空冷系统简介
空冷系统

一,空气经过冷却塔后水分含量会不会 改变?
答:水冷却塔是一种混合式换热器。从空气冷却塔来的温 度较高的冷却水(35℃左右),从顶部喷淋向下流动,污氮 气(27℃-左右)自下而上的流动,二者直接接触,既传热又 传质,是一个比较复杂的换热过程。一方面由于水的温度 高于污氮的温度,就有热量直接从水传给污氮,使水得到 冷却;另一方面,由于污氮比较干燥,相对湿度只有30% 左右,所以水的分子能不断蒸发、扩散到污氮中去。而水 蒸发需要吸收汽化潜热,从水中带走热量,就使得水的温 度不断降低。这种现象犹如一杯热开水放在空气中冷却一 样,热开水和空气接触,一方面将热量直接(或通过容器 壁)传给空气,另一方面又在冒汽,将水的分子蒸发扩散 到空气中而带走热量(汽化潜热),使热开水不断降温,得 以冷却。必须指出:污氮吸湿是使水降温的主要因素,因 此污氮的相对湿度是影响冷却效果的关键。这也是为什么 有可能出现冷却水出口温度低于污氮进口温度的原因。
空冷系统流程图
主要技术参数
①空气出空冷塔温度7℃—17℃ ②空冷塔水位正常值1100mm—1200mm。 ③水冷塔水位正常值900mm—1600mm。 ④空气出空冷塔压力>0.42MPa。 >0.42MPa
报警连锁
①空气出空冷塔压力过低(<0.038MPa)或空 冷塔水位过高(>1800mm)会连锁停四个水 泵并开空压机放空阀。 ②水冷塔液位过低(<500mm)连锁停低温水 泵。 ③水泵停转连锁关V1107。
空气预冷系统
空分装置设置空冷系统的原因
在现代空分设备空压机出口端设置空气预 冷系统主要考虑到以下因素: ① 增加节流效应,减小膨胀量,减少产品能 耗。 ② 减少换热器的热负荷。 降低空气温度和含水量。 ④ 除去空气中的大部分水溶性有害物质如 NH₃、HCl、SO₂、NO₂等。
空冷岛

空冷系统分类:
空气冷却系统采用工艺流程的不同,而又将空气 冷却系统分成三种 : 1、直接空气冷却系统简称 ACC 系统。 (AirCooledCondenser) 2、采用喷射式(混合式)凝汽器的空冷系统又 称海勒式(HL)间接冷却系统。 3、采用表面式凝汽器的间接空冷系统。又称哈 蒙式间接空冷系统
热风回流
减少热风再循环的措施有:
(1)在空冷平台周围设置挡风墙。 (2)在不同的空冷凝汽器单元之间设置分隔墙 (3)降低空冷平台下面进风口的空气流速,减少负 压区。 (4)采用喷雾加湿系统。其主要原理是高气温时段 在空冷凝汽器迎风面喷雾除盐水,一部分与翅片管 束进行热交换,水雾在管束表面升温后蒸发,利用 汽化潜热吸收了热量;另一部分雾化后的小水滴与 环境空气直接换热,降低了环境温度,增大了传热 温差,强化了传热效果。
排气管道、蒸汽分配管及歧管 管径 变化
真空度低,会造成如下情况:
1、真空漏入空气,增加凝结水含氧量,在排气装置除氧及除氧 器除氧过程中就会消耗更多的能量,增加煤耗。凝结水中的 含氧量也越多,从而加速了相关管道、设备的腐蚀速度。 2、当蒸汽在冷凝过程中出现不凝结气体,凝结水液膜热阻将不 再是主要的传热热阻。此时管内换热表面被一层气膜覆盖, 气膜具有更高的传热热阻。此外,随着不凝结气体和蒸汽的 混合汽体的过冷和不凝结气体比例的增大,凝汽器逆流单元 的传热热阻增大。 3、不凝气体的焓值较低,当气温下降到一定极限时,极易造成 空气冷 凝器管束内冻结现象的发生。 4、漏真空后,空气进入凝汽器产生气阻,导致汽轮机背压升高, (汽轮机排气背压设计为15kPa(TMCR/THA工况))汽轮机有 相对应背压裕量,超过这个裕量(低压缸排气温度升高,腐 蚀汽轮机末级叶片,造成低压缸缸体变形)造成机组降负荷, 严重时机组跳闸。
