钻井液流量检测技术

合集下载

基于电磁流量计的钻井液出口流量监测系统

基于电磁流量计的钻井液出口流量监测系统

钻井液出口流量是判断钻井现场井涌溢流的关键参数,为了实现安全、快速、经济的钻井,对钻井液定量、实时、准确监测显得尤其重要。

目前国内一般是由综合录井仪池体积参数监测与人工定时观测、记录、并加以对比,以判断是否出现溢流或者井漏等事故。

这种判断方法自动化程度和精度较低,不能实现定量检测,而且溢流发现时间晚。

近些年在钻井液定量监测技术上有了新的突破,引进质量流量计和电磁流量计两种设备用于石油钻探过程中的钻井液的定量监测。

质量流量计虽然具有测量精度高、稳定性好等优点,但是存在价格昂贵,现场安装复杂等缺点,因此目前多采用电磁流量计定量监测钻井现场钻井液流量。

电磁流量计受测量原理限制,为保证测量精度,流体流经流量计的前后管道内均需要满足满管状态,对电磁流量计的安装使用产生了限制;另外当钻井液流量较大时,固定管径下的电磁流量计会对流体通过产生抑制作用,从而造成钻井液的回流,对钻井的安全作业产生影响。

该文通过对钻井液返出管线流速场进行水力学模拟,分析返出管线的流体流动规律,优化了出口流量监测系统结构设计;同时设计了钻井液定量监测过流分流装置,克服了大流量状态下的钻井液回流问题;从而满足电磁流量计的满管测量条件,提高了流量计适用性和测量准确性,实现了钻井液出口流量的实时准确监测,为溢流的准确预警和钻井的安全施工提供了支持,减轻了井喷和压井作业对地下油气层的伤害,从而提高经济和社会效益,降低对环境的影响。

1 国内外溢流监测现状国内外监测溢流的方法很多,主要研究方向集中于微流量监测和压力监测方面。

微流量监测方面陆续开发出包括井口导管液面监测技术、钻井液流量计监测技术、改进流量监测技术、压力监测方面则有随钻环空压力测量监测技术、立压套压监测技术以及声波监测技术。

郭元恒等人从改进设备和分析类型方面综合给出了不同的溢流监测方法的对比分析[1]。

目前国内对于溢流、井涌等复杂情况的监测,一般是由钻井参数仪、综合录井仪池体积参数监测与人工定时观测、记录、并加以对比,判断是否出现溢流或者井漏等事故。

钻井液性能参数测定步骤

钻井液性能参数测定步骤

6、保持直立的状态冷却至室温,放掉压滤器内的压力,小心取出滤纸,用水 冲洗滤饼表面上的浮泥,测量滤饼厚度,即为HTHP泥饼。
汇 报 提 纲
第一部分 第二部分 第三部分 第四部分 第五部分 第六部分 第七部分 API失水、泥饼 HTHP失水、泥饼 含砂量测定 固相含量测定 塑性粘度、动切、静切 摩阻系数 膨润土含量测定
2、将已用高速搅拌器搅拌1min后的钻井液倒入压滤器中,使钻井液液 面距顶部为1cm,盖好盖并把刻度量筒放在滤失仪流出口下面。
钻井液各种参数测定
3、迅速加压并记时间,所加压力0.69MPa,压力源采用压缩氮气。 4、当滤出时间到15min时, 读取滤液的体积,API失水即为读取值得2倍。 5、取出滤纸,用钢板尺量取泥饼厚度,即为API泥饼厚度。
钻井液各种参数测定
1、把2mL的钻井液加到盛有10mL水的锥形瓶中。 2、加入15 mL过氧化氢溶液和0.5mL硫酸溶液,缓慢煮沸10min,但不能蒸干,用 水稀释至50mL。
钻井液各种参数测定
3、以每次0.5mL的量把亚甲蓝溶液加到锥形瓶中,并旋摇30s。在固体悬浮的状态 下,用搅拌棒取一滴液体在滤纸上,当染料在染色体周围显出蓝色环时,即已达到 滴定终点。 4、当蓝色环从斑点向外扩展时,再旋摇锥形瓶2 min,再取一滴滴在滤纸上,如果 蓝色色环仍然是明显的,则已达到终点.如果色环不出现,则继续第三步试验,直至 摇2 min后取一滴滴在滤纸上而显出蓝色环为止。
钻井液各种参数测定
5、接通电源,开始加热蒸馏,直至量筒内的液面时不再增加后再继续加热10 min, 记录收集到的油水体积。 6、固相体积百分数等于样品总体积与油水体积的差值。
汇 报 提 纲
第一部分 第二部分 第三部分 第四部分 第五部分 第六部分 第七部分 API失水、泥饼 HTHP失水、泥饼 含砂量测定 固相含量测定 塑性粘度、动切、静切 摩阻系数 膨润土含量测定

