高中数学第三章导数及其应用3.1变化率与导数3.1.3导数的几何意义学案新人教A版选修1_1

合集下载

人教A版高中数学选修1-1《三章 导数及其应用 3.1 变化率与导数 3.1.3 导数的几何意义》优质课教案_10

人教A版高中数学选修1-1《三章 导数及其应用  3.1 变化率与导数  3.1.3 导数的几何意义》优质课教案_10

§3.1.3导数的几何意义教学设计
一、教材内容与解析
本节课设计内容是高中数学选修1-1(人教A版P76-P78),导数的几何意义,导数是中学数学的重要内容.本节课是在学习前两节的变化率问题、导数的概念之后,从几何图形的角度来研究导数,理解一般曲线的切线定义,渗透“以直代曲”的数学思想,会简单应用导数的几何意义。

为后续的导数研究函数其他性质(如极值等)奠实基础。

因此本节内容具有承前启后的作用,地位重要.
二、教学目标
根据本课教学内容的特点以及新课标对本节课的教学要求,考虑学生已有的认知结构与心理特征,我制定以下教学目标:
(一)知识与技能 :
通过实验探求和理解导数的几何意义;
体会导数在刻画函数性质中的作用;
(二)核心素养目标
通过具体情境分析概括出切线的定义,培养学生学生数学抽象核心素养,“以直代曲”
的渗透逼近培养直观想象核心素养
三、教学的重点难点
本着新课程标准的教学理念,针对教学内容的特点,同时根据学生学习能力和旧有的知识的特点,我认为学生在定义了曲线的切线后,对于导数的几何意义为什么会与切线相关,如何相关会产生疑惑。

因此我确定以下重点和难点:
教学重点:曲线的切线的概念、切线的斜率、导数的几何意义;
教学难点:导数的几何意义.
突破了重点难点,也就解决了存在的问题
四、教学支持条件分析
本着新课程标准的教学理念,根据本章特点,重视信息技术的使用,采用多媒体辅助教学,用动画的形式演示,将抽象的理论通过直观的图形说明白,学生简单易懂
五、教学过程设计
平均变化率 瞬时变化率(导数)x
y ∆∆x y x ∆∆→∆0lim
六、目标检测设计。

人教A版高中数学选修1-1《三章 导数及其应用 3.1 变化率与导数 3.1.3 导数的几何意义》优质课教案_7

人教A版高中数学选修1-1《三章 导数及其应用  3.1 变化率与导数  3.1.3 导数的几何意义》优质课教案_7

导数的几何意义一、教材分析:1、地位和作用:《导数的几何意义》是一节新知概念课,内容选自于选修1-1中第§3.1.3节,是在学生学习了平均变化率,瞬时变化率,及用瞬时变化率定义导数基础上,进一步从几何意义的基础上认识导数的含义与价值,是可以充分应用信息技术进行概念教学与问题探究的内容。

《导数的几何意义》还是下位内容——常见函数导数的计算,导数在研究函数中的应用的基础.因此,导数的几何意义有承前启后的重要作用,是本章的关键内容,也是高考中的一个常见考点。

2、教学目标的拟定:【知识与技能】(1)概括曲线的切线定义,明确导数的几何意义及应用;(2)培养观察、分析、合作、归纳与应用(知识与思想方法)等方面的能力【过程与方法】(1)由问题引发认知冲突,引导学生经历割线“逼近”切线的过程,推广切线的定义;(2)利用几何画板直观展示知识发生的过程,帮助学生寻找导数的几何意义;【情感态度价值观】(1)通过对切线定义的探究,培养学生严谨的科学态度;(2)通过渗透无限“逼近”的思想,引导学生从有限中认识无限,体会量变和质变的辩证关系。

(3)利用“以直代曲”的近似替代的方法,培养学生分析问题解决问题的习惯,初步体会发现问题的乐趣3、教学重点、难点重点:导数的几何意义及应用难点:对导数几何意义的推导过程二、学情分析1、从认知上看,学生已经通过实例经历了由平均变化率到瞬时变化率来刻画现实问题的过程,知道瞬时变化率就是导数,体会了导数的思想和实际背景,但这些都是建立在“代数”的基础上的,学生也渴求寻找导数的另一种体现形式——图形。

学生对曲线的切线有一定的认识,特别是对抛物线的切线的概念在学习圆锥曲线与直线关系时有很深的与认识.2、从能力上看,通过一年多的高中学习,学生积累了一定的探究问题的经验,具有一定的想象能力和研究问题的能力.3、从学习心理上看,学生已经从“公共点个数”方面知道了圆锥曲线切线的含义,当然在思维方面,也形成了定势:“直线与曲线相切,直线与切线只有一个公共点”。

