磁电式传感器原理
磁电式传感器实训报告

一、实验目的1. 了解磁电式传感器的工作原理和结构特点;2. 掌握磁电式传感器的安装、调试和应用方法;3. 学会使用磁电式传感器进行测量和信号处理;4. 提高实际操作能力和工程应用能力。
二、实验原理磁电式传感器是一种能将非电量的变化转换为感应电动势的传感器,它利用电磁感应原理将被测量(如振动、位移、转速等)转换成电信号。
磁电式传感器主要由永久磁钢、感应线圈、电路等部分组成。
当被测物体运动时,磁钢与线圈产生相对运动,线圈中的磁通量发生变化,从而在线圈中产生感应电动势。
三、实验器材1. 磁电式传感器:型号为LM393;2. Arduino Uno控制板;3. USB数据线;4. 振动平台;5. 示波器;6. 直流稳压电源;7. 电桥;8. 霍尔传感器;9. 差动放大器;10. 电压表;11. 测微头。
四、实验步骤1. 磁电式传感器安装:将磁电式传感器安装在振动平台上,确保传感器与振动平台固定牢固。
2. 传感器调试:调整传感器与振动平台的相对位置,使传感器能够正常工作。
3. 磁电式传感器信号采集:使用Arduino Uno控制板采集磁电式传感器的信号。
4. 信号处理:将采集到的信号通过示波器进行观察和分析,分析信号的波形和频率。
5. 霍尔传感器安装:将霍尔传感器安装在振动平台旁的支架上,确保传感器与振动平台固定牢固。
6. 霍尔传感器信号采集:使用Arduino Uno控制板采集霍尔传感器的信号。
7. 信号处理:将采集到的信号通过示波器进行观察和分析,分析信号的波形和频率。
8. 比较两种传感器特性:比较磁电式传感器和霍尔传感器的信号波形和频率,分析两种传感器的优缺点。
9. 实验结果分析:根据实验结果,分析磁电式传感器的测量精度、响应速度和抗干扰能力。
五、实验结果与分析1. 磁电式传感器信号波形和频率:通过示波器观察,磁电式传感器信号波形稳定,频率与振动频率一致。
2. 霍尔传感器信号波形和频率:通过示波器观察,霍尔传感器信号波形稳定,频率与振动频率一致。
传感器原理及其应用 第6章 磁电式传感器

材料(单晶) N型锗(Ge) N型硅(Si) 锑化铟(InSb)
1/ 2
4000 1840 4200
砷化铟(InAs)
磷砷铟(InAsP) 砷化镓(GaAs)
0.36
0.63 1.47
0.0035
0.08 0.2
25000
10500 8500
100
850 1700
1530
3000 3800
哪种材料制作的霍尔元件灵敏度高
1、8—圆形弹簧片;2—圆环形阻尼器;3—永久磁铁;4—铝架; 5—心轴;6—工作线圈;7—壳体;9—引线 工作频率 固有频率 灵敏度 10~500 Hz 12 Hz 最大可测加速度 5g 可测振幅范围 精度 ≤10% 45mm×160 mm 0.7 kg
0.1~1000 m 外形尺寸 1.9 k 质量
d E N dt
武汉理工大学机电工程学院
第6章 磁电式传感器
磁通量的变化可以通过很多办法来实现,如磁铁与线圈之间作 相对运动;磁路中磁阻的变化;恒定磁场中线圈面积的变化等, 一般可将磁电感应式传感器分为恒磁通式和变磁通式两类。 6.1.1 恒磁通式磁电感应传感器结构与工作原理 恒磁通式磁电感应传感器结构中,工作气隙中的磁通恒定,感 应电动势是由于永久磁铁与线圈之间有相对运动——线圈切割 磁力线而产生。这类结构有动圈式和动铁式两种,如图所示。
武汉理工大学机电工程学院
第6章 磁电式传感器 磁铁与线圈相对运动使线圈切割磁力线,产生与运动速度dx/dt 成正比的感应电动势E,其大小为
dx E NBl dt
式中:N为线圈在工作气隙磁场中的匝数;B为工作气隙磁感应 强度;l为每匝线圈平均长度。 当传感器结构参数确定后,N、B和l均为恒定值,E与dx/dt成正 比,根据感应电动势E的大小就可以知道被测速度的大小。 由理论推导可得,当振动频率低于传感器的固有频率时,这种传 感器的灵敏度(E/v)是随振动频率而变化的;当振动频率远大于 固有频率时,传感器的灵敏度基本上不随振动频率而变化,而近 似为常数;当振动频率更高时,线圈阻抗增大,传感器灵敏度随 振动频率增加而下降。 不同结构的恒磁通磁电感应式传感器的频率响应特性是有差异的, 但一般频响范围为几十赫至几百赫。低的可到10 Hz左右,高的可 达2 kHz左右。
传感器原理及应用 第五章 磁电式与压电式传感器