钻井液参数测定及维护

钻井液参数测定及维护

钻井液流变模式
钻井液流变性与钻井的关系
1、流变性与悬浮携带岩屑和净化井眼的关 系。钻井液粘度的作用是将井底的钻屑有 效地携带到地面,这是关系到能否安全快 速钻井的问题。实践表明:钻井液粘度、 切力越大,钻井液悬浮和携带岩屑的能力 越强,井眼的净化效果越好。反之钻井液 粘度、切力降低,钻井液悬浮和携带岩屑 的能力变差,井眼的净化效果差。
3.动切力
• 钻井液的动切应力反映的是钻井液在层流 时,粘土颗粒之间及高聚物分子之间相互 作用力的大小,即钻井液内部形成的网状 结构能力的强弱。用YP或者τ0表示,单位 是Pa(帕)。
4.表观粘度
• 钻井液的表观粘度又称有效粘度或视粘度, 是钻井液在某一速度梯度下,剪切应力与 速度梯度的比值,用AV表示,单位是 mPa·S(毫帕·秒)。
2、钻井液流变性与机械钻速的关系。实践 表明:在钻井过程中,钻井液粘度、切力 升高,钻速下降。原因是:一钻井液粘度、 切力大,流动阻力大,消耗的功率也大, 在泵功率一定的情况下,钻井液泵的排量 相应降低,降低了钻井速度。二是钻井液 粘度大,钻头在破碎岩石时,高粘度钻井 液在井底形成一个粘性垫层,粘性垫层缓 和了钻头牙齿对井底岩石的冲击切削作用, 使机械钻速降低。
钻井液流变性是钻井液的一项基本性能, 它在解决下列钻井问题是起着十分重要的作用: (1)携带岩屑,保证井底和井眼的清洁; (2)悬浮岩屑; (3)提高机械钻速; (4)保持井眼的规则和保证井下安全。
钻井液的流变性对钻井工作的影响主要体 现在悬浮岩屑、护壁、减阻、提高钻速和冷却钻 具5个方面。
液体的基本流型通过实验研究,归纳 为四种基本流型:牛顿流型、塑性流型、 假塑性流型和膨胀流型。一般钻井液属于 塑性流型。
按照API推荐的钻井液 性能测试标准, 需检测的钻井液常规性能包括:密度、漏 斗粘度、塑性粘度、动切力、静切力、API 滤失量、HTHP滤失量、pH值、碱度、含砂 量、固相含量、膨润土含量和滤液中各种 离子的质量浓度等。

四、溢流的监测

四、溢流的监测

(三)、检测溢流险情
3、运用综合录井技术检测溢流险情
(1)、根据工况正确设置参数报警
再如:气测值持续增加,停泵峰明显,说明当前使用 的钻井液密度过低,钻井液已经被气侵。遇到这种情 况,操作人员要立即利用流动测试法观察是否会发生 溢流,并及时向工程提供书面的溢流预报提示可能发 生溢流。
(三)、检测溢流险情
(二)、发生溢流的显示
2、次要显示
5)、 电阻率升高; 在钻进过程中,当钻遇空隙度较大的异常地层时, 破碎的岩石会将其内的流体释放到泥浆中去,如果地 层水的矿化度和钻井液中的矿化度不同,释放出来的
地层流体就会改变泥浆的电阻率和氯化物含量。(二Βιβλιοθήκη 、发生溢流的显示2、次要显示
6)、 井漏; 钻遇低压地层时,会发生井漏,当钻井液液面降 到一定高度,同层或其它层的井底压力小于地层压力 时,会发生溢流,同一裸眼井段存在多套压力体系,
也会外溢。
(二)、发生溢流的显示
1、主要显示
4)、起钻时应灌入的钻井液量减少 在起钻过程中,灌入的钻井液量小于起出钻具的体 积时,井内钻井液已满,说明地层流体已经进入井内, 填补了起出钻具所占的空间,在进入量达到使液柱压
力小于地层压力之前,不会发生溢流。
通过坐岗记录检测。
(二)、发生溢流的显示
1、主要显示
3、运用综合录井技术检测溢流险情
(1)、根据工况正确设置参数报警
钻进时设置的报警参数: 总池体积、全烃、钻时、出口流量、钻井液密度、电导率、硫化氢; 起下钻时设置的报警参数:
总池体积、出口流量、硫化氢,大钩速度,抽吸压力,激动压力;
空井时设置的报警参数: 总池体积、出口流量、井口硫化氢;
(三)、检测溢流险情
如果体积增加,同时钻井液性能发生变化,判定为溢