高中数学第三章导数及其应用3.1变化率与导数3.1.3导数的几何意义学案新人教A版选修11

高中数学第三章导数及其应用3.1变化率与导数3.1.3导数的几何意义学案新人教A版选修11

3.1.3 导数的几何意义学习目标:1.理解导数的几何意义,会求曲线上某点处的切线方程.(重点)2.理解导函数的概念、会求简单函数的导函数.(重点)3.理解在某点处与过某点的切线方程的区别.(难点、易混点)[自主预习·探新知]1.导数的几何意义(1)切线的定义设点P(x0,f(x0)),P n(x n,f(x n))是曲线y=f(x)上不同的点,当点P n(x n,f(x n))(n=1,2,3,4…)沿着曲线f(x)趋近于点P(x0,f(x0))时,割线PP n趋近于确定的位置,这个确定位置的直线PT称为过点P的切线,且PT的斜率k=limΔx→0f x n-f x0x n-x0=f′(x0).(2)导数的几何意义函数y=f(x)在点x0处的导数f′(x0)的几何意义是曲线y=f(x)在点P(x0,f(x0))处切线的斜率,在点P处的切线方程为y-f(x0)=f′(x0)(x-x0).思考:曲线的切线是不是一定和曲线只有一个交点?[提示] 不一定.曲线的切线和曲线不一定只有一个交点,和曲线只有一个交点的直线和曲线也不一定相切.如图,曲线的切线是通过逼近将割线趋于确定位置的直线.2.导函数的概念从求函数f(x)在x=x0处导数的过程看到,当x=x0时,f′(x0)是一个确定的数;当x 变化时,f′(x)是x的一个函数,称为f(x)的导函数(简称导数),y=f(x)的导函数有时也记作y′,即f′(x)=y′=limΔx→0f x+Δx-f xΔx.[基础自测]1.思考辨析(1)直线与曲线相切则直线与已知曲线只有一个公共点.( )(2)过曲线上的一点作曲线的切线,这点一定是切点.( )(3)若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处无切线.( )(4)函数f(x)在点x0处的导数f′(x0)与导函数f′(x)之间是有区别的.( ) [答案](1)×(2)×(3)×(4)√2.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴斜交B [由f ′(x 0)=0知,曲线y =f (x )在点(x 0,f (x 0))处的切线斜率为0,所以切线与x 轴平行或重合.]3.如图3­1­5所示,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)=( )【导学号:97792127】图3­1­5A .12B .1C .2D .0C [由题意知f ′(5)=-1,f (5)=-5+8=3,则f (5)+f ′(5)=2.][合 作 探 究·攻 重 难](1)y =-x 在点⎝ ⎛⎭⎪⎫2,-2处的切线方程是( ) A .y =x -2 B .y =x -12C .y =4x -4D .y =4x -2(2)已知曲线y =x 3-x +2,则曲线过点P (1,2)的切线方程为__________. [思路探究] (1)先求y ′|x =12,即切线的斜率,然后写出切线方程.(2)设出切点坐标,求切线斜率,写出切线方程,利用点P (1,2)在切线上,求出切点坐标,从而求出切线方程.[解析] (1)先求y =-1x 在x =12处的导数:Δy =-112+Δx +112=4Δx1+2Δx.y ′|x =12=lim Δx →0Δy Δx =lim Δx →0 41+2Δx=4. 所以切线方程是y +2=4⎝ ⎛⎭⎪⎫x -12,即y =4x -4. (2)设切点为(x 0,x 30-x 0+2),则得y ′|x =x 0=lim Δx →0x 0+Δx3-x 0+Δx +2]-x 30-x 0+Δx=lim Δx →0((Δx )2+3x 0Δx +3x 20-1)=3x 20-1.所以切线方程为y -(x 30-x 0+2)=(3x 20-1)(x -x 0). 将点P (1,2)代入得:2-(x 30-x 0+2)=(3x 20-1)(1-x 0),即(x 0-1)2(2x 0+1)=0,所以x 0=1或x 0=-12,所以切点坐标为(1,2)或⎝ ⎛⎭⎪⎫-12,198,所以当切点为(1,2)时,切线方程为y -2=2(x -1),即2x -y =0,当切点为⎝ ⎛⎭⎪⎫-12,198时,切线方程为y -198=-14x +12, 即x +4y -9=0,所以切线方程为2x -y =0或x +4y -9=0. [答案] (1)C (2)2x -y =0或x +4y -9=02.求过点(x 1,y 1)的曲线y =f (x )的切线方程的步骤(1)设切点(x 0,y 0)(2)求f ′(x 0),写出切线方程y -y 0=f ′(x 0)(x (3)将点(x 1,y 1)代入切线方程,解出x 0,y 0及f (4)写出切线方程. 1.(1)曲线y =f (x )=2x在点(-2,-1)处的切线方程为__________.x +2y +4=0 [y ′=lim Δx →0fx +Δx -f xΔx =lim Δx →02x +Δx -2x Δx=lim Δx →0-2·Δx x x +Δx Δx =-2x 2,因此曲线f (x )在点(-2,-1)处的切线的斜率k =-2-2=-12.由点斜式可得切线方程为y +1=-12(x +2),即x +2y +4=0.](2)试求过点P (3,5)且与曲线y =x 2相切的直线方程.【导学号:97792128】[解] 设所求切线的切点为A (x 0,y 0). ∵点A 在曲线y =x 2上, ∴y 0=x 20,又∵A 是切点,y ′=lim Δx →0 Δy Δx =lim Δx →0 x +Δx 2-x2Δx =2x .∴过点A 的切线的斜率y ′|x =x 0=2x 0. ∵所求切线过P (3,5)和A (x 0,y 0)两点,∴其斜率为y 0-5x 0-3=x 20-5x 0-3.∴2x 0=x 20-5x 0-3,解得x 0=1或x 0=5.从而切点A 的坐标为(1,1)或(5,25). 当切点为(1,1)时,切线的斜率为k 1=2x 0=2; 当切点为(5,25)时,切线的斜率为k 2=2x 0=10.∴所求的切线有两条,方程分别为y -1=2(x -1)和y -25=10(x -5),即y =2x -1和y =10x -25.