8/2/2023
8
5.1.3磁电式感应式传感器的测量电路
磁电感应式传感器是速度传感器,若要获取被测位移 或加速度信号,则需要配用积分或微分电路。下图为测量 电路方框图。
磁电式传感器虽然配用积分电路可以测量位移,但它 只能测量位移随时间的变化,即动态位移,不能测静态位 移。
8/2/2023
(1)在有效载荷作用下测得最低频率时,位移的振幅为 5mm,试计算这时的输出电压值。
11
[例题1]图(a)磁电式传感器和图(b)自感式传感器有 何 异同?为什么后者可测量静态位移或距离而前者却不能?
解:相同点:二者都有线圈和活动衔铁。不同点:(a)
磁电式传感器的线圈是绕在永久磁钢上,磁电式传感器有永久
磁铁。自感式传感器的线圈是绕在不带磁性的铁心上。(b)
自感式传感器的自感取决于活动衔铁与铁心的距离,磁电式传
当传感器的工作温度发生变化或受到外界磁场干扰、机械振动或 冲击时,其灵敏度将发生变化而产生测量误差。 相对误差为
dsI dB dL dR sI B L R
8/2/2023
6
1.非线性误差
主要原因是:由于传感器线圈内有电流I流过时, 将产生一定的交变磁通ΦI,此交变磁通叠加在永久
磁铁所产生的工作磁通上,使恒定的气隙磁通变化 如右图所示。
如图所示可见,在磁电感应式传感器后面接积分电路可 以测量位移,后面接微分电路可以测量加速度。因为位移是 速度的积分,而加速度是速度的微分。
8/2/2023
13
[例题3]已知磁电式速度传感器的技术参数如下:频率范围 5~100Hz,位移幅值范围为5mm(峰-峰值),加速度幅值 范围为0.1~30g(g=9.8m/s2),无阻尼固有频率为5Hz,线 圈电阻为600Ω,横向灵敏度最大为20%,灵敏度为 4.88V/(m/s),质量为170g。假设测量的振动是简谐振动。
磁电式传感器

