第三章 全面腐蚀与局部腐蚀
合集下载
腐蚀疲劳和磨耗腐蚀 全面腐蚀与局部腐蚀

2.环境特征
❖ (2)通常环境腐蚀性增强,CF破环倾向增大,例如对于钢 (尤其是高强度钢),CF裂纹扩展速率按照下列顺序递增: 惰性气体大气水蒸气水硫酸盐水溶液氯化物水 溶液氢气氛硫化氢。
❖ 但腐蚀过强导致局部腐蚀转化为均匀腐蚀,可能反而降低 钢的CF破坏倾向。如温度升高引起钢的严重腐蚀,造成许 多浅的裂纹源,从而降低局部的应力集中,并使阳极与阴 极面积比变大,结果使钢的抗腐蚀疲劳能力提高。另外, 氧时常通过吸附或化学反应促进裂纹闭合,阻碍CF裂纹的 扩展.从而提高CF条件疲劳极限值。
❖ 湍流腐蚀和空泡腐蚀是两种特殊而重要的冲蚀形式。
湍流腐蚀
❖ 在材料表面或设备的某些特定部位、由于介质流速的急 剧增大而形成湍流,由湍流导致的冲蚀即称为湍流腐蚀。 湍流使金属表面液体的搅动比层流更为剧烈,结果使金属 与介质的接触更为频繁。湍流不仅加速了腐蚀剂的供应和 腐蚀产物的移去,而且又附加了一个流体对金属表面的切 应力。该切应力能够把已经形成的腐蚀产物剥离,并随流 体转移开。当流体中含有气泡或固体颗粒时,切应力的力 矩增大,金属表面损伤更加严重。湍流腐蚀大多发生在叶 轮、螺旋桨,以及泵、搅拌器、离心机、各种导管的弯曲 部分。
应力作用下的腐蚀破坏
空泡 腐蚀
应力腐蚀 开裂SCC
冲击腐蚀或 湍流腐蚀
微动腐蚀或 微振腐蚀FC
腐蚀
腐蚀 疲劳 CF
氢致 断裂
一、腐蚀疲劳破坏的特征
❖ 金属材料和工程结构在交变应力和腐蚀介质协同、交互作 用下导致的破坏现象,称为腐蚀疲劳失效。
❖ 腐蚀疲劳过程受力学因素、环境因素和材料因素交互影响, 与一般腐蚀、纯机械疲劳和应力腐蚀失效相比,表现出诸 多自身的特征。
二、磨耗腐蚀
❖ 磨耗腐蚀是指金属材料与周围环境介质中之间存 在摩擦和腐蚀的双重作用,而导致金属材料的破 坏现象。由于这种破坏是应力和环境中化学介质 协同促进的过程,因此也是应力作用下腐蚀的形 式之一。
3--全面腐蚀与局部腐蚀

蚀孔出现的特定点称为点蚀源。
形成点蚀源所需要的时间为诱导时间,称孕育期。 孕育期长短取决于介质中Cl-的浓度、pH值及金 属的纯度.一般时间较长。Engell等人认 为.孕育期的倒数与Cl-浓度呈线性关系:
1/τ = K[Cl-]
(3-4)
Cl- 浓度在一定临界值以下不发生点蚀。
C点蚀坑的生长
的点蚀孔继续长大: 2)Ebr>E>Ep,不会形成新的点蚀扎,但原有的
点蚀孔将继续扩展长大; 3) E≤Ep,原有点蚀孔全部钝化,不会形成新的
点蚀孔。 Ebr值越正耐点蚀性能越好。 Ep与Ebr值越接近,钝化膜修复能力愈强。
B 点蚀源形成的孕育期
点蚀包括点蚀核的形成到金属表面出现宏观可见 的蚀孔。
D点蚀程度
点蚀程度可用点蚀系数或点蚀因子来表示:
点蚀系数=最大腐蚀深度/平均腐蚀深度
点蚀因子= P/d
图3-3 最深点蚀、平均侵蚀深度及点蚀 因子的关系。
3.2.3 影响点蚀的因素及预防措施
3.2.3.1 材料因素
1)合金元素的影响 不锈钢中Cr是最有效提高耐 点蚀性能的合金元素。
随着含Cr量的增加,点蚀电位向正方向移动。 如与Mo、Ni、N等合金元素配合,效果最好。