(1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)倾斜角为135°.分别求出满足上述条件的点的坐标.[思路探究] 先求出函数的导函数f ′(x ),再设切点(x 0,y 0),由导数的几何意义知切点(x 0,y 0)处的切线的斜率为f ′(x 0),然后根据题意列方程,解关于x 0的方程即可求出x 0,又点(x 0,y 0)在曲线y =x 2上,易得y 0.[解] 设y =f (x ),则f ′(x )=lim Δx →0 f x +Δx -f x Δx =lim Δx →0 x +Δx 2-x 2Δx =lim Δx →0(2x +Δx )=2x .设P (x 0,y 0)是满足条件的点.(1)因为切线与直线y =4x -5平行,所以2x 0=4,解得x 0=2,所以y 0=4,即P (2,4). (2)因为切线与直线2x -6y +5=0垂直,且直线2x -6y +5=0的斜率为13,所以2x 0·13=-1,解得x 0=-32,所以y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)因为切线的倾斜角为135°,所以切线的斜率为-1,即2x 0=-1,解得x 0=-12,所以y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14.2.已知抛物线y =2x 2+1,求(1)抛物线上哪一点的切线平行于直线4x -y -2=0? (2)抛物线上哪一点的切线垂直于直线x +8y -3=0? [解] 设切点坐标为(x 0,y 0),则Δy =2(x 0+Δx )2+1-2x 20-1=4x 0·Δx +2(Δx )2∴ΔyΔx=4x 0+2Δx ∴y ′|x =x 0=lim Δx →0ΔyΔx =lim Δx →0(4x 0+2Δx )=4x 0. (1)∵抛物线的切线平行于直线4x -y -2=0, ∴斜率为4,即f ′(x 0)=4x 0=4,得x 0=1, 该点为(1,3).(2)∵抛物线的切线与直线x +8y -3=0垂直, ∴斜率为8,即f ′(x 0)=4x 0=8,得x 0=2, 该点为(2,9).[探究问题]1.函数值增加的越来越快,函数图象是什么形状?函数图象上每一点的切线的斜率是如何变化的?提示:图象上升且下凸,函数图象上每一点的切线的斜率越来越大.2.函数值增加的越来越慢,函数图象是什么形状?函数图象上每一点的切线的斜率是如何变化的?提示:图象上升且上凸,函数图象上每一点的切线的斜率越来越小.如图3­1­6,点A(2,1),B(3,0),E(x,0)(x≥0),过点E作OB的垂线l.记△AOB 在直线l左侧部分的面积为S,则函数S=f(x)的图象为下图中的( )图3­1­6[思路探究] 根据面积S增加的快慢情况判断S=f(x)的图象形状.[解析]函数的定义域为(0,+∞),当x∈[0,2]时,在单位长度变化量Δx内面积变化量ΔS越来越大,即斜率f′(x)在[0,2]内越来越大,因此,函数S=f(x)的图象是上升的,且图象是下凸的;当x∈(2,3)时,在单位长度变化量Δx内面积变化量ΔS越来越小,即斜率f′(x)在(2,3)内越来越小,因此,函数S=f(x)的图象是上升的,且图象是上凸的;当x∈[3,+∞)时,在单位长度变化量Δx内面积变化量ΔS为0,即斜率f′(x)在[3,+∞)内为常数0,此时,函数图象为平行于x轴的射线.故选D.[答案] D3.已知函数f(x)在区间[0,3]上的图象如图3­1­7所示,记k1=f′(1),k2=f′(2),k3=k AB,则k1,k2,k3之间的大小关系为__________.(请用“>”连接)图3­1­7k 1>k 3>k 2 [由导数的几何意义可得k 1>k 2,又k 3=f-f 2-1表示割线AB 的斜率,所以k 1>k 3>k 2.][当 堂 达 标·固 双 基]1.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( ) A .f ′(x 0)>0 B .f ′(x 0)<0 C .f ′(x 0)=0D .f ′(x 0)不存在B [由x +2y -3=0知,斜率k =-12,∴f ′(x 0)=-12<0.]2.已知曲线y =2x 3上一点A (1,2),则A 处的切线斜率等于( ) A .2B .4C .6+6Δx +2(Δx )2D .6D [∵y =2x 3,∴y ′=lim Δx →0ΔyΔx =lim Δx →0x +Δx 3-2x 3Δx=2 lim Δx →0Δx3+3x Δx2+3x 2ΔxΔx=2 lim Δx →0[(Δx )2+3x Δx +3x 2]=6x 2.∴y ′|x =1=6.∴点A (1,2)处切线的斜率为6.]3.已知曲线y =f (x )=2x 2+4x 在点P 处的切线斜率为16,则P 点坐标为________. (3,30) [设点P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0f x 0+Δx -f x 0Δx=lim Δx →0Δx2+4x 0·Δx +4ΔxΔx=4x 0+4,令4x 0+4=16,得x 0=3,∴P (3,30).]4.曲线y =x 2-2x +2在点(2,2)处的切线方程为________.【导学号:97792129】2x -y -2=0 [Δy =(2+Δx )2-2(2+Δx )+2-(22-2×2+2)=2Δx +(Δx )2,∴ΔyΔx=2+Δx . ∴y ′|x =2=lim Δx →0(2+Δx )=2. ∴曲线在点(2,2)处的切线斜率为2. ∴切线方程为y -2=2(x -2), 即2x -y -2=0.]5.函数f (x )的图象如图3­1­8所示,试根据函数图象判断0,f ′(1),f ′(3),f-f2的大小关系.图3­1­8[解] 设x =1,x =3时对应曲线上的点分别为A ,B ,点A 处的切线为AT ,点B 处的切线为BQ ,如图所示.则f-f 3-1=k AB ,f ′(3)=k BQ ,f ′(1)=k AT ,由图可知切线BQ 的倾斜角小于直线AB 的倾斜角,直线AB 的倾斜角小于切线AT 的倾斜角,即k BQ <k AB <k AT ,∴0<f ′(3)<f-f 2<f ′(1).。

