c a +=⎧⎨-=⎩解此方程组,得775.5a =,1304.5c = 因此,2221100320b c a =-=.所以,所求双曲线的方程是221601400.31100320x y -=(775.5)x ≥.因为抛物线的顶点横坐标是 (1763)(1763775.5)987.5a --=--=- 所以,所求抛物线的方程是 29168(987.5)y x =+ 答:抛物线的方程为29168(987.5)y x =+,双曲线的方程是221601400.31100320x y -=(775.5)x ≥. 5、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+ 直线BM 的斜率 (1)1BM yk x x =≠- 由题意,得2AM BM k k +=,所以2(1)11y y x x x +=≠±-+,化简,得21(1)xy x x =-≠± 所以,点M 轨迹方程是21(1)xy x x =-≠±.6、解:(1)当1m =时,方程表示x 轴;(2)当3m =时,方程表示y 轴;(3)当1,3m m ≠≠时,把方程写成22131x y m m +=--. ①当13,2m m <<≠时,方程表示椭圆; ②2m =时,方程表示圆;③当1m <,或3m >时,方程表示双曲线.7、以AB 为直径的圆与抛物线的准线l 相切.证明:如图,过点,A B 分别作抛物线22(0)y px p =>的准线l 的 垂线,垂足分别为,D E .由抛物线的定义,得 AD AF =,BE BF =.所以,AB AF BF AD BE =+=+.设AB 的中点为M ,且过点M 作抛物线22(0)y px p =>的准线l 的垂线,垂足为C .显然MC ∥x 轴,所以,MC 是直角梯形ADEB 的中位线. 于是,11()22MC AD BE AB =+=. 因此,点C 在以AB 为直径的圆上.又MC l ⊥,所以,以AB 为直径的圆与抛物线的准线l 相切. 类似地,可以证明:对于椭圆,以经过焦点的弦为直径的圆与相应的准线相离; 对于双曲线,以经过焦点的弦为直径的圆与相应的准线相交.(第7题)。
2017-2018学年高中数学人教A版选修2-1教师用书:第2章 2-2-1 椭圆及其标准方程 含答案 精品

2.2 椭圆2.2.1 椭圆及其标准方程1.了解椭圆标准方程的推导.2.理解椭圆的定义及椭圆的标准方程.(重点)3.掌握用定义和待定系数法求椭圆的标准方程.(重点、难点)教材整理1 椭圆的定义阅读教材P 38“思考”以上部分,完成下列问题.把平面内与两个定点F 1,F 2的距离的和等于______的点的轨迹叫做椭圆,这________叫做椭圆的焦点,________叫做椭圆的焦距.【答案】 常数(大于|F 1F 2|) 两个定点 两焦点间的距离判断(正确的打“√”,错误的打“×”)(1)到平面内两个定点的距离之和等于定长的点的轨迹叫做椭圆.( )(2)在椭圆定义中,将“大于|F 1F 2|”改为“等于F 1F 2”的常数,其它条件不变,点的轨迹为线段.( )(3)到两定点F 1(-2,0)和F 2(2,0)的距离之和为3的点M 的轨迹为椭圆.( ) 【答案】 (1)× (2)√ (3)× 教材整理2 椭圆的标准方程阅读教材P 39~P 40“例1”以上部分,完成下列问题.【答案】 a 2+b2=1(a >b >0) (0,-c ) (0,c ) a 2-b 2椭圆x 225+y 29=1的焦点在________轴上,焦距为________,椭圆x 29+y 216=1的焦点在________轴上,焦点坐标为________.【解析】 由25>9可判断椭圆x 225+y 29=1的焦点在x 轴上,由c 2=25-9=16,可得c=4,故其焦距为8.由16>9,可判断椭圆x 29+y 216=1的焦点在y 轴上, c 2=16-9=7,故焦点坐标为(0,7)和(0,-7).【答案】 x 8 y (0,7)和(0,-7)(1)两个焦点的坐标分别为(-4,0)和(4,0),且椭圆经过点(5,0);【导学号:37792045】(2)焦点在y 轴上,且经过两个点(0,2)和(1,0); (3)经过点A (3,-2)和点B (-23,1). 【自主解答】 (1)由于椭圆的焦点在x 轴上,∴设它的标准方程为x 2a 2+y 2b2=1(a >b >0).∴a =5,c =4,∴b 2=a 2-c 2=25-16=9. 故所求椭圆的标准方程为x 225+y 29=1.(2)由于椭圆的焦点在y 轴上,∴设它的标准方程为y 2a 2+x 2b2=1(a >b >0).∴a =2,b =1.故所求椭圆的标准方程为y 24+x 2=1.(3)法一:①当焦点在x 轴上时,设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).依题意有⎩⎪⎨⎪⎧ 32a2+ -22b2=1, -232a2+1b2=1,解得⎩⎪⎨⎪⎧a 2=15,b 2=5.故所求椭圆的标准方程为x 215+y 25=1.②当焦点在y 轴上时,设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0).依题意有⎩⎪⎨⎪⎧-22a2+ 32b2=1,1a 2+ -232b2=1,解得⎩⎪⎨⎪⎧a 2=5,b 2=15,因为a >b >0,所以无解. 所以所求椭圆的标准方程为x 215+y 25=1.法二:设所求椭圆的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),依题意有⎩⎪⎨⎪⎧3m +4n =1,12m +n =1,解得⎩⎪⎨⎪⎧m =115,n =15.所以所求椭圆的标准方程为x 215+y 25=1.1.利用待定系数法求椭圆的标准方程(1)先确定焦点位置;(2)设出方程;(3)寻求a ,b ,c 的等量关系;(4)求a ,b 的值,代入所设方程.2.当焦点位置不确定时,可设椭圆方程为mx 2+ny 2=1(m ≠n ,m >0,n >0).因为它包括焦点在x 轴上(m <n )或焦点在y 轴上(m >n )两类情况,所以可以避免分类讨论,从而简化了运算.1.已知椭圆的中心在原点,焦点在坐标轴上,且经过两点A (0,2)和B ⎝ ⎛⎭⎪⎫12,3,求椭圆的标准方程.【解】 设椭圆的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),将A ,B 两点坐标代入方程得⎩⎪⎨⎪⎧ 4n =1,14m +3n =1,解得⎩⎪⎨⎪⎧m =1,n =14,∴所求椭圆方程为x 2+y 24=1.设P 是椭圆25+754=1上一点,F 1、F 2是椭圆的焦点,若∠F 1PF 2=60°,求△F 1PF 2的面积.【精彩点拨】 (1)由椭圆方程,你能写出|PF 1|+|PF 2|与|F 1F 2|的大小吗?(2)在△F 1PF 2中,根据余弦定理可以得到|F 1F 2|、|PF 1|、|PF 2|之间的关系式吗?(3)怎样求△F 1PF 2的面积?【自主解答】 由椭圆方程知,a 2=25,b 2=754,∴c 2=254,∴c =52,2c =5.在△PF 1F 2中,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos 60°, 即25=|PF 1|2+|PF 2|2-|PF 1|·|PF 2|. ①由椭圆的定义得10=|PF 1|+|PF 2|, 即100=|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|. ②②-①得3|PF 1|·|PF 2|=75, 所以|PF 1|·|PF 2|=25,所以S △F 1PF2=12|PF 1|·|PF 2|·sin 60°=2534.1.椭圆的定义具有双向作用,即若|MF 1|+|MF 2|=2a (2a >|F 1F 2|),则点M 的轨迹是椭圆;反之,椭圆上任意一点M 到两焦点的距离之和必为2a .2.椭圆中的焦点三角形椭圆上一点P 与椭圆的两个焦点F 1,F 2构成的△PF 1F 2,称为焦点三角形.解关于椭圆的焦点三角形的问题,通常要利用椭圆的定义,结合正弦定理、余弦定理等知识求解.2.在本例中,若把椭圆方程改为“x 24+y 23=1”,把“∠F 1PF 2=60°”改为“∠PF 1F 2=90°”,其余条件不变,试求△PF 1F 2的面积.【解】 由椭圆方程x 24+y 23=1,知a =2,c =1,由椭圆定义,得|PF 1|+|PF 2|=2a =4,且|F 1F 2|=2,在△PF 1F 2中,∠PF 1F 2=90°.∴|PF 2|2=|PF 1|2+|F 1F 2|2.从而(4-|PF 1|)2=|PF 1|2+4,则|PF 1|=32,因此S △PF 1F 2=12·|F 1F 2|·|PF 1|=32.故所求△PF 1F 2的面积为32.