在敏化温度温度范围内继续延长时间,即长 时间回火处理,将发生碳化物的聚集,晶间 腐蚀将逐渐消除,如图3-8(e)。
3.4.2.2 贫化理论
认为晶间腐蚀是由于晶界析出新相,造成晶界附 近某一成分的贫乏化。
如奥氏体不锈钢回火过程中(400-800℃)过饱 和碳部分或全部以Cr23C6形式在晶界析出。
3.1.2 全面腐蚀速度及耐蚀标准
人们关心的是腐蚀速度。知道准确的腐蚀速度, 才能选择合理的防蚀措施及为结构设计提供依据。 全腐速度也称均匀腐蚀速度,常用表示方法有重 量法和深度法。
第三章1全面腐蚀与局部腐蚀

(3)环境温度温度和介质流动性的影响
❖ 温度升高时,氯等侵蚀性离子在不锈钢等金属表面的积聚 和化学吸附增加,导致钝态破坏的活性点增多,点蚀电位 降低,点蚀密度增加。温度过高(如对Crl8Ni9钢,温度高 于200℃)时,点蚀电位又升高,这可能是由于温度升高, 参与反应的物质的运动速率加快,使蚀孔内反应物的积累 减少及氧溶解度下降的缘故。 一般来讲,溶液的流动对抑制点蚀具有一定的有益作用。 通常认为介质的流速对点蚀的减缓起双重作用,一方面流 速增大有利于溶解氧向金属表面输送,使钝化膜易于形成: 另一方面可减少沉积物在金属表面沉积的机会,抑制局部 点蚀的发生。流速通常对点蚀电位影响不大,但是对点蚀 密度和深度有明显的影响,而流速过高则可能会引起冲击 腐蚀。
1、点蚀的萌生
❖ 点蚀的发生首先是在金属表面的某些敏感位置(点蚀源处) 形成点蚀核,即萌生点蚀孔。生成第一个或最初几个蚀点 所需要的时间称为点蚀萌生的诱导期(或孕育期),用表示。
点蚀过程是由内因(金属材料的成分和组织结构、表面状态 等因素)和外因(环境介质的成分和温度等因素)共同影响的, 点蚀核的萌生实质上就是钝化膜的局部破坏过程,破坏的 原因有化学的或机械的作用,化学作用的模型目前尚无统 一的认识.较为典型的有穿透模型、吸附模型和钝化成相 膜局部破裂模型等。下面仅以纯金属为对象作简要描述.
第三章1全面腐蚀与局部腐蚀
Contents
1
全面腐蚀
2
局部腐蚀
3
点腐蚀
3.1全面腐蚀与局部腐蚀的比较
❖ 按腐蚀破坏形态的区别可以将金属材料的腐蚀分为全面 腐蚀和局部腐蚀两大类。
❖ 全面腐蚀(General corrosion)是指腐蚀发生在整个金属材 料的表面,其结果是导致金属材料全面减薄。
全面腐蚀与局部腐蚀

3.4.1 晶间腐蚀产生的条件
1)组织因素 晶界与晶内的物理化学状态及化学成分不同,导 致其电化学性质不均匀。 如晶界的原子排列较为混乱,缺陷多,易产生晶 界吸附(C、S、P、B、Si)或析出碳化物、硫化 物、σ相等。 晶界为阳极、晶粒为阴极相,析出第二相一般为 阴极相。 2)环境因素 腐蚀介质能显示出晶粒与晶界电化学不均匀性。 易发生晶间腐蚀金属材料有不锈钢、铝合金及含 钼的镍基合金等。
3.3 缝隙腐蚀
3.3.1 缝隙腐蚀条件 金属结构件一般都采用铆、焊、螺钉等方式连接, 因此在连接部位容易形成缝隙。 缝隙宽度一般在0.025-0.1mm;足以使介质 滞留在其中,引起缝隙内金属的腐蚀。这称为缝 隙腐蚀。 缝隙腐蚀可发生在所有金属和合金上,且钝化金 属及合金更容易发生。 任何介质(酸碱盐)均可发生缝隙腐蚀,但含Cl的溶液更容易发生。