石油工程技术 井下作业 流量测试作业操作规程

石油工程技术   井下作业   流量测试作业操作规程

流量测试作业操作规程1主题内容与适用范围本规程规定了水井流量测试作业操作步骤和要求。

本规程适用于水井流量测试作业。

2程序内容2.1出车前的准备2.1.1队长(技术干部)对本班工作提出针对性的安全、质量、环保施工要求。

2.1.2班长到调度室领取流量测试作业票、油田常规作业票、流量测试测试计划任务书及相关记录。

2.1.3班长组织召开班前安全讲话,开展经验分享活动,进行岗位分工和风险提示以及操作规程的学习。

2.1.4班组成员劳保护具上岗,各种证件齐全有效,对各自岗位的风险进行识别并提出预防措施。

2.1.5填写班组QHSE综合记录,各岗位签字确认。

2.1.6到仪表班领取电磁流量计、电池、加重杆等仪器。

2.1.7到资料解释组核实本次流量测试井井位、管柱数据、井下遇阻、遇卡、落物、水量等有关资料。

2.1.8检查装载流量测试井口防喷装置(防喷管、封井器、井口连接短节),天、地滑轮等及管钳、扳手等现场工具齐全完好。

2.1.9司机按车辆巡回检查制度进行车辆检查完好,证件齐全。

2.1.10班长核查设施完整,测试仪器工作正常。

2.2施工过程2.2.1流量测试前的准备2.2.1.1到采油厂工艺室(油藏室)办理油田常规作业票。

2.2.1.2到采油厂工区签字确认油田常规作业票。

2.2.1.3确认施工现场达到施工要求,检查井口设施完好并与巡检工办理交接井手续。

2.2.1.4各岗位进行巡回检查,劳保护具上岗,严禁烟、火、手机带入井场,确认无误后,填写QHSE 检查表和流量测试作业票、油田常规作业票。

2.2.1.5班长负责指挥司机将钢丝试井车停在距井口20-30米处的上风口或侧风口,并使钢丝滚筒的中心轴垂直于井口纵向轴,且滚筒的中心正对井口,司机停车,倒换气路至台上操作台。