探究1如图221,P 为圆B :(x +2)2+y 2=36上一动点,点A 的坐标为(2,0),线段AP 的垂直平分线交直线BP 于点Q ,求点Q 的轨迹方程.图221【提示】 用定义法求椭圆的方程,首先要利用平面几何知识将题目条件转化为到两定点的距离之和为定值,然后判断椭圆的中心是否在原点、对称轴是否为坐标轴,最后由定义确定椭圆的基本量a ,b ,c .所求点Q 的轨迹方程为x 29+y 25=1.探究2如图222,在圆x 2+y 2=4上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹方程是什么?为什么?图222【提示】 当题目中所求动点和已知动点存在明显关系时,一般利用相关点法求解.用相关点法求轨迹方程的基本步骤为:(1)设点:设所求轨迹上动点坐标为P (x ,y ),已知曲线上动点坐标为Q (x 1,y 1).(2)求关系式:用点P 的坐标表示出点Q 的坐标,即得关系式⎩⎪⎨⎪⎧x 1=g x ,y ,y 1=h x ,y .(3)代换:将上述关系式代入已知曲线方程得到所求动点轨迹的方程,并把所得方程化简即可.所求点M 的轨迹方程为x 24+y 2=1.一个动圆与圆Q 1:(x +3)2+y 2=1外切,与圆Q 2:(x -3)2+y 2=81内切,试求这个动圆圆心的轨迹方程.【导学号:37792046】【精彩点拨】 由圆的相切,及动圆圆心与两个定圆圆心、半径的关系得轨迹. 【自主解答】 由已知,得两定圆的圆心和半径分别为Q 1(-3,0),R 1=1;Q 2(3,0),R 2=9.设动圆圆心为M (x ,y ),半径为R ,如图. 由题设有 |MQ 1|=1+R , |MQ 2|=9-R ,所以|MQ 1|+|MQ 2|=10>|Q 1Q 2|=6.由椭圆的定义,知点M 在以Q 1,Q 2为焦点的椭圆上, 且a =5,c =3.所以b 2=a 2-c 2=25-9=16, 故动圆圆心的轨迹方程为x 225+y 216=1.1.与椭圆有关的轨迹方程的求法常用方法有:直接法、定义法和代入法,本例所用方法为代入法.2.对定义法求轨迹方程的认识如果能确定动点运动的轨迹满足某种已知曲线的定义,则可以利用这种已知曲线的定义直接写出其方程,这种求轨迹方程的方法称为定义法.定义法在我们后续要学习的圆锥曲线的问题中被广泛使用,是一种重要的解题方法.3.代入法(相关点法)若所求轨迹上的动点P (x ,y )与另一个已知曲线C :F (x ,y )=0上的动点Q (x 1,y 1)存在着某种联系,可以把点Q 的坐标用点P 的坐标表示出来,然后代入已知曲线C 的方程 F (x ,y )=0,化简即得所求轨迹方程,这种求轨迹方程的方法叫做代入法(又称相关点法).3.已知圆C :x 2+y 2=4,过圆C 上一动点M 作平行于x 轴的直线m ,设直线m 与y 轴的交点为N ,若向量OQ →=OM →+ON →,则动点Q 的轨迹方程为____________.【解析】 设点M 的坐标为(x 0,y 0),点Q 的坐标为(x ,y ),点N 的坐标为(0,y 0),∵OQ →=OM →+ON →,∴(x ,y )=(x 0,2y 0),即x 0=x ,y 0=y2,又∵x 20+y 20=4,∴x 2+y 24=4.由已知,直线m 平行于x 轴,得y ≠0,∴Q 点的轨迹方程是y 216+x 24=1(y ≠0). 【答案】y 216+x 24=1(y ≠0)1.若椭圆x 216+y 2b2=1过点(-2, 3),则其焦距为( )A.2 5B.2 3C.4 5D.4 3【解析】 将点(-2, 3)代入椭圆方程求得b 2=4,于是焦距2c =216-4=4 3. 【答案】 D2.已知椭圆的焦点为(-1,0)和(1,0),点P (2,0)在椭圆上,则椭圆的方程为( )A.x 24+y 23=1B.x 24+y 2=1 C.y 24+x 23=1 D.y 24+x 2=1 【解析】 由题意知c =1,a =2,∴b 2=a 2-c 2=3.∴椭圆的方程为x 24+y 23=1.【答案】 A3.已知椭圆的焦点在y 轴上,其上任意一点到两焦点的距离和为8,焦距为215,则此椭圆的标准方程为________.【解析】 由已知2a =8,2c =215, ∴a =4,c =15, ∴b 2=a 2-c 2=16-15=1. 又椭圆的焦点在y 轴上, ∴椭圆的标准方程为y 216+x 2=1.【答案】y 216+x 2=1 4.已知椭圆的中心在原点,两焦点F 1,F 2在x 轴上,且过点A (-4,3).若F 1A ⊥F 2A ,求椭圆的标准方程.【导学号:37792047】【解】 设所求椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).设焦点F 1(-c,0),F 2(c,0)(c >0).∵F 1A ⊥F 2A , ∴F 1A →·F 2A →=0, 而F 1A →=(-4+c,3),F 2A →=(-4-c,3),∴(-4+c )·(-4-c )+32=0, ∴c 2=25,即c =5. ∴F 1(-5,0),F 2(5,0). ∴2a =|AF 1|+|AF 2|= -4+5 2+32+ -4-5 2+32=10+90=410.∴a=210,∴b2=a2-c2=(210)2-52=15.∴所求椭圆的标准方程为x240+y215=1.。
人教a版高中数学选修2-1全册同步练习及单元检测含答案
⼈教a版⾼中数学选修2-1全册同步练习及单元检测含答案⼈教版⾼中数学选修2~1 全册章节同步检测试题⽬录1.1.1课时同步练习1.2课时同步练习1.3课时同步练习1.4.1、2课时同步练习1.4.3课时同步练习第1章单元过关试卷同步练习2.1.1课时同步练习2.1.2课时同步练习2.2.1课时同步练习2.2.2(第1课时)同步练习2.2.2(第2课时)同步练习2.3.1课时同步练习2.3.2(第1课时)同步练习2.3.2(第2课时)同步练习2.4.1课时同步练习2.4.2(第1课时)同步练习2.4.2(第2课时)同步练习第2章单元过关试卷同步练习3.1.1课时同步练习3.1.2课时同步练习3.1.3课时同步练习3.1.4课时同步练习3.1.5课时同步练习3.2第3课时同步练习3.2第4课时同步练习3.2(第1课时)同步练习3.2(第2课时)同步练习第3章单元过关试卷同步练习模块质量检测A卷同步练习模块质量检测B卷同步练习第1章 1.1.1⼀、选择题(每⼩题5分,共20分)1.下列语句中命题的个数是( )①-5∈Z;②π不是实数;③⼤边所对的⾓⼤于⼩边所对的⾓;④2是⽆理数.A.1 B.2C.3 D.4解析:①②③④都是命题.答案: D2.下列说法正确的是( )A.命题“直⾓相等”的条件和结论分别是“直⾓”和“相等”B.语句“最⾼⽓温30 ℃时我就开空调”不是命题C.命题“对⾓线互相垂直的四边形是菱形”是真命题D.语句“当a>4时,⽅程x2-4x+a=0有实根”是假命题解析:对于A,改写成“若p,则q”的形式应为“若有两个⾓是直⾓,则这两个⾓相等”;B所给语句是命题;C的反例可以是“⽤边长为3的等边三⾓形与底边为3,腰为2的等腰三⾓形拼成的四边形不是菱形”来说明.故选D.答案: D3.下列语句中假命题的个数是( )①3是15的约数;②15能被5整除吗?③{x|x是正⽅形}是{x|x是平⾏四边形}的⼦集吗?④3⼩于2;⑤矩形的对⾓线相等;⑥9的平⽅根是3或-3;⑦2不是质数;⑧2既是⾃然数,也是偶数.A.2 B.3C.4 D.5解析:④⑦是假命题,②③不是命题,①⑤⑥⑧是真命题.答案: A4.设m,n是两条不同的直线,α,β,γ是三个不同的平⾯,给出下列四个命题:①若m⊥α,n∥α,则m⊥n;②若α∥β,β⊥γ,则α∥γ;③若m⊥α,n⊥α,则m∥n;④若α⊥γ,β⊥γ,则α∥β.其中为真命题的是( )A.①②B.①③C.③④D.②④解析:显然①是正确的,结论选项可以排除C,D,然后在剩余的②③中选⼀个来判断,即可得出结果,①③为真命题.故选B.答案: B⼆、填空题(每⼩题5分,共10分)5.给出下列命题:①在△ABC 中,若∠A >∠B ,则sin A >sin B ;②函数y =x 3在R 上既是奇函数⼜是增函数;③函数y =f (x )的图象与直线x =a ⾄多有⼀个交点;④若将函数y =sin 2x 的图象向左平移π4个单位,则得到函数y =sin ?2x +π4的图象.其中正确命题的序号是________.解析:①∠A >∠B ?a >b ?sin A >sin B .②③易知正确.④将函数y =sin 2x 的图象向左平移π4个单位,得到函数y =sin ?2x +π2的图象.答案:①②③6.命题“⼀元⼆次⽅程ax 2+bx +c =0(a ≠0)有两个不相等的实数根”,条件p :________,结论q :________,是________(填“真”或“假”)命题.答案:⼀元⼆次⽅程ax 2+bx +c =0(a ≠0) 此⽅程有两个不相等的实数根假三、解答题(每⼩题10分,共20分)7.