3 全面腐蚀与局部腐蚀
金属腐蚀分为全面腐蚀和局部腐蚀。 工程技术上看,全面腐蚀腐蚀其危险性小些; 局部腐蚀危险极大。没有什么预兆的情况下,金 属构件就突然发生断裂,甚至造成严重的事故。 腐蚀失效事故统计:全腐17.8%,局腐82.2%。 其中应力38%,点蚀25%,缝隙2.2%,晶间 11.5%,选择2%,焊缝0.4%,磨蚀等3.1%。 可见局部腐蚀的严重性。 局部腐蚀类型,主要有点蚀(孔蚀)、缝隙腐蚀、 晶间腐蚀、选择腐蚀,应力腐蚀、腐蚀疲劳、湍 流腐蚀等。
C 耐蚀标准
3.2 点腐蚀
点腐蚀(孔蚀)是一种腐蚀集中在金属表面数十微 米范围内且向纵深发展的腐蚀形式,简点蚀。 点蚀是一种典型局部腐蚀形式,具有较大的隐患 性及破坏性。在石油、化工、海洋业中可以造成 管壁穿孔,使大量的油、气等介质泄漏,有时甚 至会造成火灾,爆炸等严重事故。 3.2.1 点蚀的形貌与特征 A点蚀的形貌 点蚀表面直径等于或小于它的深度。一般只有几 十微米。其形貌各异.有蝶形浅孔,有窄深形、 有舌形等等。
第三章 局部腐蚀

0C)
18 Cr) 缝隙 CPT Mo
流动状态
在流动介质中金属不容易发生孔蚀, 在流动介质中金属不容易发生孔蚀, 而在停滞液体中容易发生, 而在停滞液体中容易发生,这是因为介质 流动有利于消除溶液的不均匀性,所以输 流动有利于消除溶液的不均匀性, 送海水的不锈钢泵在停运期间应将泵内海 水排尽。 水排尽。
在钝态金属表面上,蚀孔优先在一些敏感位置 在钝态金属表面上,蚀孔优先在一些敏感位置 上形成,这些敏感位置(即腐蚀活性点)包括 包括: 上形成,这些敏感位置 即腐蚀活性点 包括: 晶界(特别是有碳化物析出的晶界 特别是有碳化物析出的晶界), 晶界 特别是有碳化物析出的晶界 ,晶格缺陷 。 特别是硫化物 硫化物,如 非金属夹杂 特别是硫化物 如FeS、MnS,是 、 , 最为敏感的活性点。 最为敏感的活性点。 钝化膜的薄弱点 如位错露头、划伤等)。 的薄弱点(如位错露头 钝化膜的薄弱点 如位错露头、划伤等 。 孕育期: 孕育期:1/τ=K[Cl-]
几
25-13-1MO-N
与 海 水 温 度 的 关 系
种 不 锈 钢 的 孔 蚀 电 位
( ( ( ( 系 ) ) ) )
蚀 1.6 电 位 (伏 1.2 ) 0.8
孔
孔蚀临界Cl 离子浓度与 孔蚀临界Cl-离子浓度与Cr 含量的关系
[H+]=iN 孔蚀临界Cl 孔蚀临界 -离 铬含量(%) 铬含量( ) 子浓度(N) 子浓度( )
缝隙形成
机器和设备上的结构缝隙 机器和设备上的结构缝隙 结构 固体沉积 泥沙 腐蚀产物等)形成的缝 固体沉积(泥沙、腐蚀产物等 形成的缝 沉积 泥沙、 隙。 金属表面的保护模 如瓷漆 清漆、 如瓷漆、 金属表面的保护模 (如瓷漆、清漆、磷 化层、金属涂层)与金属基体之间形成的 化层、金属涂层 与金属基体之间形成的 缝隙。 缝隙。
18 Cr) 缝隙 CPT Mo
流动状态