电站空冷系统介绍

防冻保护模式……
这种系统在主厂房内的部分几乎与湿冷系统完全一样 ,在主厂房外的部分,简单地说,只是将湿冷塔换成了空
冷塔。
2.电站空冷系统的工作原理
2.3 喷射式间接空冷系统 2.3.1喷射式间接空冷系统的工作原理
2.电站空冷系统的工作原理
2.3 .2喷射式间接空冷系统的主要特点
系统 主 要 特
点
自然风速等)。 冷却系统一般由: ①循环系统功能组…… ②扇区功能组(扇区充水和泄水)……
③旁路阀控制功能组……
④水平衡控制功能组…… ⑤紧急泄水阀控制功能组…… ⑥温度控制功能组等逻辑控制功能组组成……
2.电站空冷系统的工作原理
整个系统依据汽轮机背压(出塔水温)来控制运行, 可分为: 夏季运行模式…… 冬季运行模式……
2.电站空冷系统的工作原理
2.2表面式间接空冷系统
2.2.1间接空冷系统的工作原理
2.电站空冷系统的工作原理
2.2.2表面式间冷特点
系统 主 要 特 表面式空冷系统 注 释
①换热效率较低
②电厂整体占地面积大 ③冬季防冻要求高 ④初投资较大 ⑤真空系统小 ⑥汽轮机背压变幅大 ⑦受自然风影响相对较小 点 ⑧背压较低,热耗相对小 ⑨布置不受夏季主导风向制约 ⑩端差相对较大
两次换热、与直冷换热效果差。
自然通风冷却塔的占地大 百叶窗调节+退段运行 与直接空冷相比 与湿冷相同 全年理想的运行背压在7~ 28kPa。 与直接空冷相比
全年平均运行与直接空冷相比
与混凝式间接空冷相比
2.电站空冷系统的工作原理
2.2.3表面式间冷的组成
序号
1 2 3
表面式空冷系统
凝汽器 循环水系统部分 冷却扇段部分 表面式凝汽器
第六节 发电厂空冷系统

带表面式凝汽器的间接空冷系统
带表面式凝汽器的间接空冷系统又称哈蒙式间接空冷 系统,这种空冷系统是油海勒式间接空冷系统的运行
实践基础上发展而来。
哈蒙式间接空冷系统适用于核电厂,热电厂和调峰大 电厂。
带表面式凝汽器的间接空冷系统
哈蒙式间接空冷系统的优缺点
优点: ① 节约厂用电,设备少,冷却水系统与汽水系统分开,两者水质 可按各自要求控制; ② (2)冷却水量可根据季节调整,在高寒地区,在冷却水系统 中可充分以防冻液防冻。 缺点: ① 空气冷却塔占地大,基建投资多; ② 系统中需进行两次换热,且都属表面式换热,使全厂热效率有 所降低。
第六节 发电厂空冷系统
发电厂实物图
发电厂采用翅片管式的空气冷却散热器,直
接或间接用环境空气冷凝汽轮机排气的冷却 系统,称为空冷系统。
采用空冷系统的汽轮发电机组简称为空冷机
组。 空冷机组冷却系统本身可节水97%以上,全
厂性节水约65%。
一.直接空冷系统 二.混合式间接空冷系统 三.带表面式凝汽器的间接空冷系统
直接空冷系统
直接空冷系统是指汽轮机的排气直接用空 气来冷凝,空气与蒸汽间接进行热交换,所 需的冷却空气 通常由机械通风方式供应。直 接空冷的凝气设备称为空气凝汽器,它是由 外表面镀锌的椭圆形钢管外套矩形翅片的若 干个管束组成的,这些管束也称为散热器。
直接空冷系统的流程图
直接空冷系统各主要设备的位置
混合式间接空冷系统
混ห้องสมุดไป่ตู้式间接空冷系统又称海勒式间接空冷系统,由匈 牙利的海勒教授在 1950 年世界动力年会上首先提出而
得名。主要由喷射式(混合式)凝汽器和装有福哥型
散热器的空气冷却塔构成。
海勒式间接空冷系统的优缺点
电站空冷系统介绍.