指出下列命题的条件p 和结论q :(1)若x +y 是有理数,则x ,y 都是有理数;(2)如果⼀个函数的图象是⼀条直线,那么这个函数为⼀次函数.解析: (1)条件p :x +y 是有理数,结论q :x ,y 都是有理数.(2)条件p :⼀个函数的图象是⼀条直线,结论q :这个函数为⼀次函数.8.已知命题p :lg(x 2-2x -2)≥0;命题q :0解析:命题p 是真命题,则x 2-2x -2≥1,∴x ≥3或x ≤-1,命题q 是假命题,则x ≤0或x ≥4.∴x ≥4或x ≤-1.尖⼦⽣题库☆☆☆9.(10分)(1)已知下列命题是真命题,求a 、b 满⾜的条件.⽅程ax 2+bx +1=0有解.(2)已知下列命题是假命题,若x 1ax 2,求a 满⾜的条件.解析: (1)∵ax 2+bx +1=0有解.∴当a =0时,bx +1=0有解,只有b ≠0时,⽅程有解x =-1b . 当a ≠0时,⽅程为⼀元⼆次⽅程,有解的条件为Δ=b 2-4a ≥0.综上,当a =0,b ≠0或a ≠0,b 2-4a ≥0时,⽅程ax 2+bx +1=0有解.(2)∵命题当x 1a x 2为假命题,∴应有当x 1即a x 2-x 1x 1x 2≤0. ∵x 1∴x 2-x 1>0,x 1x 2>0,∴a ≤0.第1章 1.2⼀、选择题(每⼩题5分,共20分)1.“|x |=|y |”是“x =y ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析: |x |=|y |?x =y 或x =-y ,但x =y ?|x |=|y |.故|x |=|y |是x =y 的必要不充分条件.答案: B2.“x =2k π+π4(k ∈Z)”是“tan x =1”成⽴的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当x =2k π+π4时,tan x =1,⽽tan x =1得x =k π+π4,所以“x =2k π+π4”是“tan x =1”成⽴的充分不必要条件.故选A. 答案: A3.设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的( )A .充分⽽不必要条件B .必要⽽不充分条件C .充分必要条件D .既不充分也不必要条件解析:∵x ≥2且y ≥2,∴x 2+y 2≥4,∴x ≥2且y ≥2是x 2+y 2≥4的充分条件;⽽x 2+y 2≥4不⼀定得出x ≥2且y ≥2,例如当x ≤-2且y ≤-2时,x 2+y 2≥4亦成⽴,故x ≥2且y ≥2不是x 2+y 2≥4的必要条件.答案: A4.设A 是B 的充分不必要条件,C 是B 的必要不充分条件,D 是C 的充要条件,则D 是A 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分⼜不必要条件解析:由题意得:故D 是A 的必要不充分条件答案: B⼆、填空题(每⼩题5分,共10分)5.下列命题中是假命题的是________.(填序号)(1)x >2且y >3是x +y >5的充要条件(2)A ∩B ≠?是A B 的充分条件(3)b 2-4ac <0是ax 2+bx +c <0的解集为R 的充要条件(4)三⾓形的三边满⾜勾股定理的充要条件是此三⾓形为直⾓三⾓形解析: (1)因x >2且y >3?x +y >5, x +y >5?/ x >2且y >3,故x >2且y >3是x +y >5的充分不必要条件.(2)因A ∩B ≠??/ A B, A B ?A ∩B ≠?.故A ∩B ≠?是A B 的必要不充分条件.(3)因b 2-4ac <0?/ ax 2+bx +c <0的解集为R , ax 2+bx +c <0的解集为R ?a <0且b 2-4ac <0,故b 2-4ac <0是ax 2+bx +c <0的解集为R 的既不必要也不充分条件.(4)三⾓形的三边满⾜勾股定理的充要条件是此三⾓形为直⾓三⾓形.答案: (1)(2)(3)6.设集合A =x |x x -1<0,B ={x |0x |x x -1<0={x |0∴“m ∈A ”是“m ∈B ”的充分不必要条件.答案:充分不必要三、解答题(每⼩题10分,共20分)7.已知p :12≤x ≤1,q :a ≤x ≤a +1,若p 的必要不充分条件是q ,求实数a 的取值范围.解析: q 是p 的必要不充分条件,则p ?q 但q ?/p .∵p :12≤x ≤1,q :a ≤x ≤a +1. ∴a +1≥1且a ≤12,即0≤a ≤12.∴满⾜条件的a 的取值范围为0,12. 8.求证:0≤a <45是不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴的充要条件.证明:充分性:∵0,∴Δ=a 2-4a (1-a )=5a 2-4a =a (5a -4)<0,则ax 2-ax +1-a >0对⼀切实数x 都成⽴.⽽当a =0时,不等式ax 2-ax +1-a >0可变成1>0.显然当a =0时,不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴.必要性:∵ax 2-ax +1-a >0对⼀切实数x 都成⽴,∴a =0或 a >0,Δ=a 2-4a 1-a <0.解得0≤a <45. 故0≤a <45是不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴的充要条件.尖⼦⽣题库☆☆☆9.(10分)已知条件p :A ={x |2a ≤x ≤a 2+1},条件q :B ={x |x 2-3(a +1)x +2(3a +1)≤0}.若p 是q 的充分条件,求实数a 的取值范围.解析:先化简B ,B ={x |(x -2)[x -(3a +1)]≤0},①当a ≥13时,B ={x |2≤x ≤3a +1};②当a <13时,B ={x |3a +1≤x ≤2}.因为p 是q 的充分条件,所以A ?B ,从⽽有 a ≥13a 2+1≤3a +12a ≥2,解得1≤a ≤3.或 a <13a 2+1≤22a ≥3a +1,解得a =-1.综上,所求a 的取值范围是{a |1≤a ≤3或a =-1}.第1章 1.3⼀、选择题(每⼩题5分,共20分)1.已知p :x 2-1≥-1,q :4+2=7,则下列判断中,错误的是( )A .p 为真命题,p 且q 为假命题B .p 为假命题,q 为假命题C .q 为假命题,p 或q 为真命题D .p 且q 为假命题,p 或q 为真命题解析:∵p 为真命题,q 为假命题,∴p 且q 为假命题,p 或q 是真命题.答案: B2.如果命题“綈p ∨綈q ”是假命题,则在下列各结论中,正确的为( ) ①命题“p ∧q ”是真命题;②命题“p ∧q ”是假命题;③命题“p ∨q ”是真命题;④命题“p ∨q ”是假命题.A .①③B .②④C .②③D .①④解析:∵綈p ∨綈q 是假命题∴綈(綈p ∨綈q )是真命题即p ∧q 是真命题答案: A3.“p ∨q 为假命题”是“綈p 为真命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:若p ∨q 为假命题,则p ,q 都为假命题,綈p 为真命题.若綈p 为真命题,则p ∨q 可能为真命题,∴“p ∨q 为假命题”是“綈p 为真命题”的充分不必要条件.答案: A4.已知命题p 1:函数y =2x -2-x 在R 上为增函数,p 2:函数y =2x +2-x 在R 上为减函数,则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是() A .q 1,q 3 B .q 2,q 3C .q 1,q 4D .q 2,q 4解析:∵y =2x 在R 上为增函数,y =2-x =? ????12x在R 上为减函数,∴y =-2-x =-? ????12x在R 上为增函数,∴y =2x -2-x 在R 上为增函数,故p 1是真命题.y =2x +2-x 在R 上为减函数是错误的,故p 2是假命题.∴q1:p1∨p2是真命题,因此排除B和D,q2:p1∧p2是假命题,q3:綈p1是假命题,(綈p1)∨p2是假命题,故q3是假命题,排除A.故选C.答案: C⼆、填空题(每⼩题5分,共10分)5.“a≥5且b≥3”的否定是____________;“a≥5或b≤3”的否定是____________.答案:a<5或b<3 a<5且b>36.在下列命题中:①不等式|x+2|≤0没有实数解;②-1是偶数或奇数;③2属于集合Q,也属于集合R;④A?A∪B.其中,真命题为________.解析:①此命题为“⾮p”的形式,其中p:不等式|x+2|≤0有实数解,因为x=-2是该不等式的⼀个解,所以p是真命题,所以⾮p是假命题.