2.2.1.6司机在试井车两后轮后面各垫一个掩木,关闭防火帽。

2.2.1.7施工现场摆放“钢丝作业,严禁穿越”标识牌,井口与试井车之间拉好警戒带。

2.2.2打钢丝绳帽2.2.2.1打绳结前检查钢丝疲劳程度,(φ2.2mm弯折次数≥8,φ2.4mm弯折次数≥7),卸开防喷盒压帽,检查更换盘根。

02 第二章钻井工程

02 第二章钻井工程

第二章溢流的检测尽早发现溢流显示是井控技术的关键环节。

从打开油气层到完井,要注重观察井口和钻井液罐液面的变化.”因此,准确、有效地进行溢流的检测是实施井控的首要前提。

在现场施工中,溢流的检测通常分三步进行。

第一,在钻井设计时进行的溢流检测,即对邻近井的资料进行分析对比,表明可能遇到的异常压力地层、含酸性气体(H2S)地层、地质情况复杂的地层或漏失层。

第二,钻井过程中根据井上的直接或间接显示,判断井内地层压力增加或者钻井液静液压力减少,可能发生溢流。

第三,钻井过程中通过观察或判断溢流的显示,表明地层流体侵入井内,已发生溢流。

溢流的发生、发展是有一个过程的,对于潜在的或即将发生的溢流。

钻井人员应密切监控井下的情况,并且考虑和预测可能出现井控问题。

有准备的钻井人员应能够迅速发现井内异常情况,有效地把溢流、地面压力及井控的各种困难减到最小程度。

地层压力的增加或静液压力的减少,必然导致地层压力大于钻井液静液压力,这是溢流的最直接的警告信号,地层流体向井内流动及各种显示也就是溢流的具体显示。

认识与判断这些显示通常需要用关井或把流体从井场分流排出的办法。

若溢流预兆或显示没有及时发现和有效的控制,就可能出现溢流和井喷事故。

因此,钻井人员应做到以下几点:①熟悉各种溢流的原因;②认识溢流的发生、发展过程;③使用适当的设备和技术来检测意外的液柱压力减少;④使用适当的设备和技术来检测可能出现的地层压力增加;⑤能够正确识别静液压力与地层压力之间失衡的各种显示;⑥能够对溢流采取有效控制措施。

第一节溢流的迹象地层流体进入井内,在地面上会从各个方面显示出来。

认真观察和监视这些显示,就能及时的发现溢流。

一、钻井液量的增加地层流体侵入井内,而且变成钻井液循环系统中的一部分时,钻井液量就会增加。

这是发现井内侵入流体的一个可靠、确切的信号,通常需用钻井液罐液面指示器或流量检查来加以确认。

对于不同地层,地层流体进入井内的情况有所不同,钻井液量的增加速度也有所不同。

页岩气钻井中溢流监测新方法研究

页岩气钻井中溢流监测新方法研究

页岩气钻井中溢流监测新方法研究
在页岩气钻井过程中,窄密度窗口下钻井时常伴随着溢流的发生,由于井底高温高压溢流的检测比较复杂,因此及早的发现溢流在精细化钻井中显得尤为重要。

本文通过对动力井控水力系统的研究,说明了溢流和控制套压的过程中溢流量、井筒压力的变化规律,介绍了基于压力信号判断气液两相溢流的原理,建立了基于压力信号法检测、预报溢流的数学模型,通过井底压力和压力转换变量两种方法来判断溢流的产生,对现场测得的井口和井底压力进行曲线拟合,然后对拟合的曲线用实时多步离散的方法对其进行处理,编制简单的程序算法,即可实现判断井底溢流开始和停止的时间。

该方法简洁实用,具有一定的可操作性,可应用于欠平衡钻井、控压钻井、微流量钻井和动力井控中,能及时的发现溢流,降低井控风险。

标签:动力井控;井底压力;溢流;压力信号
随着涪陵页岩气商业化开发的进程,越来越多的井在施工过程中面临由邻井压力导致的溢流问题。

为了实现安全钻井,除了了解邻井生产动态,配置适应的钻井液处理系统和井控装置外,还配置可靠的溢流监控及预报装置。

在钻井中应用测量溢流的传感器比较费时费力,而且在高压高温的油基钻井液环境下容易失效,基于壓力信号法测量溢流简单快捷而且准确,便于普遍性的应用。

一、溢流和控制套压的过程中地层进气量、井筒压力的变化规律
假设钻井液不可压缩,动力井控的实现是通过增加套压使流动维持在式1的条件,直到溢流停止发生,其主要的目标是缩小溢流体积和控制溢流流出,也是精细化钻井的目标。

钻井液测试操作规程

钻井液测试操作规程

钻井液测试操作规程钻井液性能测试操作规程(一)钻井液马氏漏斗粘度的测定该仪器适应于测定钻井液的相对粘度(与水比较)。

由于测得数据在很大程度上受胶体和密度的影响,所测数据不能与旋转粘度计等有关仪器所测数据对比。

该仪器由漏斗、筛网及接收器组成,是被测钻井液在一定温度下流出946毫升时所用的时间。

一、主要技术参数1.筛底以下的漏斗容积1500cm32.漏斗锥体直径152mm3.漏斗锥体高度305mm4.管口长度50.8mm5.管口内径 4.7mm6.筛网12目7.接收器946mL二、仪器的校正在温度为(21℃±3℃)时,注入1500mL清水,从漏斗中流出946mL清水的时间为26±0.5s,其误差不得超过0.5s。