内
容
循环水泵、泵进出阀门、温度表、压力表、塔 内外循环水管道 冷却三角(钢或铝)及其支座、百叶窗及其执 行机构、扇段进出水阀门、紧急放水阀、管道、 伸缩节、各种支吊架。
4
5 6
充水系统
补水系统 地下贮水箱
充水泵、高位膨胀水箱、管道、阀门等。
补水泵、管道、管件、阀门。 钢制水箱、水位控制设施。
7
8 9 10
④初投资较省 ⑤真空系统庞大 Nhomakorabea平台架设在A列的电气设备之上
与间接空冷相比 主排汽管道、换热器等容积较大
③冬季防冻措施比较灵活可靠 变频调速风机+电动真空隔离阀
特
点
⑥汽轮机背压变幅大
⑦对自然风比较敏感
全年理想的运行背压在9~32kPa。
影响风机吸风能力、热回流现象
⑧平均运行背压较高,热耗大 与间接空冷相比
清洗系统
喷雾系统 充氮保护系统(钢制) 自然通风冷却塔
清洗泵、喷嘴、管道、阀门、各种支吊架。
喷雾泵、喷嘴、管道、阀门、各种支吊架 氮瓶组、减压阀、管道、阀门、各种支吊架 一般为双曲线混凝土塔
2.电站空冷系统的工作原理
2.2.4表面式间冷的运行
同样是一个将汽轮机的乏汽冷凝成水的过程,与直冷
2.电站空冷系统的工作原理
2.1.4直接空冷系统的运行
直接空冷系统冷却原理是:用大直径的钢制管道将汽 轮机排出的乏汽引入空冷散热器后,通过与由动力风机组 送出的环境空气进行表面换热,直接将乏汽冷却为冷凝成 水。 系统的控制主要是依据汽轮机排汽压力(或凝结水温 )控制器的指令调节风机的转速,风机转速的提升/降低 根据风机转速级配置图执行,同时每个蒸汽隔离阀依据指 令开启/关闭。 控制的内容主要包括(冬季、正常)启动、运行、停 机(冬季、正常)、冬季防冻保护运行。
空冷系统

•
•
空冷系统防冻逻辑
1)环境温度持续低于-3℃五分钟时,启动防冻保护。当环境温度持续高于+3℃五分钟时,防冻保护 关闭。 2)当冷凝水温度之一低于25℃,汽机背压设定值增加3kPa。30分钟后如果冷凝水温度仍旧低于 25℃,再随后增加3kPa。 3)逆流风机(每排的3,6单元)依次间隔地停止运行5分钟。 4)空冷启动期间当环境温度低于-10℃时,3、4、5、6排的逆流风机(3,6单元)以20HZ反转,当某列抽 汽温度高于30℃时,该列反转结束。 注:在空冷运行过程中,抽气温度低时,可以在手动模式下,反转逆流风机(反转仅限于逆流风机), 风机反转前必须确证所要反转的风机已停转。
• • • • • • • • • • 1)轴流风机风筒与风机桥架的连接螺栓应无松动。 2)轴流风机轮毂与减速箱输出轴的锁紧螺栓应锁紧。 3)检查轴流风机轮毂轴套与风机轮毂支板的连接螺栓应锁紧。 4)检查风机叶片安装角度应一致。 5)检查现场清洁无杂物。 6)检查电动机和启动设备的接地装置应完整良好,接线良好。 7)检查齿轮箱油位、油温正常(否则启动电加热器)。 8)启动齿轮油泵,油压正常。 9)初次或大修后启动时先点动变频器开关,使风机转动(时间不超过30秒),检查风 机旋转方向是否正确,迎气流看风机叶轮应顺时针方向旋转。 10)试转测定风机的振动值,风机允许振动值小于6.3mm/s,否则应停机检查,查明原 因,排除故障后方可重新启动运转。
单元模块
低压饱和乏汽