在流动介质中金属不容易发生孔蚀, 在流动介质中金属不容易发生孔蚀, 而在停滞液体中容易发生, 而在停滞液体中容易发生,这是因为介质 流动有利于消除溶液的不均匀性,所以输 流动有利于消除溶液的不均匀性, 送海水的不锈钢泵在停运期间应将泵内海 水排尽。 水排尽。
在钝态金属表面上,蚀孔优先在一些敏感位置 在钝态金属表面上,蚀孔优先在一些敏感位置 上形成,这些敏感位置(即腐蚀活性点)包括 包括: 上形成,这些敏感位置 即腐蚀活性点 包括: 晶界(特别是有碳化物析出的晶界 特别是有碳化物析出的晶界), 晶界 特别是有碳化物析出的晶界 ,晶格缺陷 。 特别是硫化物 硫化物,如 非金属夹杂 特别是硫化物 如FeS、MnS,是 、 , 最为敏感的活性点。 最为敏感的活性点。 钝化膜的薄弱点 如位错露头、划伤等)。 的薄弱点(如位错露头 钝化膜的薄弱点 如位错露头、划伤等 。 孕育期: 孕育期:1/τ=K[Cl-]
几
25-13-1MO-N
与 海 水 温 度 的 关 系
种 不 锈 钢 的 孔 蚀 电 位
( ( ( ( 系 ) ) ) )
蚀 1.6 电 位 (伏 1.2 ) 0.8
孔
孔蚀临界Cl 离子浓度与 孔蚀临界Cl-离子浓度与Cr 含量的关系
[H+]=iN 孔蚀临界Cl 孔蚀临界 -离 铬含量(%) 铬含量( ) 子浓度(N) 子浓度( )
缝隙形成
机器和设备上的结构缝隙 机器和设备上的结构缝隙 结构 固体沉积 泥沙 腐蚀产物等)形成的缝 固体沉积(泥沙、腐蚀产物等 形成的缝 沉积 泥沙、 隙。 金属表面的保护模 如瓷漆 清漆、 如瓷漆、 金属表面的保护模 (如瓷漆、清漆、磷 化层、金属涂层)与金属基体之间形成的 化层、金属涂层 与金属基体之间形成的 缝隙。 缝隙。
什么叫做全面腐蚀和局部腐蚀

什么叫做全面腐蚀和局部腐蚀?
在水中金属的腐蚀是电化学腐蚀。
电化学腐蚀又分为全面腐蚀和局部腐蚀。
全面腐蚀相对较均匀,在金属表面上大量分布着微阴极和微阳极,故这种腐蚀不易造成穿孔,腐蚀产物氧化铁可在整个金属表面上形成,在一定情况下有保护作用。
当腐蚀集中于金属表面的某些部位时,则称为局部腐蚀。
局部腐蚀的速度很快,往往在早期就可使材料腐蚀穿孔或龟裂,所以危害性很大。
垢下腐蚀、缝隙腐蚀、晶间腐蚀等均属局部腐蚀。
全面腐蚀的阴、阳极并不分离,阴极面积等于阳极面积,阴极电位等于阳极电位。
局部腐蚀的阴、阳极互相分离,阴极面积大于阳极面积,但阳极电位小于阴极电位,腐蚀产物无保护作用。
材料腐蚀与防护 第三章

在一定的敏化温度下,随着加热时间的增加,钢 的晶间腐蚀倾向愈严重,但是加热时间过长,晶间腐 蚀倾向又复降低,甚至完全消除。
原因是在一定敏化温度下,随加热时时间过长,
析出的碳化物颗粒逐渐聚集长大,晶界贫铬区不再连 续,而且由于Cr在晶粒和晶界上的浓度差较大,C在 晶粒和晶界上的浓度差较小,随着回火时间的延长Cr 的扩散最终将超过C的扩散。通过Cr的扩散使晶粒内 部与晶界上的铬浓度均匀,结果晶界耐蚀性又上升, 晶间腐蚀敏感性减小。
(4)点蚀的孕育期
从金属与溶液接触一直到点蚀刚刚产生,这段时间称作 孕育期,孕育期随氯离子浓度增大及电极电位升高而缩短。
二: 点腐蚀机理
点蚀可分为两个阶段,即蚀孔成核(发生)和蚀孔生长(发展).