②此命题是“p或q”的形式,其中p:-1是偶数,q:-1是奇数.因为p为假命题,q为真假题,所以p或q是真命题,故是真命题.③此命题是“p且q”的形式,其中p:2属于集合Q,q:2属于集合R.因为p为假命题,q为真命题,所以p且q是假命题,故是假命题.④此命题是“⾮p”的形式,其中p:A?A∪B.因为p为真命题,所以“⾮p”为假命题,故是假命题.所以填②.答案:②三、解答题(每⼩题10分,共20分)7.分别写出由下列各组命题构成的p∧q,p∨q,綈p形式命题.(1)p:8∈{x|x2-8x≤0},q:8∈{2,8}.(2)p:函数f(x)=3x2-1是偶函数,q:函数f(x)=3x2-1的图象关于y轴对称.解析:(1)p∧q:8∈({x|x2-8x≤0}∩{2,8}).p∨q:8∈({x|x2-8x≤0}∪{2,8}).綈p:8?{x|x2-8x≤0}.(2)p∧q:函数f(x)=3x2-1是偶函数并且它的图象关于y轴对称.p∨q:函数f(x)=3x2-1是偶函数或它的图象关于y轴对称.綈p:函数f(x)=3x2-1不是偶函数.8.写出下列命题的否定,然后判断其真假:(1)p:⽅程x2-x+1=0有实根;(2)p :函数y =tan x 是周期函数;(3)p :??A ;(4)p :不等式x 2+3x +5<0的解集是?.解析:题号判断p 的真假綈p 的形式判断綈p 的真假 (1)假⽅程x 2-x +1=0⽆实数根真 (2)真函数y =tan x 不是周期函数假 (3)真 ? A 假 (4)真不等式x 2+3x +5<0的解集不是? 假尖⼦⽣题库☆☆☆9.(10分)设命题p :实数x 满⾜x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满⾜ x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)綈p 是綈q 的充分不必要条件,求实数a 的取值范围.解析: (1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0.⼜a >0,所以a当a =1时,1即p 为真命题时实数x 的取值范围是1由 x 2-x -6≤0,x 2+2x -8>0. 解得-2≤x ≤3,x <-4或x >2.即2所以q 为真时实数x 的取值范围是2若p ∧q 为真,则 1所以实数x 的取值范围是(2,3).(2)綈p 是綈q 的充分不必要条件,即綈p ?綈q 且綈q ?/ 綈p .设A ={x |x ≤a 或x ≥3a },B ={x |x ≤2或x >3},则A B .所以03,即1所以实数a 的取值范围是(1,2].第1章 1.4.1、2⼀、选择题(每⼩题5分,共20分)1.下列命题中的假命题是( )A .?x ∈R ,lg x =0B .?x ∈R ,tan x =1C .?x ∈R ,x 2>0D .?x ∈R,2x>0 解析: A 中当x =1时,lg x =0,是真命题.B 中当x =π4+k π时,tan x =1,是真命题. C 中当x =0时,x 2=0不⼤于0,是假命题.D 中?x ∈R,2x>0是真命题.答案: C2.下列命题中,真命题是( )A .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )是偶函数B .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数C .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是偶函数D .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是奇函数解析:∵当m =0时,f (x )=x 2(x ∈R ).∴f (x )是偶函数⼜∵当m =1时,f (x )=x 2+x (x ∈R )∴f (x )既不是奇函数也不是偶函数.∴A 对,B 、C 、D 错.故选A.答案: A3.下列4个命题: p 1:?x ∈(0,+∞),? ????12xx ; p 2:?x ∈(0,1),log 12x >log 13x ;p 3:?x ∈(0,+∞),? ????12x >log 12x ; p 4:?x ∈? ????0,13,? ????12xx . 其中的真命题是( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4解析:对于命题p 1,当x ∈(0,+∞)时,总有? ????12x >? ??13x 成⽴.所以p 1是假命题,排除A 、B ;对于命题p 3,在平⾯直⾓坐标系中作出函数y =? ??12x 与函数 y =log 12x 的图象,可知在(0,+∞)上,函数y =? ????12x 的图象并不是始终在函数y =log 12x 图象的上⽅,所以p 3是假命题,排除C.故选D.答案: D4.若命题p :?x ∈R ,ax 2+4x +a ≥-2x 2+1是真命题,则实数a 的取值范围是( )A .a ≤-3或a >2B .a ≥2C .a >-2D .-2即(a +2)x 2+4x +a -1≥0恒成⽴,所以有: a +2>0,16-4a +2a -1≤0 a >-2,a 2+a -6≥0?a ≥2.答案: B⼆、填空题(每⼩题5分,共10分)5.命题“有些负数满⾜不等式(1+x )(1-9x )>0”⽤“?”或“?”可表述为________.答案: ?x 0<0,使(1+x 0)(1-9x 0)>06.已知命题p :?x 0∈R ,tan x 0=3;命题q :?x ∈R ,x 2-x +1>0,则命题“p 且q ”是________命题.(填“真”或“假”)解析:当x 0=π3时,tan x 0=3,∴命题p 为真命题; x 2-x +1=? ????x -122+34>0恒成⽴,∴命题q 为真命题,∴“p 且q ”为真命题.答案:真三、解答题(每⼩题10分,共20分)7.指出下列命题中哪些是全称命题,哪些是特称命题,并判断真假:(1)若a >0,且a ≠1,则对任意实数x ,a x>0.(2)对任意实数x 1,x 2,若x 1(3)?T0∈R,使|sin(x+T0)|=|sin x|.(4)?x0∈R,使x20+1<0.解析:(1)(2)是全称命题,(3)(4)是特称命题.(1)∵a x>0(a>0且a≠1)恒成⽴,∴命题(1)是真命题.(2)存在x1=0,x2=π,x1但tan 0=tan π,∴命题(2)是假命题.(3)y=|sin x|是周期函数,π就是它的⼀个周期,∴命题(3)是真命题.(4)对任意x0∈R,x20+1>0.∴命题(4)是假命题.8.选择合适的量词(?、?),加在p(x)的前⾯,使其成为⼀个真命题:(1)x>2;(2)x2≥0;(3)x是偶数;(4)若x是⽆理数,则x2是⽆理数;(5)a2+b2=c2(这是含有三个变量的语句,则p(a,b,c)表⽰)解析:(1)?x∈R,x>2.(2)?x∈R,x2≥0;?x∈R,x2≥0都是真命题.(3)?x∈Z,x是偶数.(4)存在实数x,若x是⽆理数,则x2是⽆理数.(如42)(5)?a,b,c∈R,有a2+b2=c2.尖⼦⽣题库☆☆☆9.(10分)若?x∈R,函数f(x)=mx2+x-m-a的图象和x轴恒有公共点,求实数a 的取值范围.解析:(1)当m=0时,f(x)=x-a与x轴恒相交,所以a∈R;(2)当m≠0时,⼆次函数f(x)=mx2+x-m-a的图象和x轴恒有公共点的充要条件是Δ=1+4m(m+a)≥0恒成⽴,即4m2+4am+1≥0恒成⽴.⼜4m2+4am+1≥0是⼀个关于m的⼆次不等式,恒成⽴的充要条件是Δ=(4a)2-16≤0,解得-1≤a≤1.综上所述,当m=0时,a∈R;当m≠0,a∈[-1,1].第1章 1.4.3⼀、选择题(每⼩题5分,共20分)1.命题:对任意x ∈R ,x 3-x 2+1≤0的否定是( )A .不存在x 0∈R ,x 30-x 20+1≤0B .存在x 0∈R ,x 30-x 20+1≥0C .存在x 0∈R ,x 30-x 20+1>0D .对任意x ∈R ,x 3-x 2+1>0解析:由全称命题的否定可知,命题的否定为“存在x 0∈R ,x 30-x 20+1>0”.故选C.答案: C2.命题p :?m 0∈R ,使⽅程x 2+m 0x +1=0有实数根,则“綈p ”形式的命题是( )A .?m 0∈R ,使得⽅程x 2+m 0x +1=0⽆实根B .对?m ∈R ,⽅程x 2+mx +1=0⽆实根C .对?m ∈R ,⽅程x 2+mx +1=0有实根D .⾄多有⼀个实数m ,使得⽅程x 2+mx +1=0有实根解析:由特称命题的否定可知,命题的否定为“对?m ∈R ,⽅程x 2+mx +1=0⽆实根”.故选B.答案: B3.“?x 0?M ,p (x 0)”的否定是( )A .?x ∈M ,綈p (x )B .?x ?M ,p (x )C .?x ?M ,綈p (x )D .?x ∈M ,p (x )答案: C 4.