三、测定1.测量钻井液的温度,用℃表示。

2.手握漏斗,用手指堵住流出口,将新取的钻井液通过筛网注入洁净、干燥直立的漏斗中,直到钻井液面与筛网底部平齐为止。

3.保持漏斗垂直,移开手指的同时按动秒表,测量钻井液注满946mL所需要时间。

4.以s为单位记录马氏漏斗粘度,并以℃为单位记录钻井液的温度。

四、操作注意事项1.样品温度对测定结果有影响,测定时要记录样品温度。

2.大的分散颗粒和气泡干扰测定,应避免大颗粒进入漏斗,防止气泡产生,必要时加入消泡剂消泡。

3.液面的初始位置必须恰当,否则,由于液柱压力和惯性的影响可能会使测定结果错误。

4.钻井液倒入漏斗后立即开始测定,如拖延时间过长,钻井液可能形成凝胶,使测定结果出现正误差。

5.测定过程中尽可能使漏斗保持垂直。

(二)钻井液密度的测定钻井液密度是指单位体积钻井液的质量。

单位为g/cm3或kg/ m3。

通过用钻井液密度计来测定钻井液的密度。

钻井液密度计通常设计成臂梁一端的钻井液杯和另一端的固定平衡锤及一个可沿刻度臂梁自由移动的游码来平衡。

为使平衡准确,臂梁上装有水准泡(需要时可使用扩大量程的附件)。

一、仪器的校正1.量点的校正经常用淡水来校正仪器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钻井液流量检测技术
中石化胜利工程有限公司地质录井公司
摘要:钻井液出入口流量的准确检测是发现以上异常现象的重要手段之一,因此准确实现钻井液出入口流量的检测,对于现场油气钻探的安全施工有着重要的意义。

关键词:钻井液流量;检测;录井;研究方法
引言
在钻井现场,钻井液出口流量是一个重要的参数,根据出口流量的变化能够判断井下异常情况,通常情况下是利用靶式流量计来测量,其测量原理是靠泥浆的冲击使靶体发生位移,带动电阻变化,产生信号变化,反应灵敏,测量结果能够快速反映钻井液出口流量的变化;靶体使用优质不锈钢材料制作,成本低廉、原理简单、不容易损坏。

该传感器存在诸多缺点:
1、使用困难,传感器一般是装在架空管线上,需要对架空管线开口,安装人员需要佩戴安全带,进行高处作业;
2、经过长时期使用,传感器会变得不灵活,泥浆在靶体上固结,形成泥饼,影响了测量的精度,导致传感器的输出信号变小,不能反映泥浆流量的真实变化;
3、无法根据实际情况标定传感器,当受到钻井液冲击
后,其上升和回落之间的落差较大,只能反映一个相对值,不能计算真实的流量变化。

所以,靶式流量传感器的测量精度不能满足钻井过程中井涌、井漏及其他钻井安全事故监控预报的需求。

1、研究意义
钻井液入口流量采用泥浆泵计算的方法获得,存在误差大、受泥浆泵效率影响大等问题。

因此,研制一套钻井液出入口流量实时检测单元,对于准确计算钻井过程中的钻井液体积变化具有重要意义。

在钻井现场,如果采用的流量检测手段不适合,对井漏井涌等异常工况的发生预测不及时,将会造成极为严重的后果。

在重庆开县发生过重大的死伤事故,在天然气井钻进时,若处理措施不恰当,还会引起失控着火、爆炸以及地层下陷等事故。

为预防各种事故的发生,钻井过程中,录井人员应该做好井控监视工作,及时发现溢流、井漏等征兆,进行快速汇报。

需要对钻井液流量进行定量、实时的检测,及时发现各类异常工况,及时进行预警,在根本上防止井喷等事故的发生,以便于钻井工作的顺利实施,提高社会效益。

目前,录井技术逐渐向智能化发展,以电子设施、智能化仪表的自动监测控制代替常规的人工坐岗,能够减少因人工疲倦、失误造成的情况误判、漏报、错报,尤其在情况复杂的地区,凭人工的经验进行施工,容易造成巨大的事故,
导致国家财产蒙受巨量的损失。