➢因RH=ρμ(其中ρ为材料电阻率;μ为载流子迁移率, μ=v/E,即单位电场强度作用下载流子的平均速度),一 般电子迁移率大于空穴迁移率,因此霍尔元件多用N型半 导体材料。
➢霍尔元件越薄(即d越小),kH就越大,所以通常霍尔元 件都较薄。薄膜霍尔元件厚度只有1μm左右。
一般频响范围:10Hz~2kHz。
(二)变磁通式
又称为变磁阻磁电感应式传感器,常用来测量旋转物体的 角速度。结构原理如下图。
1、开磁路变磁通式
工作原理:线圈3和磁铁5静止不动,测量齿轮2(导磁材 料制成)安装在被测旋转体1上,随之一起转动,每转过一 个齿,它与软铁4之间构成的磁路磁阻变化一次,磁通也就 变化一次,线圈3中产生的感应电动势的变化频率等于测量 齿轮2上齿轮的齿数和转速的乘积。
(三)磁电感应式扭矩仪(变磁通式)
1、结构组成:
转子(包括线圈)固定在传感器轴上,定子(永久磁铁) 固定在传感器外壳上。转子、定子上都有一一对应的齿和 槽。
2、测量原理:
➢测量扭矩时,需用两个传感器,将它们的转轴(包括线圈 和转子)分别固定在被测轴的两端,它们的外壳固定不动。
➢安装时,一个传感器的定子齿与其转子齿相对,另一个传 感器的定子槽与其转子齿相对。
定义:通过磁电作用将被测量(如振动、位移、转 速)转换成电信号的一种传感器。
分类: 磁电感应式传感器; 霍尔式传感器; 磁栅式传感器。
第一节 磁电感应式传感器
▪ 磁电感应式传感器简称感应式传感器,也称为电动 式传感器。它是利用导体和磁场发生相对运动而在 导体两端输出感应电动势的。它是一种机-电能量 变换型传感器。
在这种结构中,也可以用齿轮代替椭圆形测量轮2,软铁 (极掌)4制成内齿轮形式,这时输出信号频率为f=nZ/60, 其中Z为测量齿轮的齿数。
磁电式传感器

②dΦ dt
磁场强度B
线路磁阻
线圈运动速度
测频数
度、磁阻、线圈运动 速度有关,改变其中 一个因素,都会改变 感应电动势。
测转速
因此磁电式传感器的分类: 线速度型
动圈式
恒磁通式
角速度型
磁电式
动铁式
2021/8/1
变磁通式 (测变偏磁心阻式)
测振动
6
5.1 基本原理与结构型式
2. 结构型式:变磁通式和恒磁通式
① 由于传感器线圈电流变化产生的附加磁通 叠加于永久磁铁产上的气隙磁通上,使恒 定的气隙磁通变化。(见图5-6) 措施:加补偿线圈(见图5-2(a))
② 气隙磁场不均匀。 措施:加反向磁片(见图5-7)
2021/8/1
13
2. 温度误差 Temperature error
温度的变化将导致线圈匝长以及导线电 阻率的变化,磁阻的变化以及磁导率的 变化等。
B 0(10.2732B2) 其 中B磁 感 应 强度电 ,子 迁 移 率
0、B 分 别 为 零 磁 场 和度磁 B时场的强电 阻 率
则 : 0.2732B2 k(B)2
2021/8/1
38
5.6 其他磁敏传感器
3) 磁敏电阻的形状
➢ 圆盘形磁阻器叫作科尔比诺圆盘,这时的效应叫 作科尔比诺效应。
k(B)2[1 f (l /b)]
其中f (l /b)形状效应系数
2. 磁敏二极管
利用磁敏二极管的伏安特性曲线就可根据某 一偏压下的电流值来确定磁畅大小及方向。
2021/8/1
39
24
2021/8/1
25
2021/8/1
26
2021/8/1
27
(第6章)磁电式传感器