高中数学 第三章 导数及其应用 3.1 变化率与导数 3.1.

高中数学 第三章 导数及其应用 3.1 变化率与导数 3.1.

3.1.1 变化率问题 3.1.2 导数的概念学习目标:1.会求函数在某一点附近的平均变化率.2.会利用导数的定义求函数在某点处的导数.(重点难点)3.了解平均变化率与瞬时变化率的关系.(易混点)[自 主 预 习·探 新 知]1.函数的平均变化率 (1)定义式:Δy Δx=fx 2-f x 1x 2-x 1.(2)实质:函数值的改变量与自变量的改变量之比. (3)作用:刻画函数值在区间[x 1,x 2]上变化的快慢.(4)几何意义:已知P 1(x 1,f (x 1)),P 2(x 2,f (x 2))是函数y =f (x )的图象上两点,则平均变化率Δy Δx=fx 2-f x 1x 2-x 1表示割线P 1P 2的斜率.思考:Δx ,Δy 的取值一定是正数吗? [提示] Δx ≠0,Δy ∈P .2.函数y =f (x )在x =x 0处的瞬时变化率 (1)定义式:lim Δx →0Δy Δx =lim Δx →0f x 0+Δx -f x 0Δx.(2)实质:瞬时变化率是当自变量的改变量趋近于0时,平均变化率趋近的值. (3)作用:刻画函数在某一点处变化的快慢. 3.函数f (x )在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率称为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0Δy Δx =limΔx →0f x 0+Δx -f x 0Δx.[基础自测]1.思考辨析(1)Δy 表示f (x 2)-f (x 1),Δy 的值可正可负也可以为零.( )(2)瞬时变化率是刻画某函数值在区间[x 1,x 2]上变化快慢的物理量.( ) (3)函数f (x )=x 在x =0处的瞬时变化率为0. ( ) [答案] (1)√ (2)× (3)×2.已知函数f (x )=x 2+1,则在x =2,Δx =0.1时,Δy 的值为( ) A .0.40 B .0.41 C .0.43 D .0.44 B [Δy =f (2+Δx )-f (2)=2.12-4=0.41.]3.一物体的运动方程是s =3+t 2,则在一小段时间[2,2.1]内的平均速度为( )【导学号:97792121】A .0.41B .3C .4D .4.1 D [Δ=Δs Δt =3+2.12-+222.1-2=4.1.][合 作 探 究·攻 重 难]ΔyΔx=( ) A .4 B .4x C .4+2Δx D .4+2(Δx )2(2)汽车行驶的路程s 和时间t 之间的函数图象如图3­1­1,在时间段[t 0,t 1],[t 1,t 2],[t 2,t 3]上的平均速度分别为v 1,v 2,v 3,则三者的大小关系为__________.图3­1­1(3)球的半径从1增加到2时,球的体积平均膨胀率为__________. [解] (1)Δy =f (1+Δx )-f (1)=2(1+Δx )2-1-(2×12-1) =2(Δx )2+4Δx ∴ΔyΔx=2Δx +4,故选C. (2)由题意知,v 1=k OA ,v 2=k AB ,v 3=k BC . 根据图象知v 1<v 2<v 3. (3)Δv =43π×23-43π×13=283π.∴Δv Δr =283π. [答案] (1)C (2)v 1<v 2<v 3 (3)283πfx 0+-f x 0Δx.的值可正,可负,但Δx ≠0,Δ1.(1)函数y =f (x )=3x 2+2在区间[x 0,x 0+Δx ]上的平均变化率为________,当x 0=2,Δx =0.1时平均变化率的值为________.(2)已知函数f (x )=-x 2+x 的图象上的一点A (-1,-2)及临近一点B (-1+Δx ,-2+Δy ),则ΔyΔx=________.(1)6x 0+3Δx 12.3 (2)-Δx +3 [(1)函数y =f (x )=3x 2+2在区间[x 0,x 0+Δx ]上的平均变化率为f x0+Δx -f x 0x 0+Δx -x 0=x 0+Δx2+2]-x 20+Δx=6x 0·Δx +Δx2Δx=6x 0+3Δx .当x 0=2,Δx =0.1时,函数y =3x 2+2在区间[2,2.1]上的平均变化率为6×2+3×0.1=12.3. (2)∵Δy =f (-1+Δx )-f (-1)=-(-1+Δx )2+(-1+Δx )-[-(-1)2+(-1)] =-(Δx )2+3Δx , ∴Δy Δx=-Δx 2+3ΔxΔx=-Δx +3.]若一物体的运动方程为s =⎩⎪⎨⎪⎧29+t -,0≤t <3,3t 2+2,t ≥3(路程单位:m ,时间单位:s).求:(1)物体在t =3 s 到t =5 s 这段时间内的平均速度; (2)物体在t =1 s 时的瞬时速度.[思路探究] (1)先求Δs ,再根据v =ΔsΔt 求解.(2)先求Δs Δt ,再求lim Δx →0ΔsΔt .[解] (1)因为Δs =3×52+2-(3×32+2)=48(m),Δt =2 s ,所以物体在t =3 s 到t =5 s 这段时间内的平均速度为Δs Δt =482=24(m/s). (2)因为Δs =29+3[(1+Δt )-3]2-29-3×(1-3)2=[3(Δt )2-12Δt ](m), 所以Δs Δt=Δt2-12ΔtΔt=3Δt -12(m/s),则物体在t =1 s 时的瞬时速度为lim Δx →0 ΔsΔt =lim Δx →0(3Δt -12)=-12(m/s).2.质点M 按规律s =2t 2+3作直线运动(位移单位:cm ,时间单位:s).求质点M 在t =2时的瞬时速度以及在[1,3]上的平均速度.【导学号:97792122】[解] v =lim Δx →0s+Δt -sΔt=lim Δx →0+Δt 2-2×22Δt =lim Δx →0 (2Δt +8)=8(cm/s),v =s -s 3-1=2×32+3-2+2=8(cm/s).求函数在某点处的导数的步骤和求瞬时速度的步骤有何异同? 提示:根据函数在某点处的导数的定义知,两者步骤完全相同.(1)函数y =x 在x =1处的导数为__________.(2)如果一个质点由定点A 开始运动,在时间t 的位移函数为y =f (t )=t 3+3, ①当t 1=4,Δt =0.01时,求Δy 和比值ΔyΔt ;②求t 1=4时的导数. [思路探究] (1)求Δy →求Δy Δx →求lim Δx →0ΔyΔx (2)①Δy =f -f→ΔyΔt②求Δy →求Δy Δt →求lim Δt →0ΔyΔt [解析] (1)Δy =1+Δx -1, Δy Δx =1+Δx -1Δx =11+Δx +1, lim Δx →011+Δx +1=12,所以y ′|x =1=12.[答案] 12(2)①Δy =f (t 1+Δt )-f (t 1)=3t 21·Δt +3t 1·(Δt )2+(Δt )3,故当t 1=4,Δt =0.01时,Δy =0.481 201,ΔyΔt=48.120 1.②lim Δx →0 Δy Δt =lim Δx →0[3t 21+3t 1·Δt +(Δt )2]=3t 21=48,故函数y =t 3+3在t 1=4处的导数是48, 即y ′|t 1=4=48.简称:一差、二比、三极限.取极限时,一定要把ΔyΔx 变形到当Δx →0时,分母是一个非零常数的形3.求函数y =x -1x在x =1处的导数.[解] ∵Δy =(1+Δx )-11+Δx -⎝ ⎛⎭⎪⎫1-11=Δx +Δx 1+Δx ,∴Δy Δx =Δx +Δx1+Δx Δx =1+11+Δx . 当Δx →0时,ΔyΔx →2,∴f ′(1)=2,即函数y =x -1x在x =1处的导数为2.[当 堂 达 标·固 双 基]1.已知函数f (x )=2x 2-4的图象上一点(1,-2)及邻近一点(1+Δx ,-2+Δy ),则ΔyΔx等于( ) A .4 B .4x C .4+2Δx D .4+2(Δx )2C [Δy Δx=f +Δx -fΔx=+Δx 2-2Δx=4+2Δx .]2.一质点的运动方程是s =4-2t 2,则在时间段[1,1+Δt ]内相应的平均速度为( ) A .2Δt +4 B .-2Δt -4 C .4 D .-2Δt 2-4ΔtB [v =4-+Δt2--2×12Δt=-4Δt -Δt2Δt=-2Δt -4.]3.一质点按规律s (t )=2t 2运动,则在t =2时的瞬时速度为__________.【导学号:97792123】8[s(2+Δt)-s(2)=2(2+Δt)2-2×22=2(Δt)2+8Δt.∴limΔt→0s+Δt-sΔt=limΔt→0Δt2+8ΔtΔt=limΔt→0(2Δt+8)=8.]4.设f(x)=ax+4,若f′(1)=2,则a=________.2[f′(1)=limΔt→0f1+Δx-fΔx=limΔt→0a+Δx+4-a+Δx=a,又∵f′(1)=2,∴a=2.]5.求函数y=2x2+4x在x=3处的导数.[解] Δy=2(3+Δx)2+4(3+Δx)-(2×32+4×3)=2(Δx)2+16Δx,∴ΔyΔx=Δx2+16ΔxΔx=2Δx+16.y′|x=3=limΔt→0ΔyΔx=limΔt→0(2Δx+16)=16.。