已知命题p :?x ∈R ,使tan x =1,命题q :x 2-3x +2<0的解集是{x |1列结论:①命题“p ∧q ”是真命题;②命题“p ∧?q ”是假命题;③命题“?p ∨q ”是真命题;④命题“?p ∨?q ”是假命题,其中正确的是( )A .②③B .①②④C .①③④D .①②③④解析:当x =π4时,tan x =1,∴命题p 为真命题.由x 2-3x +2<0得1∴p ∧q 为真,p ∧?q 为假,?p ∨q 为真,?p ∨?q 为假.答案: D⼆、填空题(每⼩题5分,共10分)5.命题p :?x ∈R ,x 2+2x +5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”),它的否定命题綈p :________,它是________命题(填“真”或“假”).解析:∵x2+2x+5=(x+1)2+4≥0恒成⽴,所以命题p是假命题.答案:特称命题假?x∈R,x2+2x+5≥0真6.(1)命题“对任何x∈R,|x-2|+|x-4|>3”的否定是________.(2)命题“存在x∈R,使得x2+2x+5=0”的否定是________.答案:(1)?x0∈R,|x0-2|+|x0-4|≤3(2)?x∈R,x2+2x+5≠0三、解答题(每⼩题10分)7.写出下列命题的否定并判断其真假.(1)所有正⽅形都是矩形;(2)?α,β∈R,sin(α+β)≠sin α+sin β;(3)?θ0∈R,函数y=sin(2x+θ0)为偶函数;(4)正数的对数都是正数.解析:(1)命题的否定:有的正⽅形不是矩形,假命题.(2)命题的否定:?α,β∈R,sin(α+β)=sin α+sin β,真命题.(3)命题的否定:?θ∈R,函数y=sin(2x+θ)不是偶函数,假命题.(4)命题的否定:存在⼀个正数,它的对数不是正数,真命题.8.已知函数f(x)=x2-2x+5.(1)是否存在实数m,使不等式m+f(x)>0对于任意x∈R恒成⽴,并说明理由.(2)若存在⼀个实数x0,使不等式m-f(x0)>0成⽴,求实数m的取值范围.解析:(1)不等式m+f(x)>0可化为m>-f(x),即m>-x2+2x-5=-(x-1)2-4.要使m>-(x-1)2-4对于任意x∈R恒成⽴,只需m>-4即可.故存在实数m,使不等式m+f(x)>0对于任意x∈R恒成⽴,此时只需m>-4.(2)若m-f(x0)>0,∴m>f(x0).∵f(x0)=x20-2x0+5=(x0-1)2+4≥4.∴m>4.尖⼦⽣题库☆☆☆9.(10分)写出下列各命题的否命题和命题的否定,并判断真假.(1)?a,b∈R,若a=b,则a2=ab;(2)若a·c=b·c,则a=b;(3)若b2=ac,则a,b,c是等⽐数列.。
高中数学人教a版高二选修2-1_第二章_圆锥曲线与方程_2.3.1_word版有答案
学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.方程x 22+m -y 22-m=1表示双曲线,则m 的取值范围为( ) A .-2<m <2B .m >0C .m ≥0D .|m |≥2【解析】 ∵已知方程表示双曲线,∴(2+m )(2-m )>0.∴-2<m <2.【答案】 A2.设动点P 到A (-5,0)的距离与它到B (5,0)距离的差等于6,则P 点的轨迹方程是( )A.x 29-y 216=1B.y 29-x 216=1C.x 29-y 216=1(x ≤-3)D.x 29-y 216=1(x ≥3)【解析】 由题意知,轨迹应为以A (-5,0),B (5,0)为焦点的双曲线的右支.由c =5,a =3,知b 2=16,∴P 点的轨迹方程为x 29-y 216=1(x ≥3).【答案】 D3.已知双曲线的中心在原点,两个焦点F 1,F 2分别为(5,0)和(-5,0),点P 在双曲线上,且PF 1⊥PF 2,△PF 1F 2的面积为1,则双曲线的方程为( )A.x 22-y 23=1B.x 23-y 22=1C.x 24-y 2=1 D .x 2-y 24=1【解析】 由⎩⎪⎨⎪⎧|PF 1|·|PF 2|=2,|PF 1|2+|PF 2|2=(25)2,⇒(|PF 1|-|PF 2|)2=16,即2a =4,解得a =2,又c =5,所以b =1,故选C.【答案】 C4.已知椭圆方程x 24+y 23=1,双曲线的焦点是椭圆的顶点,顶点是椭圆的焦点,则双曲线的离心率为( ) A. 2 B. 3 C .2 D .3【解析】 椭圆的焦点为(1,0),顶点为(2,0),即双曲线中a =1,c =2,所以双曲线的离心率为e =c a =21=2.【答案】 C5.若k >1,则关于x ,y 的方程(1-k )x 2+y 2=k 2-1所表示的曲线是( )A .焦点在x 轴上的椭圆B .焦点在y 轴上的椭圆C .焦点在y 轴上的双曲线D .焦点在x 轴上的双曲线【解析】 原方程化为标准方程为x 2k 2-11-k+y k 2-1=1, ∵k >1,∴1-k <0,k 2-1>0,∴此曲线表示焦点在y 轴上的双曲线.【答案】 C二、填空题6.设点P 是双曲线x 29-y 216=1上任意一点,F 1,F 2分别是其左、右焦点,若|PF 1|=10,则|PF 2|=________.【解析】 由双曲线的标准方程得a =3,b =4.于是c =a 2+b 2=5.(1)若点P 在双曲线的左支上,则|PF 2|-|PF 1|=2a =6,∴|PF 2|=6+|PF 1|=16;(2)若点P 在双曲线的右支上,则|PF 1|-|PF 2|=6,∴|PF 2|=|PF 1|-6=10-6=4.综上,|PF 2|=16或4.【答案】 16或47.已知F 1(-3,0),F 2(3,0),满足条件|PF 1|-|PF 2|=2m -1的动点P 的轨迹是双曲线的一支,则m 可以是下列数据中的________.(填序号)①2;②-1;③4;④-3.【解析】 设双曲线的方程为x 2a 2-y 2b 2=1,则c =3,∵2a <2c =6,∴|2m -1|<6,且|2m -1|≠0,∴-52<m <72,且m ≠12,∴①②满足条件.【答案】 ①②8.已知△ABP 的顶点A ,B 分别为双曲线C :x 216-y 29=1的左、右焦点,顶点P 在双曲线C 上,则|sin A -sin B |sin P的值等于________. 【导学号:18490058】 【解析】 由方程x 216-y 29=1知a 2=16,b 2=9,即a =4,c =16+9=5.在△ABP 中,利用正弦定理和双曲线的定义知,|sin A -sin B |sin P=||PB |-|P A |||AB |=2a 2c =2×42×5=45.【答案】 45三、解答题9.求与双曲线x 24-y 22=1有相同焦点且过点P (2,1)的双曲线的方程.【解】 ∵双曲线x 24-y 22=1的焦点在x 轴上.依题意,设所求双曲线为x 2a 2-y 2b 2=1(a >0,b >0).又两曲线有相同的焦点,∴a 2+b 2=c 2=4+2=6. ①又点P (2,1)在双曲线x 2a 2-y 2b 2=1上,∴4a 2-1b 2=1.②由①②联立得a 2=b 2=3,故所求双曲线方程为x 23-y 23=1.10.已知方程kx 2+y 2=4,其中k 为实数,对于不同范围的k 值分别指出方程所表示的曲线类型.【解】 (1)当k =0时,y =±2,表示两条与x 轴平行的直线;(2)当k =1时,方程为x 2+y 2=4,表示圆心在原点,半径为2的圆;(3)当k <0时,方程为y 24-x 2-4k=1,表示焦点在y 轴上的双曲线;(4)当0<k <1时,方程为x 24k+y 24=1,表示焦点在x 轴上的椭圆;(5)当k >1时,方程为x 24k+y 24=1,表示焦点在y 轴上的椭圆.[能力提升]1.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则a 的值为( )A .1 B.2 C .2 D .3 【解析】 由题意知椭圆、双曲线的焦点在x 轴上,且a>0.∵4-a2=a+2,∴a2+a-2=0,∴a=1或a=-2(舍去).故选A.【答案】 A2.已知F1,F2为双曲线C:x2-y2=1的左、右焦点,点P在双曲线C上,∠F1PF2=60°,则|PF1|·|PF2|等于()A.2 B.4C.6 D.8【解析】不妨设P是双曲线右支上一点,在双曲线x2-y2=1中,a=1,b=1,c=2,则|PF1|-|PF2|=2a=2,|F1F2|=22,∵|F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|·cos∠F1PF2,∴8=|PF1|2+|PF2|2-2|PF1|·|PF2|·1 2,∴8=(|PF1|-|PF2|)2+|PF1|·|PF2|,∴8=4+|PF1||PF2|,∴|PF1||PF2|=4.