1蚀孔成核(发生)
目前通常有二种学说,即钝化膜破坏理论和吸附理论。
钝化膜破坏理论:
这种说法认为当腐蚀性阴离子(如氯离子)在不锈钢钝化膜上 吸附后,由于氯离子半径小而穿过纯化膜,氯离子进入膜内后 “污染了氧化膜”,产生了强烈的感应离子导电,于是此膜在 一定点上变得能够维持高的电流密度,并能使阳离子杂乱移动 而活跃起来,当膜—溶液界面电场达到其一临界值时,就发生 点蚀。
如不锈钢易在含卤族元素阴离子Cl-、Br - 、I –中发生, 而铜则对SO4 2-更敏感。
当溶液中含有FeCl 3、CuCl2为代表的二价以上重金 属氯化物时,由于金属离子强烈的氧化作用,将大大促 进点蚀的形成和发展。
(2)介质浓度
以卤族离子为例,一般认为,只有当卤族离子 达到一定浓度才发生点蚀。可以把产生点蚀的最 小浓度作为评定点蚀趋势的一个参量。
这一阶段的腐蚀主要是介质状态的不均匀性引起 的。
3.3 点腐蚀 点腐蚀(孔蚀)是一种腐蚀集中于金属表面的很小范 围内,并深入到金属内部的蚀孔状腐蚀形态,一般是 直径小而深度深。
金属常见的腐蚀形式

--
第四节 缝隙腐蚀
1 缝隙腐蚀:金属部件在介质中,由于金属 与非金属或金属与金属之间形成特别小的 缝隙,使缝隙内介质处于滞留状态,引起 缝内金属加速度腐蚀。 特点:极为普遍,金属与任何材料;
Fe2++2Cl- →FeCl2
FeCl2+2H2O → Fe(OH)2+2HCl → 酸性增加导致金属的更大溶解→ Fe(OH)2在孔口氧化为Fe(OH)3疏松沉淀→ 氯离子不断向孔内迁移→水解pH下降→ 环境不断恶化——由闭塞电池引起孔内酸化 从而加速腐蚀的作用,称“自催化酸化作用”
--
3 影响因素:材料,介质成分,流速和温度 (1)材料
--
2 机理
点蚀为什么要有诱导期?为什么仅在极其 局部的区域内发生?
点蚀核的形成及材料表面状况
金属表面
膜不完整
钝化金属(钝化膜):溶解—修复
➢ 基底金属与邻近完好钝化膜之间构成局部电池
(基底金属为阳极,钝化膜为阴极)→点蚀核→孔 口介质pH增大→有沉淀生成→ 孔口沉积形成闭塞 电池→保护穴位→酸度增加,腐蚀速度增大(自 催化酸化作用)→蚀坑增大→诱导期结束(进入 高速溶解阶段)
介质温度升高,会使低温下不发生点蚀 的材料发生点蚀。
--
4 防止 (1)从材料角度出发
①选用耐点蚀合金(钼、高纯不锈钢) ②保护表面膜 ③增加壁厚延长蚀孔穿透时间 (2)从环境、工艺角度出发 尽量降低介质中氯离子、溴离子及氧化性金属 离子的含量。 (3)添加缓蚀剂 (4)控制流速(滞流或缺氧下易发生点蚀) (5)电化学保护—阴极保护
并尽量避免大阴极/小阳极的面积组合; (2)施工中可考虑在不同金属的连接处加以绝
缘。(法兰连接处用绝缘材料的垫片) (3)涂料涂覆在阴极性金属,减小阴极面积; (4)缓蚀剂,减缓介质的腐蚀性; (5)设计时要考虑到易于腐蚀的阳极部件在维
第四节 缝隙腐蚀
1 缝隙腐蚀:金属部件在介质中,由于金属 与非金属或金属与金属之间形成特别小的 缝隙,使缝隙内介质处于滞留状态,引起 缝内金属加速度腐蚀。 特点:极为普遍,金属与任何材料;
Fe2++2Cl- →FeCl2
FeCl2+2H2O → Fe(OH)2+2HCl → 酸性增加导致金属的更大溶解→ Fe(OH)2在孔口氧化为Fe(OH)3疏松沉淀→ 氯离子不断向孔内迁移→水解pH下降→ 环境不断恶化——由闭塞电池引起孔内酸化 从而加速腐蚀的作用,称“自催化酸化作用”
--
3 影响因素:材料,介质成分,流速和温度 (1)材料
--
2 机理
点蚀为什么要有诱导期?为什么仅在极其 局部的区域内发生?