人教版高中数学第三章导数及其应用3.1变化率与导数3.1.1变化率问题3.1.2导数的概念学案新人教A版选修1_1

人教版高中数学第三章导数及其应用3.1变化率与导数3.1.1变化率问题3.1.2导数的概念学案新人教A版选修1_1

3.1.1 变化率问题 3.1.2 导数的概念学习目标:1.会求函数在某一点附近的平均变化率.2.会利用导数的定义求函数在某点处的导数.(重点难点)3.了解平均变化率与瞬时变化率的关系.(易混点)[自 主 预 习·探 新 知]1.函数的平均变化率 (1)定义式:ΔyΔx=-x2-x1.(2)实质:函数值的改变量与自变量的改变量之比. (3)作用:刻画函数值在区间[x 1,x 2]上变化的快慢.(4)几何意义:已知P 1(x 1,f (x 1)),P 2(x 2,f (x 2))是函数y =f (x )的图象上两点,则平均变化率ΔyΔx=-x2-x1表示割线P 1P 2的斜率.思考:Δx ,Δy 的取值一定是正数吗? [提示] Δx ≠0,Δy ∈P .2.函数y =f (x )在x =x 0处的瞬时变化率 (1)定义式:lim Δx→0 ΔyΔx =lim Δx→0+Δ-Δx .(2)实质:瞬时变化率是当自变量的改变量趋近于0时,平均变化率趋近的值. (3)作用:刻画函数在某一点处变化的快慢. 3.函数f (x )在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率称为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx→0ΔyΔx =lim Δx→0+Δ-Δx.[基础自测]1.思考辨析 (1)Δy 表示f (x 2)-f (x 1),Δy 的值可正可负也可以为零.( )(2)瞬时变化率是刻画某函数值在区间[x 1,x 2]上变化快慢的物理量.( )(3)函数f (x )=x 在x =0处的瞬时变化率为0.( )[答案] (1)√ (2)× (3)×2.已知函数f (x )=x 2+1,则在x =2,Δx =0.1时,Δy 的值为( ) A .0.40 B .0.41 C .0.43 D .0.44 B [Δy =f (2+Δx )-f (2)=2.12-4=0.41.]3.一物体的运动方程是s =3+t 2,则在一小段时间[2,2.1]内的平均速度为( )【导学号:97792121】A .0.41B .3C .4D .4.1 D [Δ=Δs Δt =3+2.12-+2.1-2=4.1.][合 作 探 究·攻 重 难]则ΔyΔx=( ) A .4 B .4x C .4+2Δx D .4+2(Δx )2(2)汽车行驶的路程s 和时间t 之间的函数图象如图3­1­1,在时间段[t 0,t 1],[t 1,t 2],[t 2,t 3]上的平均速度分别为v1,v2,v3,则三者的大小关系为__________.图3­1­1(3)球的半径从1增加到2时,球的体积平均膨胀率为__________. [解] (1)Δy =f (1+Δx )-f (1)=2(1+Δx )2-1-(2×12-1) =2(Δx )2+4Δx ∴ΔyΔx=2Δx +4,故选C. (2)由题意知,v1=k OA ,v2=k AB ,v3=k BC . 根据图象知v1<v2<v3.(3)Δv =43π×23-43π×13=283π.∴Δv Δr =283π. [答案] (1)C (2)v1<v2<v3 (3)283π+Δx.的值可正,可负,但Δx ≠0,Δy 1.(1)函数y =f (x )=3x 2+2在区间[x 0,x 0+Δx ]上的平均变化率为________,当x 0=2,Δx =0.1时平均变化率的值为________.(2)已知函数f (x )=-x 2+x 的图象上的一点A (-1,-2)及临近一点B (-1+Δx ,-2+Δy ),则ΔyΔx=________.(1)6x 0+3Δx 12.3 (2)-Δx +3 [(1)函数y =f (x )=3x 2+2在区间[x 0,x 0+Δx ]上的平均变化率为+Δ-+Δ-x0=+Δ+2]-20+Δx=6x0·Δx +ΔΔx=6x 0+3Δx .当x 0=2,Δx =0.1时,函数y =3x 2+2在区间[2,2.1]上的平均变化率为6×2+3×0.1=12.3. (2)∵Δy =f (-1+Δx )-f (-1)=-(-1+Δx )2+(-1+Δx )-[-(-1)2+(-1)] =-(Δx )2+3Δx ,∴Δy Δx=-Δ+3ΔxΔx=-Δx +3.]若一物体的运动方程为s =⎩⎪⎨⎪⎧29+-,0≤t<3,3t2+2,t≥3(路程单位:m ,时间单位:s).求:(1)物体在t =3 s 到t =5 s 这段时间内的平均速度; (2)物体在t =1 s 时的瞬时速度.[思路探究] (1)先求Δs ,再根据v =ΔsΔt 求解.(2)先求Δs Δt ,再求lim Δx →0 ΔsΔt.[解] (1)因为Δs =3×52+2-(3×32+2)=48(m),Δt =2 s ,所以物体在t =3 s 到t =5 s 这段时间内的平均速度为Δs Δt =482=24(m/s).(2)因为Δs =29+3[(1+Δt )-3]2-29-3×(1-3)2=[3(Δt )2-12Δt ](m), 所以Δs Δt=Δ-12ΔtΔt=3Δt -12(m/s),则物体在t =1 s 时的瞬时速度为lim Δx→0 ΔsΔt =lim Δx→0 (3Δt -12)=-12(m/s).2.质点M 按规律s =2t 2+3作直线运动(位移单位:cm ,时间单位:s).求质点M 在t =2时的瞬时速度以及在[1,3]上的平均速度.【导学号:97792122】[解] v =limΔx→0+Δ-Δt=lim Δx→0+Δ-2×22Δt =lim Δx→0 (2Δt +8)=8(cm/s),v =-3-1=2×32+3-+2=8(cm/s).求函数在某点处的导数的步骤和求瞬时速度的步骤有何异同? 提示:根据函数在某点处的导数的定义知,两者步骤完全相同.(1)函数y =x 在x =1处的导数为__________.(2)如果一个质点由定点A 开始运动,在时间t 的位移函数为y =f (t )=t 3+3, ①当t 1=4,Δt =0.01时,求Δy 和比值ΔyΔt ;②求t 1=4时的导数. [思路探究] (1)求Δy →求Δy Δx →求lim Δx→0 ΔyΔx (2)①Δy =-→ΔyΔt②求Δy →求Δy Δt →求lim Δt→0ΔyΔt [解析] (1)Δy =1+Δx -1, Δy Δx =1+Δx -1Δx =11+Δx +1, lim Δx→0 11+Δx +1=12,所以y ′|x =1=2.[答案] 12(2)①Δy =f (t 1+Δt )-f (t 1)=3t 21·Δt +3t 1·(Δt )2+(Δt )3,故当t 1=4,Δt =0.01时,Δy =0.481 201,ΔyΔt=48.120 1.②lim Δx→0 Δy Δt =lim Δx→0[3t 21+3t 1·Δt +(Δt )2]=3t 21=48, 故函数y =t 3+3在t 1=4处的导数是48, 即y ′|t 1=4=48. 简称:一差、二比、三极限.取极限时,一定要把ΔyΔx 变形到当Δx →0时,分母是一个非零常数的3.求函数y =x -1x在x =1处的导数.[解] ∵Δy =(1+Δx )-11+Δx -⎝ ⎛⎭⎪⎫1-11=Δx +Δx 1+Δx ,∴Δy Δx =Δx +Δx1+Δx Δx =1+11+Δx . 当Δx →0时,ΔyΔx→2,∴f ′(1)=2,即函数y =x -x在x =1处的导数为2.[当 堂 达 标·固 双 基]1.已知函数f (x )=2x 2-4的图象上一点(1,-2)及邻近一点(1+Δx ,-2+Δy ),则ΔyΔx等于( ) A .4 B .4x C .4+2Δx D .4+2(Δx )2C [Δy Δx=+Δ-Δx=+Δ-2Δx=4+2Δx .]2.一质点的运动方程是s =4-2t 2,则在时间段[1,1+Δt ]内相应的平均速度为( )A .2Δt +4B .-2Δt -4C .4D .-2Δt 2-4ΔtB [v =4-+Δ--2×Δt=-4Δt -ΔΔt=-2Δt -4.]3.一质点按规律s (t )=2t 2运动,则在t =2时的瞬时速度为__________.【导学号:97792123】8 [s (2+Δt )-s (2)=2(2+Δt )2-2×22=2(Δt )2+8Δt . ∴lim Δt→0 +Δ-Δt =lim Δt→0Δ+8ΔtΔt =lim Δt→0(2Δt +8)=8.]4.设f (x )=ax +4,若f ′(1)=2,则a =________. 2 [f ′(1)=limΔt→0+Δ-Δx=lim Δt→0+Δ+4-+Δx=a ,又∵f ′(1)=2,∴a =2.]5.求函数y =2x 2+4x 在x =3处的导数.[解] Δy =2(3+Δx )2+4(3+Δx )-(2×32+4×3)=2(Δx )2+16Δx , ∴Δy Δx=Δ+16ΔxΔx=2Δx +16.y ′|x =3=lim Δt→0ΔyΔx =lim Δt→0(2Δx +16)=16.。