排出的不凝气体含20公斤/时 空气和48公/时的蒸汽
蒸汽含量99.999%和20公斤/时空气进入空冷
蒸汽
冷却用风
逆流管束.蒸汽和冷 却水的方向相反
顺流管束.蒸汽和冷 却水的方向一直
冷却水
未被冷却的蒸汽和不凝气体 进入逆流管束
汽轮机直接空冷系统概述

汽轮机直接空冷系统概述直接空冷系统亦称为ACC(Air Cooled Condencer)系统,它是指汽轮机的排汽引入室外空冷凝汽器内直接用空气来将排汽凝结。
其工艺流程为汽轮机排汽通过大直径的排气管道引至室外的空冷凝汽器内,布置在空冷凝汽器下方的轴流冷却风机驱动空气流过冷却器外表面,将排汽冷凝为凝结水,凝结水再经凝结水泵送回汽轮机的回热系统。
直接空冷机组原则性汽水系统1—锅炉;2—过热器;3—汽轮机;4—空冷凝汽器;5—凝结水泵;6—凝结水精处理装置;8—低压加热器;9—除氧器;10—给水泵;11—高压加热器;12—汽轮机排汽管道;13—轴流冷却风机;14—立式电动机;15—凝结水箱;17—发电机直接空冷系统的空冷岛部分直接空冷系统的特点直接空冷系统是将汽轮机排出的乏汽,由管道引入称之为空冷凝汽器的钢制散热器中,由环境空气直接将其冷却为凝结水,减少了常规二次换热所需要的中间冷却介质,换热温差大,效果好。
该系统的主要特点还有:1、自然界大风的影响比较严重。
在夏季,自然气温普遍较高,如在这一时段再受到自然大风的影响,必然对机组的运行产生影响。
各电厂在夏季高温段遇到外界大风时,均有不同程度的降负荷现象,特别是山西漳山电厂、大一电厂、大二电厂在夏季高温时段皆因受到大风的影响,出现过机组跳闸现象。
自然大风影响是一个世界性难题,对直接空冷机组影响是很大的。
但是,自然大风的影响又是很难人为克服的。
因此,大一电厂在厂房顶部安装了测风装置采集数据,准备在进行相关数据分析的基础上,做出空冷机组应对自然大风的预案,尽量将因大风影响造成的损失降至最低。
榆社电厂、漳山电厂也准备采取同样的措施。
这种方法是否行之有效,还有待进一步探讨。
2、机组的真空系统严密性是一个普遍存在的问题。
特别是有一个奇怪的现象,就是有些电厂在机组刚投运时,空冷系统的严密性较好,但通过运行一年半载后,出现了反常现象。
由于空冷机组的真空容积庞大,汽轮机泄漏、安装焊接等原因,都会在很大程度上影响真空系统的严密性,致使机组背压提高,增大了煤耗,降低了机组带负荷的能力。
国内外直接空冷系统的发展及现状

国内外直接空冷系统的发展及现状近年来,国内外发电厂空冷技术得到飞速发展,成果显著。
为了加强对空冷技术的了解与利用,文章主要从空冷系统概述、国内外直接空冷系统的发展状况、直接空冷系统的现状、电站空冷技术的前景及展望四方面对国内外直接空冷系统的发展及现状进行论述,以供参考。
标签:直接空冷系统;定义;发展;现状前言近年来,随着经济的发展,国内直接空冷电站发展空前迅速,空冷技术受到广大的关注。
距今为止,电厂空冷技术的提出已有60余年的历史,在这期间,空冷技术逐渐发展壮大,技术由不成熟到成熟,应用地区由小到大,其发展前景越来越广阔。
并且在今后,空冷技术将会得到更广阔的发展空间。
1 空冷系统概述1.1 空冷系统定义所谓的空冷系统,又称干冷系统,是指汽轮机的冷却系统以空气为冷却介质。