点蚀核的形成及材料表面状况
金属表面
膜不完整
钝化金属(钝化膜):溶解—修复
➢ 基底金属与邻近完好钝化膜之间构成局部电池
(基底金属为阳极,钝化膜为阴极)→点蚀核→孔 口介质pH增大→有沉淀生成→ 孔口沉积形成闭塞 电池→保护穴位→酸度增加,腐蚀速度增大(自 催化酸化作用)→蚀坑增大→诱导期结束(进入 高速溶解阶段)
介质温度升高,会使低温下不发生点蚀 的材料发生点蚀。
--
4 防止 (1)从材料角度出发
①选用耐点蚀合金(钼、高纯不锈钢) ②保护表面膜 ③增加壁厚延长蚀孔穿透时间 (2)从环境、工艺角度出发 尽量降低介质中氯离子、溴离子及氧化性金属 离子的含量。 (3)添加缓蚀剂 (4)控制流速(滞流或缺氧下易发生点蚀) (5)电化学保护—阴极保护
并尽量避免大阴极/小阳极的面积组合; (2)施工中可考虑在不同金属的连接处加以绝
缘。(法兰连接处用绝缘材料的垫片) (3)涂料涂覆在阴极性金属,减小阴极面积; (4)缓蚀剂,减缓介质的腐蚀性; (5)设计时要考虑到易于腐蚀的阳极部件在维
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.6%
4.9% 4.9% 3.0%
Table1:1968~1969年美国Dupont 公司金属材料破损调查
Table2:1976年日本Mitsubishi化工 机械公司化工装置损坏调查
全面腐蚀与局部腐蚀的比较
比较项目
腐蚀形貌 腐蚀电池 电极面积 电 位 腐蚀产物
全面腐蚀
腐蚀分布在整个金属表面 阴阳极在表面上变化,阴 阳极无法辨别 阴极 = 阳极 阴极 = 阳极 = 腐蚀(混合) 可能对金属具有保护作用 Ec= Ea= Ecorr
物等活性阴离子溶液最为容易。
3、缝隙腐蚀的机理
目前,大家较能接受的机理是,缝隙腐蚀的起因是 氧浓差电池的作用,而闭塞电池引起的酸化自摧化作用 是造成缝隙腐蚀加速进行的根本原因。也就是说,只有 氧浓差电池的作用,而没有闭塞电池引起的自催化作用, 是不能构成严重的缝隙腐蚀的。 缝 隙 内 是 阳 极 Fe—Fe2+ 十 2e ; 缝 隙 外 是 阴 极
避免的,因此缝隙腐蚀也经常发生。
(3)、几乎所有的金属或合金都会产生缝隙腐蚀。从 普通不锈钢到特种不锈钢只要有一定的缝隙存在, 即可发生缝隙腐蚀。而不锈钢等自钝化能力较强的 合金或金属,对缝隙腐蚀的敏感性愈高、愈易发生。
(4)、几乎所有腐蚀介质都会引起金属缝隙腐蚀。它
包括酸性、中性或淡水介质,其中又以充气含氯化
范围内,有介质滞流在缝内,才会发生缝隙腐蚀。
当宽度大于0.1mm,介质不再处于滞流状态,则不发 生缝隙腐蚀。
(2)、造成缝隙腐蚀的条件比较广泛。如金属结构的连
接(如焊钱、职焊接、螺栓连、铆接等)、金属与非金
属的连接(如金属与塑料、橡胶、木材、石棉、织物等、 以及各种法兰盘之间的衬垫)、金属表面的沉积物、附 着物、腐蚀产物(灰尘、砂粒、焊渣溅沫,锈层、污垢 等)结垢都会形成缝隙。由于缝隙在工程结构中是不可
不锈钢的晶间腐蚀
●●敏化热处理 不锈钢的晶间腐蚀常常是在受到不正确的热处理 以后发生的,使不锈钢产生晶间腐蚀倾向的热处理叫 做敏化热处理。奥氏体不锈钢的敏化热处理范围为
450C—850C。当奥氏体不锈钢在这个温度范围较长
时间加热(如焊接)或缓慢冷却,就产生了晶间腐蚀敏感 性。铁素体不锈钢的敏化温度在900C以上,而在700-
保护电位Ep,使设备材料处于稳定的钝化区。