人教A版高中数学选修1-1《三章 导数及其应用 3.1 变化率与导数 3.1.3 导数的几何意义》优质课教案_2

人教A版高中数学选修1-1《三章 导数及其应用  3.1 变化率与导数  3.1.3 导数的几何意义》优质课教案_2

课题年级学期第二学期教学目标1、知识与技能: 通过实验探求和理解导数的几何意义;体会导数在刻画函数性质中的作用;体会“以直代曲”的数学思想方法。

2、过程与方法:培养学生分析、抽象、概括等思维能力;通过“以直代曲”思想的具体运用,使学生达到思维方式的迁移,从而达到培养学生的学习能力,思维能力,应用能力和创新能力的目的。

3、情感态度与价值观:渗透逼近和“以直代曲”思想,激发学生学习兴趣,培养学生不断发现、探索新知识的精神,引导学生从有限中认识无限,体会量变和质变的辩证关系,感受数学思想方法的魅力学生学数学,用数学的意识。

教学重难点及关键教学重点:理解和掌握切线的新定义、导数的几何意义及应用于解决实际问题,体会数“形结合、以直代曲”的思想方法。

教学难点:1)发现和理解导数的几何意义;2)运用导数的几何意义解释函数变化的情况和解决实际问题。

关键:师生一同探究和理解导数的几何意义主要教学方法及学法教法:1、为了培养学生自主学习的能力以及使得不同层次的学生都能获得相应的满足.因此本节课采用探究性研究教学、互动式讨论、反馈式评论和启发式小结;2、根据本节课的特点也为了给学生的数学探究与数学思维提供支持,同时也为了培养学生的动手操作能力,所以采用计算机辅助教学,以突出重点和突破难点;学法:自主、合作、探究教具通过多媒体(几何画板、幻灯片)直观的呈现出函数的图像,使学生对其有丰富的感性认识,增大教学容量与直观性,有效提高教学效率和教学质量。

教学过程预设教学环节教师活动(教学内容的呈现)学生活动(学习活动的设计)设计意图一、创设情境、导入新课1.回顾旧知、引出研究的问题:前面我们学习了函数在处的导数就是函数在该点处的瞬时变化率。

那么:问:(1) 求导数的步骤有哪几步?(2)观察函数的图象,平均变化率在图形中表示什么?这就是平均变化率()的几何意义,那么瞬时变化率()在图中又表示什么呢?今天我们就来探究导数的几何意义。

高中数学第三章导数及其应用3.1变化率与导数3.1.2导数的概念课时作业(含解析)新人教A版

高中数学第三章导数及其应用3.1变化率与导数3.1.2导数的概念课时作业(含解析)新人教A版

课时作业22一、选择题 1.在f ′(x 0)=lim Δx →0 f x 0+Δx -f x 0Δx中,Δx 不可能( )A. 大于0B. 小于0C. 等于0D. 大于0或小于0解析:由导数定义知Δx 只是无限趋近于0,故选C. 答案:C2.设f (x )在x =x 0处可导,则lim Δx →0 f x 0-Δx -f x 0Δx等于( )A .-f ′(x 0)B .f ′(-x 0)C .f ′(x 0)D .2f ′(x 0)解析:lim Δx →0 f x 0-Δx -f x 0Δx=lim Δx →0-f x 0-f x 0-ΔxΔx=-lim Δx →0 f x 0-f x 0-ΔxΔx=-f ′(x 0).答案:A3.设函数f (x )在点x 0处附近有定义,且f (x 0+Δx )-f (x 0)=a Δx +b (Δx )2(a ,b 为常数),则( )A. f ′(x 0)=-aB. f ′(x 0)=-bC. f ′(x 0)=aD. f ′(x 0)=b解析:∵f (x 0+Δx )-f (x 0)=a Δx +b (Δx )2, ∴f x 0+Δx -f x 0Δx=a +b ·Δx .∴lim Δx →0f x 0+Δx -f x 0Δx=lim Δx →0 (a +b ·Δx ). ∴f ′(x 0)=a .故选C. 答案:C4.一物体的运动方程是s =12at 2(a 为常数),则该物体在t =t 0时的瞬时速度是( )A .at 0B .-at 0C.12at 0 D .2at 0解析:∵Δs Δt =st 0+Δt -s t 0Δt =12a Δt +at 0,∴lim Δt →0 Δs Δt =at 0. 答案:A 二、填空题5.过曲线y =2x上两点(0,1),(1,2)的割线的斜率为__________. 解析:由平均变化率的几何意义知k =2-11-0=1.答案:16.已知f (x )=2x,则lim x →afx -f ax -a=________.解析:令x -a =Δx ,则x =a +Δx , lim x →af x -f a x -a =lim Δx →0 f a +Δx -f aΔx=lim Δx →0 2a +Δx -2a Δx =lim Δx →0 -2a a +Δx =-2a 2. 答案:-2a27.已知f (x )=1x ,且f ′(m )=-116,则f (m )=________.解析:∵f (x )=1x,∴f ′(m )=lim Δx →0f m +Δx -f mΔx=lim Δx →0 1m +Δx -1m Δx =lim Δx →0 -1m m +Δx =-1m 2. 又f ′(m )=-116,∴-1m 2=-116.∴m =±4.∴f (m )=1m =±14.答案:±14三、解答题8.已知函数f (x )=⎩⎨⎧x ,x ≥01+x 2,x <0,求f ′(1)·f ′(-1)的值.解:当x =1时,Δy Δx =f+Δx -fΔx=1+Δx -1Δx =11+Δx +1.由导数的定义,得f ′(1)=lim Δx →0 11+Δx +1=12.当x =-1时,ΔyΔx=f -1+Δx -f -Δx=1+-1+Δx 2-1--2Δx=Δx -2.由导数的定义,得f ′(-1)=lim Δx →0 (Δx -2)=-2. 所以f ′(1)·f ′(-1)=12×(-2)=-1.9.高台跳水运动中,运动员相对于水面的高度h (单位:m)与起跳后的时间t (单位:s)之间的关系式为h (t )=-4.9t 2+6.5t +10,求运动员在t =6598 s 时的瞬时速度,并解释此时的运动状况.解:令t 0=6598,Δt 为增量.则h t 0+Δt -h t 0Δt=-t 0+Δt2+t 0+Δt +10+4.9t 20-6.5t 0-10Δt=-4.9Δtt 0+Δt +6.5ΔtΔt=-4.9(6549+Δt )+6.5.∴lim Δt →0h t 0+Δt -h t 0Δt =lim Δt →0[-4.9(6549+Δt )+6.5]=0, 即运动员在t 0=6598 s 时的瞬时速度为0 m/s.说明运动员处于跳水运动中离水面最高点处.。

人教A版高中数学选修1-1《三章 导数及其应用 3.1 变化率与导数 3.1.3 导数的几何意义》优质课教案_1

人教A版高中数学选修1-1《三章 导数及其应用  3.1 变化率与导数  3.1.3 导数的几何意义》优质课教案_1

导数的几何意义教学设计指导思想:人教A版数学选修2-2第1章“导数及其应用”第一节1.1.3“导数的几何意义”,是学生在学习了瞬时变化率就是导数之后的内容,通过这部分内容的学习,可以帮助学生更好的理解导数的概念及导数是研究函数的单调性、变化快慢和极值等性质最有效的工具,是本章的关键内容。