故选B.【答案】 B3.已知双曲线x216-y225=1的左焦点为F,点P为双曲线右支上的一点,且PF与圆x2+y2=16相切于点N,M为线段PF的中点,O为坐标原点,则|MN|-|MO|=________.【解析】设F′是双曲线的右焦点,连接PF′(图略),因为M,O分别是FP,FF′的中点,所以|MO|=12|PF′|,又|FN|=|OF|2-|ON|2=5,由双曲线的定义知|PF|-|PF′|=8,故|MN|-|MO|=|MF|-|FN|-12|PF′|=12(|PF|-|PF′|)-|FN|=12×8-5=-1.【答案】-14.已知双曲线x 216-y 24=1的两焦点为F 1,F 2.(1)若点M 在双曲线上,且MF 1→·MF 2→=0,求点M 到x 轴的距离; 【导学号:18490059】(2)若双曲线C 与已知双曲线有相同焦点,且过点(32,2),求双曲线C 的方程.【解】 (1)不妨设M 在双曲线的右支上,M 点到x 轴的距离为h ,MF 1→·MF 2→=0,则MF 1⊥MF 2,设|MF 1|=m ,|MF 2|=n ,由双曲线定义知,m -n =2a =8,① 又m 2+n 2=(2c )2=80,② 由①②得m ·n =8,∴12mn =4=12|F 1F 2|·h ,∴h =255.(2)设所求双曲线C 的方程为x 216-λ-y 24+λ=1(-4<λ<16), 由于双曲线C 过点(32,2),所以1816-λ-44+λ=1, 解得λ=4或λ=-14(舍去). ∴所求双曲线C 的方程为x 212-y 28=1.。
2018秋新版高中数学人教A版选修2-1习题:第二章圆锥曲线与方程 2.3.2
2.3.2 双曲线的简单几何性质课时过关·能力提升基础巩固1若等轴双曲线的一个焦点是F 1(-6,0),则其标准方程为( )A.=1B.=1x 29‒y 29y 29‒x 29 C.=1D.=1y 218‒x 218x 218‒y 218等轴双曲线的焦点在x 轴上,∴可设标准方程为=1(n>0),x 2n ‒y 2n ∴2n=36,∴n=18.故选D .2若中心在坐标原点,离心率为的双曲线的焦点在y 轴上,则它的渐近线方程为( )53A.y=±x B.y=±x 5445C.y=±xD.y=±x 4334=1(a>0,b>0),得e=.y 2a2‒x 2b2c a =53设a=3k ,c=5k (k ∈R ,且k>0),则b 2=c 2-a 2=25k 2-9k 2=16k 2,则b=4k.故其渐近线方程为y=±x.343已知双曲线=1的右焦点为(3,0),则该双曲线的离心率等于( )x 2a2‒y 25A. B. C. D.314143243243a 2+5=32⇒a=2⇒e=,选项C 正确.c a =324若直线过点(,0)且与双曲线x 2-y 2=2仅有一个公共点,则这样的直线有( )2A.1条B.2条C.3条D.4条5设双曲线=1(a>0)的渐近线方程为3x ±2y=0,则a 的值为( )x 2a 2‒y 29A.4 B.3C.2D.16点A (x 0,y 0)在双曲线=1的右支上,若点A 到右焦点的距离等于2x 0,则x 0= .x 24‒y 232(6,0),由题意,得解得x 0=2.{x 0≥2,(x 0-6)2+y 20=4x 20,x 204-y 2032=1,7设椭圆C 1的离心率为,焦点在x 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点513的距离的差的绝对值等于8,则曲线C 2的标准方程为 .=1y 298直线2x-y-10=0与双曲线=1的交点坐标是 .x 220‒y25或(143,-23)9设F 1,F 2分别是双曲线=1的左、右焦点,若双曲线上存在点A ,使∠F 1AF 2=90°,且x 2a2‒y 2b 2|AF 1|=3|AF 2|,求双曲线的离心率.AF 1⊥AF 2,所以|AF 1|2+|AF 2|2=|F 1F 2|2=4c 2.①因为|AF 1|=3|AF 2|,所以点A 在双曲线的右支上.则|AF 1|-|AF 2|=2a ,所以|AF 2|=a ,|AF 1|=3a ,代入到①式得(3a )2+a 2=4c 2,.c 2a 2=104所以e=.c a=10210求满足下列条件的双曲线方程:(1)以2x ±3y=0为渐近线,且经过点(1,2);(2)离心率为,虚半轴长为2;54(3)与椭圆x 2+5y 2=5共焦点且一条渐近线方程为y-x=0.3设所求双曲线方程为4x 2-9y 2=λ(λ≠0),将点(1,2)代入方程可得λ=-32,则所求双曲线方程为4x 2-9y 2=-32,即=1.9y 232‒x 28(2)由题意,得b=2,e=.c a =54令c=5k ,a=4k (k ∈R ,且k>0),则由b 2=c 2-a 2=9k 2=4,得k 2=.49则a 2=16k 2=,故所求的双曲线方程为649=1或=1.9x 264‒y 249y 264‒x 24(3)由已知得椭圆x 2+5y 2=5的焦点为(±2,0),又双曲线的一条渐近线方程为y-x=0,3则另一条渐近线方程为y+x=0.3设所求的双曲线方程为3x 2-y 2=λ(λ>0),则a 2=,b 2=λ.λ3所以c 2=a 2+b 2==4,所以λ=3.4λ3故所求的双曲线方程为x 2-=1.y 23能力提升1若双曲线mx 2+y 2=1的焦距是实轴长的倍,则m 的值为( )5A.- B.-4C.4D.1414mx 2+y 2=1是双曲线,∴m<0,且其标准方程为y 2-=1.x 21-m ∵焦距是实轴长的倍,∴虚轴长是实轴长的2倍.5∴-=4,即m=-.1m 142若双曲线=1的渐近线与圆(x-3)2+y 2=r 2(r>0)相切,则r=( )x 26‒y 23A. B.2C.3D.63y=±x ,圆心坐标为(3,0),由点到直线的距离公式和渐近线与圆相切,可22得圆心到渐近线的距离等于r ,即r=.|±32|2+4=326=33若0<k<a 2,则双曲线=1与=1有( )x 2a 2-k‒y 2b 2+k x 2a2‒y 2b 2A.相同的虚轴 B.相同的实轴C.相同的渐近线D.相同的焦点0<k<a 2,且a 2-k+b 2+k=a 2+b 2,∴有相同的焦点.★4设F 1,F 2分别是双曲线x 2-=1的左、右焦点.若P 在双曲线上,且=0,则||=y 29PF 1·PF 2PF 1+PF 2( )A.2B.C.2D.551010,知双曲线两个焦点的坐标分别为F 1(-,0),F 2(,0).1010设点P (x ,y ),则=(--x ,-y ),=(-x ,-y ).PF 110PF 210∵=0,∴x 2+y 2-10=0,即x 2+y 2=10.PF 1·PF 2∴||PF 1+PF 2=|PF 1|2+|PF 2|2+2PF 1·PF 2==2.2(x 2+y 2)+20105已知双曲线=1(a>0,b>0)的左、右焦点分别为F 1,F 2,P 是双曲线上一点,且x 2a2‒y 2b 2PF 1⊥PF 2,|PF 1|·|PF 2|=4ab ,则双曲线的离心率是 . PF 1⊥PF 2,所以由{|PF 1|2+|PF 2|2=4c 2,|PF 1|·|PF 2|=4ab ,||PF 1|-|PF 2||=2a ,得4c 2-4a 2=8ab ,所以b=2a ,c 2=5a 2,所以e=.5★6已知双曲线=1(a>0,b>0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0).若双曲线上存在一点P ,x 2a2‒y 2b 2使,则该双曲线的离心率的取值范围是 .sin∠PF 1F 2sin∠PF 2F 1=ac|PF 1|=|PF 2|.ca 由双曲线的定义,知|PF 1|-|PF 2|=2a ,则|PF 2|-|PF 2|=2a ,即|PF 2|=.ca 2a 2c -a 由双曲线的几何性质,知|PF 2|>c-a ,则>c-a ,即c 2-2ac-a 2<0,2a 2c -a 故e 2-2e-1<0,解得-+1<e<+1.22又e ∈(1,+∞),故双曲线的离心率e ∈(1,+1).2(1,+1)27设双曲线=1的右顶点为A ,右焦点为F ,过点F 平行于双曲线的一条渐近线的直线与双曲x 29‒y 216线交于点B ,求△AFB 的面积.双曲线方程为=1,x 29‒y 216∴渐近线方程为y=±x.43∵A (3,0),F (5,0),不妨令直线BF 的方程为y=(x-5),43代入双曲线方程,得(x 2-10x+25)=1.x 29‒116×169解得x=,∴y=-,∴B .1753215(175,-3215)∴S △AFB =(5-3)×.123215=32158已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为,且过点(4,-).210(1)求此双曲线的方程;(2)若点M (3,m )在此双曲线上,求证:=0.F 1M ·F 2Me=,所以a=b.c a=2设双曲线方程为x 2-y 2=n (n ≠0),因为点(4,-)在双曲线上,10所以n=42-(-)2=6.10所以双曲线方程为x 2-y 2=6.M (3,m )在双曲线上,所以m 2=3.