合理选择耐蚀材料:使用含有抗小孔腐蚀最为有效 的元素如Cr、Mo、Ni等的不锈钢,在含氯离子介质中 可得到较好的抗孔蚀性能,这些元素含量愈高,抗蚀 性能愈好。应根据对耐蚀性的要求,介质的侵蚀性以 及经济性能等各方面的要求选用适当的材料。
3.3、缝隙腐蚀
1、定义
全面腐蚀和局部腐蚀具有不同的特征。
全面腐蚀 应力腐蚀破裂 腐蚀疲劳 小孔腐蚀 晶间腐蚀 磨损腐蚀 缝隙腐蚀 选择性腐蚀
31.5% 21.6% 1.8% 15.7% 10.2% 9.0% 1.8% 1.1%
全面腐蚀 应力腐蚀破裂 腐蚀疲劳
8.5% 45.6% 8.5%
小孔腐蚀
晶间腐蚀 高温氧化 氢脆
金属小孔腐蚀的特征(二)
小孔腐蚀发生于有特殊离子的介质中,例如在 有氧化剂(空气中的氧)和同时有活性阴离子存在的 溶液中。活性阴离子,例如卤素离子会破坏金属的 钝性而引起小孔腐蚀,卤素离子对不锈钢引起小孔 腐蚀敏感性的作用顺序为Cl->Br->I-.另外也有 ClO4-和SCN等介质中产生小孔腐蚀的报道。这些 特殊阴离子在合金表面的不均匀腐蚀,导致膜的不 均匀破坏。所以溶液中存在活性阴离子,是发生小 孔腐蚀的必要条件。
第三章 全面腐蚀与局部腐蚀
材料科学与工程学院 金属材料系
3.1、局部腐蚀与全面腐蚀
如果腐蚀是在整个金属表面上进行,则 称为全面腐蚀(General Corrosion)。 如果腐蚀只集中在金属表面局部特定部 位进行,其余大部分几乎不腐蚀,这种类型 的腐蚀称之为局部腐蚀(Localized Corrosion)。
影响小孔腐蚀的因素:流动状态
在流动介质中金属不容易发生孔蚀,而在停滞液 体中容易发生,这是因为介质流动有利于消除溶液的 不均匀性,所以输送海水的不锈钢泵在停运期间应将 泵内海水排尽。
孔蚀的防护与控制措施
改善介质环境:减轻介质环境的侵蚀性,包括 减少或消除Cl-等卤素离子,特别是防止引起局部浓
缩;避免氧化性阳离子;加入某些缓蚀性阴离子;
影响小孔腐蚀的因素:腐蚀性介质
通常含卤素离子的溶液会使金属发生小孔腐蚀。 孔蚀受卤素离子的种类、浓度和与其共存的其他 阴离子的种类和浓度的影响。卤素化合物中Cl- 的 侵蚀性高于Br-和I-。在阳极极化时,介质中只要含 有氯离子,即可导致金属发生孔蚀,且随介质中 氯离子浓度的增加,孔蚀电位下降,使孔蚀易于
1/2O2+H2O+2e—2OH-。由于阴、阳极分离,二次腐蚀产
物Fe(OH)3;在缝隙口形成,很快发展为闭塞电池。
4、影响因素
1. 缝隙宽度:它对缝隙腐蚀深度和速率有较大影响。缝隙 内速率随缝隙外面积增大而加快。
2.氧浓度影响:溶液中氧浓度增加,缝隙外的氧在阴极上还 原反应更易进行,缝隙腐蚀加速。溶解氧小于0.5ppm 时,有可能不引起缝隙腐蚀。 3.温度影响:一般而言,温度升高会导致阳极反应加快,腐 蚀速度增加,愈易引起缝隙腐蚀。 4.流速影响:腐蚀液流速的影响可分为两种情况。当流速增 加时,缝隙外含氧虽相应增加,缝隙腐蚀速度加快;另 一种情况,流速加大时,可把沉积物冲掉,闭塞电池不 易形成,从而减轻缝隙腐蚀。
环状阳极极化曲线上的特征电位Eb和Erp可以用来表
示金属的孔蚀倾向。Eb 称为击穿电位,或孔蚀电位。 Erp称为孔蚀保护电位或再钝化电位。Eb、Erp愈正,Eb 与Erp 相差愈小(滞后环面积愈小),则金属材料发生孔 蚀的倾向愈小,耐孔蚀性能愈好。
为了用Eb和Erp比较各种金属材料的耐孔蚀性能,测
量Eb和Erp的实验条件必须相同。
3.4、晶间腐蚀
定义:沿着或紧挨着金属的晶粒边界发生的腐蚀称为 晶间腐蚀。由微电池作用而引起局部破坏,这种局部破