是《新课程标准》要求,本节直接由变化率问题得到导数的概念,进而研究导数的几何意义(图形上的直观体现)及导数在研究函数性质中的应用。

本节内容按照先突破一般曲线的切线定义(割线无限逼近的确定位置上的直线就是该点处的切线);再结合旧知识“平均变化率表示割线的斜率”,学生对照动画探究“割线逼近切线→割线的斜率逼近切线的斜率→切线的斜率对应该点处的瞬时变化率即导数”的线索展开,从近似过渡到精确,通过图形直观逼近的方法消除学生对极限的神秘感,通过将曲线一点处的局部“放大、再放大”的直观方法,形象而逼真地再现了“局部以直代曲”背后的深刻内涵和哲学原理。

学情分析:学生已经通过实例经历了由平均变化率到瞬时变化率刻画现实问题的过程,理解了瞬时变化率就是导数,体会了导数的思想和实际背景,已经具备一定的微分思想,但是对于导数在研究函数性质中有什么作用还不够理解,多数同学对此本节课采用教师引导有相当的兴趣和积极性。

学生在学习时可能会遇到以下困难,比如从割线到切线的过程中采用的逼近方法,理解导数就是曲线上某点的斜率等等。

教法分析:与学生自主探究相结合,交流与练习相穿插的活动课形式,以学生为主体,教师创设和谐、愉悦的环境及辅以适当的引导。

同时,利用多媒体形象动态的演示功能提高教学的直观性和趣味性,以提高课堂效率。

教学中注重数形结合,从形的角度对概念理解和运用。

在这个过程中培养学生分析解决问题的能力,培养学生讨论交流的合作意识。

学法指导:借助多媒体技术,通过设计环环相扣的探究问题,创设丰富的教学情境,激发学生的学习动机,培养学习兴趣,充分调动学生的学习积极性,倡导学生采用自主、合作、探究的方式学习。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1.3 导数的几何意义学习目标:1.理解导数的几何意义,会求曲线上某点处的切线方程.(重点)2.理解导函数的概念、会求简单函数的导函数.(重点)3.理解在某点处与过某点的切线方程的区别.(难点、易混点)[自主预习·探新知]1.导数的几何意义(1)切线的定义设点P(x0,f(x0)),P n(x n,f(x n))是曲线y=f(x)上不同的点,当点P n(x n,f(x n))(n=1,2,3,4…)沿着曲线f(x)趋近于点P(x0,f(x0))时,割线PP n趋近于确定的位置,这个确定位置的直线PT称为过点P的切线,且PT的斜率k=limΔx→0f x n-f x0x n-x0=f′(x0).(2)导数的几何意义函数y=f(x)在点x0处的导数f′(x0)的几何意义是曲线y=f(x)在点P(x0,f(x0))处切线的斜率,在点P处的切线方程为y-f(x0)=f′(x0)(x-x0).思考:曲线的切线是不是一定和曲线只有一个交点?[提示] 不一定.曲线的切线和曲线不一定只有一个交点,和曲线只有一个交点的直线和曲线也不一定相切.如图,曲线的切线是通过逼近将割线趋于确定位置的直线.2.导函数的概念从求函数f(x)在x=x0处导数的过程看到,当x=x0时,f′(x0)是一个确定的数;当x 变化时,f′(x)是x的一个函数,称为f(x)的导函数(简称导数),y=f(x)的导函数有时也记作y′,即f′(x)=y′=limΔx→0f x+Δx-f xΔx.[基础自测]1.思考辨析(1)直线与曲线相切则直线与已知曲线只有一个公共点.( )(2)过曲线上的一点作曲线的切线,这点一定是切点.( )(3)若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处无切线.( )(4)函数f(x)在点x0处的导数f′(x0)与导函数f′(x)之间是有区别的.( ) [答案](1)×(2)×(3)×(4)√2.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴斜交B [由f ′(x 0)=0知,曲线y =f (x )在点(x 0,f (x 0))处的切线斜率为0,所以切线与x 轴平行或重合.]3.如图3­1­5所示,函数y =f (x )的图象在点P 处的切线方程是y =-x +8,则f (5)+f ′(5)=( )【导学号:97792127】图3­1­5A .12B .1C .2D .0C [由题意知f ′(5)=-1,f (5)=-5+8=3,则f (5)+f ′(5)=2.][合 作 探 究·攻 重 难](1)y =-x 在点⎝ ⎛⎭⎪⎫2,-2处的切线方程是( ) A .y =x -2 B .y =x -12C .y =4x -4D .y =4x -2(2)已知曲线y =x 3-x +2,则曲线过点P (1,2)的切线方程为__________. [思路探究] (1)先求y ′|x =12,即切线的斜率,然后写出切线方程.(2)设出切点坐标,求切线斜率,写出切线方程,利用点P (1,2)在切线上,求出切点坐标,从而求出切线方程.[解析] (1)先求y =-1x 在x =12处的导数:Δy =-112+Δx +112=4Δx1+2Δx.y ′|x =12=lim Δx →0Δy Δx =lim Δx →0 41+2Δx=4. 所以切线方程是y +2=4⎝ ⎛⎭⎪⎫x -12,即y =4x -4. (2)设切点为(x 0,x 30-x 0+2),则得y ′|x =x 0=lim Δx →0x 0+Δx3-x 0+Δx +2]-x 30-x 0+Δx=lim Δx →0((Δx )2+3x 0Δx +3x 20-1)=3x 20-1.所以切线方程为y -(x 30-x 0+2)=(3x 20-1)(x -x 0). 将点P (1,2)代入得:2-(x 30-x 0+2)=(3x 20-1)(1-x 0),即(x 0-1)2(2x 0+1)=0,所以x 0=1或x 0=-12,所以切点坐标为(1,2)或⎝ ⎛⎭⎪⎫-12,198,所以当切点为(1,2)时,切线方程为y -2=2(x -1),即2x -y =0,当切点为⎝ ⎛⎭⎪⎫-12,198时,切线方程为y -198=-14x +12, 即x +4y -9=0,所以切线方程为2x -y =0或x +4y -9=0. [答案] (1)C (2)2x -y =0或x +4y -9=02.求过点(x 1,y 1)的曲线y =f (x )的切线方程的步骤(1)设切点(x 0,y 0)(2)求f ′(x 0),写出切线方程y -y 0=f ′(x 0)(x (3)将点(x 1,y 1)代入切线方程,解出x 0,y 0及f (4)写出切线方程. 1.(1)曲线y =f (x )=2x在点(-2,-1)处的切线方程为__________.x +2y +4=0 [y ′=lim Δx →0fx +Δx -f xΔx =lim Δx →02x +Δx -2x Δx=lim Δx →0-2·Δx x x +Δx Δx =-2x 2,因此曲线f (x )在点(-2,-1)处的切线的斜率k =-2-2=-12.由点斜式可得切线方程为y +1=-12(x +2),即x +2y +4=0.](2)试求过点P (3,5)且与曲线y =x 2相切的直线方程.