钻井液流量的智能监测、智能预报,不仅提供了可观的数据信息,还可以实时分析相关的参数,进行智能化预报,为钻井工程技术人员的现场施工和后方人员的决策提供了配套的数据。

因此研发出一套相应的系统,能够实时监测钻井液的流量,采集各项数据,自动对钻井现场情况提出分析,实现对井涌井漏等复杂工况的预报,具有十分重要的意义。

2、研究方法选择
人们利用超声波来测量流体流量的历史已经接近一百年。

最早的是Ruttgen于1931 年发表的德国专利,写了一种相差法计算流速的超声波流量计。

但该专利并没有实际的产品研制成。

自50 年代,美国人提出将时差通过多次循环放大后再进行测量的“鸣环”(sing-around)时差法,弥补了当时电子技术不足,使超声波流量计的产品化迈出关键性一步。

1963 年首台工业应用样机由日本的Tokyo Keiki 公司研制成功,60 年代末期到70年代早期,人们把兴趣转向了利用声学中的多普勒效应的超声波流量计的理论研究与研制上,从而导致超声多普勒流量计在这一时刻的诞生。

进入80 年代后,由于数字电子技术、数字超声技术、微处理器技术等现代先进技术的发展,落后的模拟超声波流量计技术被逐步取代,超声波流量计的各种测量性能得到了大幅度的提高,使其开始真正进入工业测量领域。

进入二十一世纪以
后,高速数字信号处理器技术,现代数字信号技术等先进技术在超声波流量计方面的成功应用,再加上使用了友好的人机界面,参数设置等其它辅助功能,使得超声波流量计测量的精确性、稳定性及操作的便利性得到了充分的体现。

超声波多普勒测流量原理以物理学中多普勒效应为基础。

当声源和观察者之间有相对运动时,观察者所感受到的声频率将不同于声源所发出的频率。

这个因相对运动而产生的频率变化与两物体的相对速度成正比。

在超声波多普勒流量测量过程中,发射器发生一个固定声源,随流体一起运动的固体颗粒起了与声源有相对运动的“观察者”的作用。

发射声波与接收声波之间的频率差,就是由于流体中固体颗粒运动而产生的声波多普勒频移。

由于这个频率差正比于流体流速,所以测量频差可以求得流速。

进而可以得到流体的流量。

3、研究思路
用一对斜探头夹装于被测管道的外侧。

假设流体运动方向和超声波束的夹角是,超声波在被测液体中的速度为,并认为悬浮粒子和流体以相同的速度运动,推导流体流速与多普勒频移之间的关系。

当发射探头发射的超声波束在管道的中心轴线上遇到一粒固体散射颗粒,且该粒子正以一定的速度做匀速直线运动,因为发射的超声波束与管轴线有一定的夹角,所以对于超声波发射端换能器来说,该粒子是以匀速
离去,那么散射粒子接收到的超声波频率应该低于换能器发射的超声波频率,由多普勒效应原理可以推导出粒子的运动速度。

当流量计、管道条件及被测介质确定以后,多普勒频移与流速成正比,所以测量出频移量就可以得到流体流速,当管道截面积确定后流体流量也就确定了。

一般来说,流体声速与介质成分有关。

为了避免影响,超声波多普勒流量计一般采用管外声契结构,使超声波束先通过声契及管壁再进入流体。

采用声契结构以后,流量与频移关系式中仅含有声契材料中的声速,而与流体介质中的声速无关。

由于固体声速的温度系数至少比流体声速的温度系数小一个数量级,所以该流速方程式基本上不受温度的影响,也就是说,这样多普勒法测量流量基本不受温度的影响。

超声波多普勒流量测量的必要的条件为:被测流体应含一定数量能反射声波的固体粒子或气泡等介质。

这个工作条件实际上也是它的一大优点,即这种流量测量方法适宜于对三相流的测量,这是其它流量计难以解决的问题。

参考文献:
[1]冉昭明.流量检测[M].天津:天津大学出版社.1990.
[2]黄维一.测试技术――理论与应用[M].北京:国防工业出版社.1988.
[3]姜建胜.国外钻井液微流量控制系统的开发与应用.石油机械.湖北:2008。

相关文档
最新文档