坏是从表面开始,沿晶界向内发展,直至整个金属由于
晶界破坏而完全丧失强度。这是一种危害很大的局部腐 蚀。
晶间腐蚀的产生因素:一是内因,即金属或合金本身
晶粒与晶界化学成分差异、晶界结构、元素的固溶特点、 沉淀析出过程、固态扩散等金属学问题,导致电化学不 均匀性,使金属具有品间腐蚀倾向。二是外因,在腐蚀 介质中能显示晶粒与晶界的电化学不均匀性。
发生。
影响小孔腐蚀的因素:电位与pH值
Pourbaix实测了铁在10-2mol/L氯化物系统的
E—pH图,并叙述了临界电位即钝态区和孔蚀区 的界限。 实验现象:随着电极电位升高,小孔腐蚀敏 感性加剧;而随着pH值的增高,小孔腐蚀倾向反 而减小。 实验结论:小孔腐蚀与电极电位和pH值有着 密切的关系。
度和时间范围。
1100
温 度 摄 氏 度 ) (
1000
900
800
700
600
不发生晶间腐蚀区
500
400
0.015
0.15
1.5
15
150
1500
加热时间(小时)
0.05%C-18.48%Cr-9.34%Ni不锈钢的晶间腐蚀范围(TTS曲线) (根据Cihal et al.)试验方法:CuSO4+H2SO4+Cu屑,24小时
金属小孔腐蚀的特征(三)
小孔腐蚀多发生在表面生成钝化膜的金属或
合金上,如不锈钢、铝及铝合金等。在这些金属 或合金表面的某些局部地区膜受到了破坏,膜未 受破坏的区域和受到破坏已裸露基体金属的区域 形成了活化-钝化腐蚀电池,钝化表面为阴极而
且面积比膜破坏处的活化区大得多,腐蚀就向深
处发展而形成蚀孔。
小孔腐蚀的机理
。
非金属夹杂,特别是硫化物,如FeS、MnS是最为
敏感的活性点。
钝化膜的薄弱点(如位错露头、划伤等)。
起源于硫化物夹杂的碳钢孔蚀机理示意图
根据Wranglen
O
2
O
O
2
O
2
中性充气氯化钠溶液 因杵氢偶而将锈层冲破 O
2
O
2
H 多孔锈层
2
O
O
2
2
Fe(OH)3 OH+H O+Fe O ← 3FeOOH+e
提高pH值;降低环境温度;使溶液流动或加搅拌等 都可减少孔蚀的发生。
缓蚀剂的应用:加入小孔腐蚀缓蚀剂是有效手
段之一。通常,小孔腐蚀的严重程度不仅与溶液中 的侵蚀性离子的浓度有关之外,还与非侵蚀性离子 的浓度有关。
孔蚀的防护与控制措施
电化学保护:对金属设备、装臵采用电化学保护是 防止小孔腐蚀发生的较好措施。阴极极化使电位低于
影响小孔腐蚀的因素:金属的性质
铝及其合金在含卤素离子的介质中遭受小孔腐蚀,是 与氧化膜的状态,第二相的存在、合金的退火温度及时间 有关。 铁如果处于钝态,并且溶液中同时存在Cl- 、 Br- 、 I或ClO4-,它在酸性、中性及碱性溶液中均遭受小孔腐蚀。 锆在盐酸溶液中有高的腐蚀稳定性,但它在稀盐酸溶 液中阳极极化或有氧化剂存在时遭受强烈的小孔腐浊。 钛的小孔腐蚀仅发生在高浓度氯化物的沸腾溶液中 (42% MgCl2; 61%CaCl2; 86%ZnCl2 均指质量分数)以及加 有少量水的溴的甲醇溶液中。 镍在含有Cl- 、 Br- 、 I-的溶液中阳极极化时,发生小 孔腐蚀。不锈钢中Cr、Mo、N及Ni含量增加,会提高对其 对小孔腐蚀的耐蚀性。Cr提高钝化膜的稳定性, Mo抑制 金属溶解。
局部腐蚀
腐蚀破坏主要集中在一定区域 阴阳极在微观上可以分析 阳极 << 阴极 阴极 < 阳极 无法保护作用 Ec≠ Ea
3.1.1、全面腐蚀速度及耐蚀性
金属遭受腐蚀后,其重量、厚度、机械性能、 组织结构及电极过程等都会发生变化。 1. 重量指标