又点F 1(-2,0),点F 2(2,0),33所以=-=-1.k MF 1·k MF 2=m 3+23·m 3-23m 23所以=0.F 1M ·F 2M ★9已知双曲线C :=1(a>0,b>0)的一个焦点是F (2,0),离心率e=2.x 2a2‒y 2b 2(1)求双曲线C 的方程;(2)若以k (k ≠0)为斜率的直线l 与双曲线C 相交于两个不同的点M ,N ,线段MN 的垂直平分线与两坐标轴围成的三角形的面积为4,求实数k 的取值范围.由已知,得c=2.又e=2,则a=1,b=.3故所求的双曲线方程为x 2-=1.y 23(2)设直线l 的方程为y=kx+m (k ≠0),点M (x 1,y 1),N (x 2,y 2)的坐标满足方程组{y =kx +m ,x 2-y 23=1,① ②将①式代入②式,整理,得(3-k 2)x 2-2kmx-m 2-3=0.此方程有两个不等实根,于是3-k 2≠0,且Δ=(-2km )2+4(3-k 2)(m 2+3)>0.整理,得m 2+3-k 2>0.③由根与系数的关系,可知线段MN 的中点坐标(x 0,y 0)满足x 0=,y 0=kx 0+m=.x 1+x 22=km 3-k23m3-k 2从而线段MN 的垂直平分线方程为y-=-.3m3-k21k(x -km 3-k 2)此直线与x 轴、y 轴的交点坐标分别为.(4km 3-k2,0),(0,4m 3-k 2)由题设可得=4.12|4km3-k2|·|4m 3-k 2|整理,得m 2=(k ≠0).(3-k 2)22|k |将上式代入③式,得+3-k 2>0,(3-k 2)22|k |整理,得(k 2-3)(k 2-2|k|-3)>0(k ≠0).解得0<|k|<或|k|>3.3故k 的取值范围是(-∞,-3)∪(-,0)∪(0,)∪(3,+∞).33。
人教高中数学 选修 2-1 第二章 2.3 椭圆与双曲线中点弦斜率公式及推广(含答案)
椭圆与双曲线中点弦斜率公式及其推论圆锥曲线中点弦问题是问题在高考中的一个常见的考点.其解题方法一般是利用点差法和韦达定理,设而不求.但一般来说解题过程是相当繁琐的.若能巧妙地利用下面的定理则可以方便快捷地解决问题.定理1(椭圆中点弦的斜率公式):设00(,)M x y 为椭圆22221x y a b+=弦AB (AB 不平行y 轴)的中点,则有:22AB OMb k k a⋅=-证明:设11(,)A x y ,22(,)B x y ,则有1212ABy y k x x -=-,22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩ 两式相减得:22221212220x x y y a b --+=整理得:2221222212y y b x x a-=--,即2121221212()()()()y y y y b x x x x a+-=-+-,因为00(,)M x y 是弦AB 的中点,所以0012001222OMy x y y k x y x x +===+,所以22AB OM b k k a ⋅=-定理2(双曲线中点弦的斜率公式):设00(,)M x y 为双曲线22221x y a b-=弦AB(AB 不平行y 轴)的中点,则有22AB OMb k k a⋅= 证明:设11(,)A x y ,22(,)B x y ,则有1212ABy y k x x -=-,22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩ 两式相减得:22221212220x x y y a b ---=整理得:2221222212y y b x x a -=-,即2121221212()()()()y y y y b x x x x a+-=+-,因为00(,)M x y 是弦AB 的中点,所以0012001222OMy x y y k x y x x +===+,所以22AB OM b k k a ⋅= 例1、已知椭圆22221x y a b-=,的一条弦所在的直线方程是30x y -+=,弦的中点坐标是2,1M -(),则椭圆的离心率是( ) A 、12 B、、分析:本题中弦的斜率 1AB k =且12OMk =-,根据定理有2212b a =,即2222112a c e a -=-=,解得2e =,所以B 答案正确. 例2、过椭圆221164x y +=内的一点(2,1)M 引一条弦,使弦被M 点平分,求这条弦所在的直线方程.解:设弦所在的直线为AB ,根据椭圆中点弦的斜率公式知14AB OM k k ⋅=-,显然12OM k =,所以12AB k =-,故所求的直线方程为11(2)2y x -=--,即240x y +-=.例3、过椭圆2216436x y +=上的一点(8,0)P -作直线交椭圆于Q 点,求PQ 中点的轨迹方程.解:设PQ 的中点为(,)M x y ,则OM yk x=,8PQ y k x =+,由椭圆中点弦的的斜率公式得9816y y x x ⋅=-+,即所求的轨迹方程为29(8)16y x x =-+ 例4、已知椭圆22221(0)x y a b a b +=>>,A 、B 是椭圆上的两点,线段AB 的垂直平分线l 与x 轴交于0(,0)P x ,求证:22220a b a b x a a---<<. 证明:设AB 的中点为11(,)M x y ,由题设可知AB 与x 轴不垂直,10y ∴≠,由椭圆的中点弦斜率公式得:2121ABx b k a y =-⋅2121l a y k b x ∴=,所以直线l 的方程为:211121()a y y y x x b x -=-,令0y =解得21022a x x a b =-,1||x a <,2022a a x a a b ∴-<<-,即:22220a b a b x a a ---<<例5、已知双曲线2212y x -=,经过点(1,1)M 能否作一条直线l ,使l 交双曲线 于A 、B 两点且点M 是线段AB 的中点,若存在这样的直线l ,求出它的方程;若不存在,说明理由.解:若存在这样的直线l 的斜率为k ,则1OM k =,由双曲线中点弦的斜率公式知:2k =,此时l 的方程为:12(1)y x -=-,即21y x =-,将它代入双曲线方程2212y x -=并化简得:22430x x -+=,而该方程没有实数根.故这样的直线l 不存在.定理1推论:若A 、B 是椭圆22221x y a b+=上关于中心对称的两点,P 是椭圆上任一点,当PA 、PB 的斜率PA k 和PB k 都存在时,有22PA PBb k k a⋅=-.证明:如图:连结AB ,取PB 中点M ,连结OM ,则OM PA ,所以有OM PA k k =,由椭圆中点弦斜率公式得:22OM PBb k k a ⋅=-.所以22PA PB b k k a⋅=-.类似地可以证明定理2推论:若A 、B 是双曲线22221x y a b-=上关于中心对称的两点,P 是双曲线上的任一点,当PA 、PB 的斜率PA k 和PB k 都存在时,有22PA PBb k k a⋅=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 圆锥曲线与方程
2.3 双曲线
2.3.1 双曲线及其标准方程
A 级 基础巩固
一、选择题
1.已知M (-2,0)、N (2,0),|PM |-|PN |=3,则动点P 的轨迹是( ) A .双曲线 B .双曲线左边一支 C .双曲线右边一支
D .一条射线
解析:由双曲线的定义知动点P 的轨迹是双曲线右支. 答案:C
2.设点P 在双曲线x 29-y 2
16=1上,若F 1、F 2为双曲线的两个焦点,且|PF 1|∶|PF 2|=1∶3,
则△F 1PF 2的周长等于( )
A .22
B .16
C .14
D .12
解析:由双曲线定义知|PF 2|-|PF 1|=6, 又|PF 1|∶|PF 2|=1∶3,由两式得|PF 1|=3, |PF 2|=9,进而易得周长为22. 答案:A
3.平面内动点P (x ,y )与A (-2,0),B (2,0)两点连线的斜率之积为1
4,动点P 的轨迹
方程为( )
A.x 24
+y 2
=1 B.x 24-y 2
=1 C.x 2
4
+y 2=1(x ≠±2) D.x 2
4
-y 2
=1(x ≠±2) 解析:依题意有k PA ²k PB =14,即y x +2²y x -2=1
4(x ≠±2),
整理得x 2
4-y 2
=1(x ≠±2).