整个系统具有密闭循环、节水效果明显等特点,是一种较理想的节水技术。
1.2 空冷系统种类目前,国内外空冷系统主要有3种,分别是:直接空冷系统;间接空冷系统分为两种,其中一种是带有表面式凝汽器,又称哈蒙系统;另一种是带喷射式(混合式)凝汽器,又称海勒系统。
1.3 空冷系统作用火力发电产的建设须具备燃料和水两大丰富资源的条件,但是一些地区虽然燃料丰富,却极其缺水,如伊朗、沙特、南非、我国的“三北”地区等。
这极大地制约了火力发电,然而空冷系统的出现,就有效的解决了“富煤贫水”的问题。
2 国内外直接空冷系统的发展状况空冷系统有3种,本文主要对直接空冷系统进行论述。
直接空冷系统是指汽轮机的排汽直接用空气来冷凝,空气与蒸汽间进行热交换,是目前3种空冷系统应用最广泛的一种。
它具有结构比较简单,所需空冷元件比较少,投资较低等特点,能够有效的解决富煤贫水地区的发电问题。
2.1 国外直接空冷系统的发展状况直接空冷技术的发展历史已有60年,最早在20世纪30年代就已经在国外提出,后来逐渐引进到国内。
期间,直接空冷技术的发展大致经历了三个阶段,分别是:起步发展、扩大发展以及突飞猛进发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 空冷系统简介
1.1 空冷技术方案介绍
在火力发电厂中采用的空冷系统形式有:直接空冷系统、混凝式间接空冷系统、表凝式间接空冷系统。
直接空冷系统是将汽轮机排汽由管道送入称之为空冷凝汽器的钢制散热器中,直接由空气冷却。
混凝式空冷系统由于有水轮机和喷射式凝汽器等系统设备,设备多系统复杂,使得整套系统实行自动控制较难;而表凝式间接空冷系统与常规的湿冷系统比较接近,也是通过两次换热,以循环冷却水作为中间冷却介质,循环冷却水由水泵加压后,进入凝汽器冷却汽轮机排汽,热水进入自然通风冷却塔由空气冷却。
表凝式间接空冷系统与湿冷系统不同之处是在冷却塔内(外)布置着钢(铝)制散热器,热水与空气不接触,进行表面对流散热。
1.1.1 直接空冷系统
直接空冷系统主要由排汽装置、大排汽管道(包括大直径膨胀节、大口径蝶阀等)、钢制空冷凝汽器、风机组(包括轴流风机、电动机、减速机、变频器等)、凝结水系统、抽真空系统(包括水环式真空泵)、清洗系统等设备构成。
空冷凝汽器布置在汽机房A列外的高架空冷平台上。
直接空冷系统是将汽轮机排出的乏汽,通过排汽管道引入钢制空冷凝汽器中,由环境空气直接将其冷却为凝结水,多采用机械通风方式。
其特点是:设备较少,系统简单,调节灵活,占地少,防冻性能好,冷却效率高;直接空冷受环境风的影响较大,运行费用较高,煤耗较大,风机群产生一定噪声污染,厂用电较高。
1.1.2 表凝式间接空冷系统
表凝式间接空冷系统是指汽轮机排汽以水为中间介质,将排汽与空气之间的热交换分两次进行:一次为蒸汽与冷却水之间在表面式凝汽器中换热;一次为冷却水和空气在空冷塔里换热。
该系统主要由表面式凝汽器与空冷塔构成,采用自然通风方式。
表凝式间接空冷与直接空冷相比,其特点是:
冬季运行背压较低,所以煤耗较低;由于采用了表面式凝汽器,循环冷却水和凝结水分成两个独立系统,其水质可按各自的水质标准和要求进行处理,使水处理系统简单、便于操作;表凝式间接空冷塔基本无噪声,满足环保要求;空冷塔占地大,冬季运行防冻性能较差。