【导学号:97792128】[解] 设所求切线的切点为A (x 0,y 0). ∵点A 在曲线y =x 2上, ∴y 0=x 20,又∵A 是切点,y ′=lim Δx →0 Δy Δx =lim Δx →0 x +Δx 2-x2Δx =2x .∴过点A 的切线的斜率y ′|x =x 0=2x 0. ∵所求切线过P (3,5)和A (x 0,y 0)两点,∴其斜率为y 0-5x 0-3=x 20-5x 0-3.∴2x 0=x 20-5x 0-3,解得x 0=1或x 0=5.从而切点A 的坐标为(1,1)或(5,25). 当切点为(1,1)时,切线的斜率为k 1=2x 0=2; 当切点为(5,25)时,切线的斜率为k 2=2x 0=10.∴所求的切线有两条,方程分别为y -1=2(x -1)和y -25=10(x -5),即y =2x -1和y =10x -25.(1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)倾斜角为135°.分别求出满足上述条件的点的坐标.[思路探究] 先求出函数的导函数f ′(x ),再设切点(x 0,y 0),由导数的几何意义知切点(x 0,y 0)处的切线的斜率为f ′(x 0),然后根据题意列方程,解关于x 0的方程即可求出x 0,又点(x 0,y 0)在曲线y =x 2上,易得y 0.[解] 设y =f (x ),则f ′(x )=lim Δx →0 f x +Δx -f x Δx =lim Δx →0 x +Δx 2-x 2Δx =lim Δx →0(2x +Δx )=2x .设P (x 0,y 0)是满足条件的点.(1)因为切线与直线y =4x -5平行,所以2x 0=4,解得x 0=2,所以y 0=4,即P (2,4). (2)因为切线与直线2x -6y +5=0垂直,且直线2x -6y +5=0的斜率为13,所以2x 0·13=-1,解得x 0=-32,所以y 0=94,即P ⎝ ⎛⎭⎪⎫-32,94.(3)因为切线的倾斜角为135°,所以切线的斜率为-1,即2x 0=-1,解得x 0=-12,所以y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14.2.已知抛物线y =2x 2+1,求(1)抛物线上哪一点的切线平行于直线4x -y -2=0? (2)抛物线上哪一点的切线垂直于直线x +8y -3=0? [解] 设切点坐标为(x 0,y 0),则Δy =2(x 0+Δx )2+1-2x 20-1=4x 0·Δx +2(Δx )2∴ΔyΔx=4x 0+2Δx ∴y ′|x =x 0=lim Δx →0ΔyΔx =lim Δx →0(4x 0+2Δx )=4x 0. (1)∵抛物线的切线平行于直线4x -y -2=0, ∴斜率为4,即f ′(x 0)=4x 0=4,得x 0=1, 该点为(1,3).(2)∵抛物线的切线与直线x +8y -3=0垂直, ∴斜率为8,即f ′(x 0)=4x 0=8,得x 0=2, 该点为(2,9).[探究问题]1.函数值增加的越来越快,函数图象是什么形状?函数图象上每一点的切线的斜率是如何变化的?提示:图象上升且下凸,函数图象上每一点的切线的斜率越来越大.2.函数值增加的越来越慢,函数图象是什么形状?函数图象上每一点的切线的斜率是如何变化的?提示:图象上升且上凸,函数图象上每一点的切线的斜率越来越小.如图3­1­6,点A(2,1),B(3,0),E(x,0)(x≥0),过点E作OB的垂线l.记△AOB 在直线l左侧部分的面积为S,则函数S=f(x)的图象为下图中的( )图3­1­6[思路探究] 根据面积S增加的快慢情况判断S=f(x)的图象形状.[解析]函数的定义域为(0,+∞),当x∈[0,2]时,在单位长度变化量Δx内面积变化量ΔS越来越大,即斜率f′(x)在[0,2]内越来越大,因此,函数S=f(x)的图象是上升的,且图象是下凸的;当x∈(2,3)时,在单位长度变化量Δx内面积变化量ΔS越来越小,即斜率f′(x)在(2,3)内越来越小,因此,函数S=f(x)的图象是上升的,且图象是上凸的;当x∈[3,+∞)时,在单位长度变化量Δx内面积变化量ΔS为0,即斜率f′(x)在[3,+∞)内为常数0,此时,函数图象为平行于x轴的射线.故选D.[答案] D3.已知函数f(x)在区间[0,3]上的图象如图3­1­7所示,记k1=f′(1),k2=f′(2),k3=k AB,则k1,k2,k3之间的大小关系为__________.(请用“>”连接)图3­1­7k 1>k 3>k 2 [由导数的几何意义可得k 1>k 2,又k 3=f-f 2-1表示割线AB 的斜率,所以k 1>k 3>k 2.][当 堂 达 标·固 双 基]1.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( ) A .f ′(x 0)>0 B .f ′(x 0)<0 C .f ′(x 0)=0D .f ′(x 0)不存在B [由x +2y -3=0知,斜率k =-12,∴f ′(x 0)=-12<0.]2.已知曲线y =2x 3上一点A (1,2),则A 处的切线斜率等于( ) A .2B .4C .6+6Δx +2(Δx )2D .6D [∵y =2x 3,∴y ′=lim Δx →0ΔyΔx =lim Δx →0x +Δx 3-2x 3Δx=2 lim Δx →0Δx3+3x Δx2+3x 2ΔxΔx=2 lim Δx →0[(Δx )2+3x Δx +3x 2]=6x 2.∴y ′|x =1=6.∴点A (1,2)处切线的斜率为6.]3.已知曲线y =f (x )=2x 2+4x 在点P 处的切线斜率为16,则P 点坐标为________. (3,30) [设点P (x 0,2x 20+4x 0),则f ′(x 0)=lim Δx →0f x 0+Δx -f x 0Δx=lim Δx →0Δx2+4x 0·Δx +4ΔxΔx=4x 0+4,令4x 0+4=16,得x 0=3,∴P (3,30).]4.曲线y =x 2-2x +2在点(2,2)处的切线方程为________.【导学号:97792129】2x -y -2=0 [Δy =(2+Δx )2-2(2+Δx )+2-(22-2×2+2)=2Δx +(Δx )2,∴ΔyΔx=2+Δx . ∴y ′|x =2=lim Δx →0(2+Δx )=2. ∴曲线在点(2,2)处的切线斜率为2. ∴切线方程为y -2=2(x -2), 即2x -y -2=0.]5.函数f (x )的图象如图3­1­8所示,试根据函数图象判断0,f ′(1),f ′(3),f-f 2的大小关系.图3­1­8[解] 设x =1,x =3时对应曲线上的点分别为A ,B ,点A 处的切线为AT ,点B 处的切线为BQ ,如图所示.则f-f 3-1=k AB ,f ′(3)=k BQ ,f ′(1)=k AT ,由图可知切线BQ 的倾斜角小于直线AB 的倾斜角,直线AB 的倾斜角小于切线AT 的倾斜角,即k BQ <k AB <k AT ,∴0<f ′(3)<f-f 2<f ′(1).。

相关文档
最新文档