答案:D
4.若方程y 24-x 2
m +1=1表示双曲线,则实数m 的取值范围是( )
A .-1<m <3
B .m >-1
C .m >3
D .m <-1
解析:依题意应有m +1>0,即m >-1. 答案:B
5.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2
b
=1(a >0,b >0)有相同的焦点F 1,F 2,P 是两曲
线的一个交点,则|PF 1|²|PF 2|的值是( )
A .m -a B.1
2(m -a ) C .m 2
-a 2
D.m -a
解析:由椭圆定义知|PF 1|+|PF 2|=2m .① 由双曲线的定义知||PF 1|-|PF 2||=2a .② ①2
-②2
得4|PF 1|²|PF 2|=4(m -a ), 所以|PF 1|²|PF 2|=m -a . 答案:A 二、填空题
6.已知双曲线两个焦点的坐标为F 1(0,-5),F 2(0,5),双曲线上一点P 到F 1,F 2的距离之差的绝对值等于6.则双曲线的标准方程为________.
解析:因为双曲线的焦点在y 轴上,
所以设它的标准方程为y 2a 2-x 2
b
2=1(a >0,b >0).
因为2a =6,2c =10,所以a =3,c =5. 所以b 2
=52
-32
=16.
所以所求双曲线标准方程为y 29-x 2
16=1.
答案:y 29-x 2
16
=1
7.在平面直角坐标系xOy 中,方程x 2
k -1+
y 2
k -3
=1表示焦点在x 轴上的双曲线,则k 的
取值范围为________.
解析:将方程化为x 2
k -1-
y 2
3-k
=1,若表示焦点在x 轴上的双曲线,则有k -1>0且3-k >0,
即1<k <3.
答案:(1,3)
8.若双曲线以椭圆x 2
16
+y 2
9
=1的两个顶点为焦点,且经过椭圆的两个焦点,则双曲线的标准方程为________.
解析:椭圆x 216+y 2
9=1的焦点在x 轴上,且a =4,b =3,c =7,所以焦点为(±7,0),
左右顶点为(±4,0).于是双曲线经过点(±7,0),焦点为(±4,0),则a ′=7,c ′=4,所以b ′2
=9,所以双曲线的标准方程为x 27-y 2
9
=1.
答案:x 27-y 2
9=1
三、解答题
9.双曲线C 与椭圆x 227+y 2
36=1有相同焦点,且经过点(15,4).
(1)求双曲线C 的方程;
(2)若F 1,F 2是双曲线C 的两个焦点,点P 在双曲线C 上,且∠F 1PF 2=120°,求△F 1PF 2
的面积.
解:(1)椭圆的焦点为F 1(0,-3),F 2(0,3),
设双曲线的方程为y 2a 2-x 2b
2=1,则a 2+b 2=32
=9.①
又双曲线经过点(15,4),所以
16
a
2
-15
b
2=1,②
解①②得a 2
=4,b 2
=5或a 2
=36,b 2
=-27(舍去), 所以所求双曲线C 的方程为y 24-x 2
5
=1.
(2)由双曲线C 的方程,知a =2,b =5,C =3. 设|PF 1|=m ,|PF 2|=n ,则|m -n |=2a =4, 平方得m 2
-2mn +n 2
=16.①
在△F 1PF 2中,由余弦定理得(2c )2
=m 2
+n 2
-2mn cos 120°=m 2
+n 2
+mn =36.② 由①②得mn =20
3
,
所以△F 1PF 2的面积为S =12mn sin 120°=53
3
.
10.如图,已知动圆M 与圆C 1:(x +4)2
+y 2
=2外切,与圆C 2:(x -4)2
+y 2
=2内切,求动圆圆心M 的轨迹方程.
解:设动圆M 的半径为r ,则由已知得,|MC 1|=r +2,|MC 2|=r -2, 所以|MC 1|-|MC 2|=22, 又C 1(-4,0),C 2(4,0), 所以|C 1C 2|=8.所以22<|C 1C 2|.
根据双曲线定义知,点M 的轨迹是以C 1(-4,0)、C 2(4,0)为焦点的双曲线的右支. 因为a =2,c =4,所以b 2
=c 2
-a 2
=14. 所以点M 的轨迹方程是x 22-y 2
14
=1(x ≥2).
B 级 能力提升
1.已知方程(1+k )x 2
-(1-k )y 2=1表示焦点在x 轴上的双曲线,则k 的取值范围为( ) A .-1<k <1 B .k >1
C .k <-1
D .k >1或k <-1
答案:A
2.已知曲线x 2
-y 2=1的两个焦点分别为F 1、F 2,P 为双曲线上一点,且∠F 1PF 2=60°,则|PF 1|+|PF 2|=________.
解析:由双曲线的定义知||PF 1|-|PF 2||=2, 所以|PF 1|2
+|PF 2|2-2|PF 1||PF 2|=4. 在△F 1PF 2中,由余弦定理得
|F 1F 2|2
=|PF 1|2
+|PF 2|2
-2|PF 1|²|PF 2|cos 60° 即|PF 1|2
+|PF 2|2
-|PF 1|²|PF 2|=(22)2
=8, 所以|PF 1|²|PF 2|=4.
所以(|PF 1|+|PF 2|)2
=|PF 1|2
+|PF 2|2
+2|PF 1|²|PF 2|=(4+2|PF 1|²|PF 2|)+2|PF 1|²|PF 2|=20.
所以|PF 1|+|PF 2|=2 5 答案:2 5
3.已知双曲线的方程为x 2
-y 2
4=1,如图,点A 的坐标为(-5,0),B 是圆x 2+(y -5)
2
=1上的点,点M 在双曲线的右支上,求|MA |+|MB |的最小值.
解:设点D的坐标为(5,0),则点A,D是双曲线的焦点,
由双曲线的定义,得|MA|-|MD|=2a=2.
所以|MA|+|MB|=2+|MB|+|MD|≥2+|BD|,
又B是圆x2+(y-5)2=1上的点,圆的圆心为C(0,5),半径为1,故|BD|≥|CD|-1=10-1,
从而|MA|+|MB|≥2+|BD|≥10+1,
当点M,B在线段CD上时取等号,即|MA|+|MB|的最小值为10+1.。