1.1.3 混凝式间接空冷系统
典型的混凝式间接空冷系统组成:主要由混合式(喷射式)凝汽器、全铝制的福哥型冷却三角散热器(带百叶窗)、(预热/尖峰冷却器)、自然通风冷却塔、循环水泵组、循环水管路、回收水能的水轮发电机组、贮水箱、充水泵组、
稳压泵组、散热器清洗系统等设备构成,散热器垂直布置在塔外。
空冷电厂的冷却系统主要有3 种方式, 即直接空冷系统、表面式凝汽器间接空冷系统和混合式凝汽器间接空冷系统。
直接空冷系统是指汽轮机的排汽引入室外空冷凝汽器内直接用空气来冷凝。
其工艺流程为汽轮机排汽通过大直径的排气管道引至室外的空冷凝汽器内, 布
置在空冷凝汽器下方的轴流冷却风机驱动空气流过冷却器外表面, 将排汽冷凝
为凝结水, 凝结水再经泵送回汽轮机的回热系统。
基于防冻的要求, 直接空冷系统一般需设置顺流凝汽器和逆流凝汽器。
其系统中大部分蒸汽在顺流凝汽器中被冷凝, 剩余的小部分蒸汽再通过逆流凝汽器被冷凝。
在逆流凝汽器中, 由于蒸汽和凝结水的运动方向相反, 凝结水不易冻结。
在逆流凝汽器的顶部设有抽真空系统, 可将系统内的空气和不凝结气体抽出。
与其它空冷系统相比直接空冷系统的主要特点为: (1) 冷却效率高。
取消了二次换热所需要的中间冷却介质, 而直接由空气冷却汽机排汽, 换热温差大, 冷却效率高。
(2) 占地面积小。
空冷凝汽器高位布置在汽机房A 排外平台上, 平台下仍可布置变压器等设备和建筑物。
(3) 投资较小。
(4) 系统调节灵活, 冬季运行防冻性能好。
可通过调整风机转速或风机数量来调节进风量, 以适应热负荷及气温的变化并防止空冷器内部结冰。
(5) 采用大型风机群通风, 厂用电量高。
(6) 检修维护工作量大。
(7) 运行时噪音大。
(8) 真空系统容积大。
直接空冷系统的基本单元称为冷却段, 是指一台风机与数组翅片管束的总成。
风机与安装其上呈A 型布置的翅片管束组成一个冷却三角, 翅片管束布置的顶角约为60°。
直接空冷凝汽器用空气直接冷却,其主要装置就是将空气冷凝器支架在一定高度的大面积平台上,一般安装在40m以上的高空,直接利用周围的空气进行鼓风冷却,空冷平台暴露在大气之中,其换热效率不但直接受到其环境风向和风速的影响,还会受到其地形的影响,所以空冷平台必须根据当地条件进行个别设计[2]。
直接空冷凝汽器的工作原理,如图1-3和图1-4所示,从汽轮机排出的蒸汽通过大直径的蒸汽管道输送到各单元管束上部的蒸汽分配管,首先进入主管束,以顺流方式从上向下流动,,每组束由组成A型的两个管束构成,顺流管束是冷凝蒸汽的主要部分,把,可把80%左右的蒸汽冷凝成水,然后,剩余的蒸汽和不可凝气体一起沿着凝结水汇集管进入逆流管束直至被完全冷凝。
凝结水沿着凝结水管流到凝结水箱,不可凝气体被真空装置抽走,设置逆流管束主要是为了能够比
较顺畅的将系统内的空气和不凝结气体排出,防止运行中在空冷凝汽器的某些部位形成死区,以防冬季出现冰冻的情况。
在每个单元的下部由一个轴流风机提供所需要的冷却空气。
管束由翅片管组成。
在每个单元的下部由一个轴流风机提供所需要的冷却空气。
管束由翅片管组成。
直接空冷凝汽器的核心元件由50年代的圆管圆翅片四排管;发展到70年代矩形翅片椭圆管的双排管;再到90年代的蛇形单排管发展过程如图1-5所示。
翅片之间为流体(空气)的流道,流体流过与管壁和翅片之间进行对流换热,从而冷却从汽轮机出来的高温蒸汽。
空冷技术分类
电站空冷技术分为两大类:一类是直接空冷发电技术,另一类称为间接空冷发电技术。
电站的直接空冷系统,又称为空气冷凝器系统(Air-Cooling
Condenser),简称ACC。
是用空气通过鼓风或者引风形式,直接对汽轮机乏汽进行冷却和冷凝,其主要特征是换热管的基管尺寸直径大,换热系数高,系统采用冷却三角单元布置。
直接空冷系统可根据散热器管束翅片管排数分为3种:三排管(翅片套或者绕在椭圆形截面基管上,早期技术采用圆形截面基管),双排管(长方形翅片套在椭圆形截面基管上),单排管(基管截面为扁平形,又称为大扁管)。
单排管技术由国外公司于1995年开发成功。
相对另外2种管束形式而言,具有重量轻,传热效率高,抗冻性能好等优点,但单排管材料为单面镀铝的钢基管,采用钢板与铝翅片进行钎焊的组装工艺,材料成本较高。
特别是单面镀铝的钢板制成钢管时,对材料镀层有较高的传热性能和力学性能等要求。
目前,世界上单机容量最大的直接空冷机组为中国华电灵武二期1000MW超超临界直接空冷机组,其次为澳大利亚KogenCgreek750MW空冷机组。
图1为直接空冷系统示意图。
图1直接空冷系统示意图
海勒式间接空冷系统,见图2所示。
海勒系统冷却水和锅炉给水混流,而大容量高参数机组对给水品质要求更加严格,水质处理和控制较为困难,因此海勒系统在大容量机组上应用较少。
目前,单机容量最大的海勒式间接空冷机组为伊朗ARAK4×325MW机组和伊朗SAHAND2×325MW机组。
图2海勒系统示意图
另一类是哈蒙式(表面式)间接空冷技术,将冷却水和汽水系统严格分开,冷却水及汽水系统通过常规水冷或类似的表面式凝汽器进行热交换。
图3为哈蒙系统示意图。
图3哈蒙系统示意图
哈蒙系统是在海勒系统上发展形成的,与常规的水冷系统比较接近。
由于汽水系统单独成回路,因此水处理和控制要求和常规水冷基本相同。
目前,单机容量最大的哈蒙式间接空冷机组为南非Kendal6×690MW机组。
在单排管技术诞生前,国际市场上以间接空冷技术占主导地位。
单排管的发明解决了直接空冷管束散热面积不足的问题,国际上,直接空冷和间接空冷的装机容量比已提高至7:3。
直接空冷系统与间接空冷系统相比,具有投资省、占地少、防冻手段灵活可靠等优点,目前,直接空冷技术还存在一些问题,如风机群发出的噪音及能源消耗较多等等。
在夏季遭遇强阵风时,易受热风回流的影响,降低了冷却效率,严重时,甚至会引起机组跳闸。
同样容量的间接空冷机组的初期投资高于直接空冷机组,换热效率也比较低,但是间接空冷系统可利用自然通风进行冷却,可以大幅减少空冷系统运行时的厂用电量,而且间接空冷机组的冷却塔建得比较高,对环境风的影响不敏感,从而避免了热风回流的对机组效率影响。
间接空冷系统还可以根据场地情况,将冷却塔建成高度更高的“瘦高塔”,虽然增加了制造成本,但可以节约场地,在土地资源较为紧张的某些地区具有一定优势。