6.2.2 霍尔元件的应用
1.霍尔式微量位移的测量 .
由霍尔效应可知,当控制电流恒定时, 由霍尔效应可知,当控制电流恒定时, 霍尔电压U与磁感应强度B成正比,若磁感 成正比, 的函数, 应强度B是位置x的函数,即 UH=kx 13) (6-13) 式中: ——位移传感器灵敏度 位移传感器灵敏度。 式中:k——位移传感器灵敏度。
测量转速时,传感器的转轴1 测量转速时,传感器的转轴1与被测物 体转轴相连接,因而带动转子2转动。 体转轴相连接,因而带动转子2转动。当转 的齿与定子5的齿相对时,气隙最小, 子2的齿与定子5的齿相对时,气隙最小, 磁路系统中的磁通最大。而磁与槽相对时, 磁路系统中的磁通最大。而磁与槽相对时, 气隙最大,磁通最小。因此当转子2转动时, 气隙最大,磁通最小。因此当转子2转动时, 磁通就周期性地变化,从而在线圈3 磁通就周期性地变化,从而在线圈3中感应 出近似正弦波的电压信号, 出近似正弦波的电压信号,其频率与转速 成正比例关系。 成正比例关系。
2.霍尔元件基本结构 .
霍尔元件的外形结构图,它由霍尔片、 霍尔元件的外形结构图,它由霍尔片、 根引线和壳体组成, 4根引线和壳体组成,激励电极通常用红色 而霍尔电极通常用绿色或黄色线表示。 线,而霍尔电极通常用绿色或黄色线表示。
图6-8阻 )
I v= nebd
得
IB EH = nebd
IB UH = ned
式中: 称之为霍尔常数, 式中:令RH=1/ne,称之为霍尔常数, 其大小取决于导体载流子密度, 其大小取决于导体载流子密度,则
RH IB = K H IB UH = d
(6-12) 12)
称为霍尔片的灵敏度。 式中: 式中:KH=RH/d称为霍尔片的灵敏度。
磁电感应式传感器工作原理

图 7 - 5 是动圈式振动速度传感器结构示意图。 其结构主 要由钢制圆形外壳制成, 里面用铝支架将圆柱形永久磁铁与外 壳固定成一体, 永久磁铁中间有一小孔, 穿过小孔的芯轴两端 架起线圈和阻尼环, 芯轴两端通过圆形膜片支撑架空且与外壳 相连。
第7章 磁电式传感器
第7章 磁电式传感器
第7章 磁电式传感器
(7 - 13)
EH=
IB bdae
(7 -14)
第7章 磁电式传感器将上源自代入式(7 - 10)得UH =
IB ned
(7 -15)
式中令RH =1/(ne), 称之为霍尔常数, 其大小取决于导
体载流子密度,则
UH =RH
IB d
K
HIB
(7 - 16)
式中KH=RH/d称为霍尔片的灵敏度。由式(7 - 16)可见, 霍尔
第7章 磁电式传感器
第7章 磁电式传感器
7.1
磁电感应式传感器又称磁电式传感器, 是利用电磁感应 原理将被测量(如振动、位移、转速等)转换成电信号的 一种传感器。 它不需要辅助电源就能把被测对象的机械量 转换成易于测量的电信号, 是有源传感器。由于它输出功率 大且性能稳定, 具有一定的工作带宽(10~1000 Hz), 所以 得到普遍应用。
但在室温时其霍尔系数较大。砷化铟的霍尔系数较小, 温 度系数也较小, 输出特性线性度好。 表 7 - 1 为常用国产霍尔 元件的技术参数。
第7章 磁电式传感器
第7章 磁电式传感器
第7章 磁电式传感器
2. 霍尔元件基本结构
霍尔元件的结构很简单, 它由霍尔片、 引线和壳体组成, 如图 7 - 9(a)所示。 霍尔片是一块矩形半导体单晶薄片, 引出四个引线。1、1′两根引线加激励电压或电流,称为激 励电极;2、2′引线为霍尔输出引线,称为霍尔电极。 霍尔 元件壳体由非导磁金属、陶瓷或环氧树脂封装而成。 在电 路中霍尔元件可用两种符号表示,如图7- 9(b)所示。
磁电式传感器的工作原理

一、引言磁电式传感器(magnetic-electric sensor)是一种常见的传感器类型,广泛应用于各个领域中,包括工业自动化、交通运输、机器人、医疗设备等。
磁电式传感器利用磁力与电磁感应的原理,将磁场的变化转化为电信号,从而实现对磁场强度、方向或位置的检测。
本文将详细解释磁电式传感器的工作原理,包括其基本原理、结构、工作方式以及应用领域。
二、磁电式传感器的原理1. 电磁感应原理磁电式传感器的工作原理基于电磁感应的原理。
根据法拉第电磁感应定律,当一个导体在磁力线穿过时,会在导体中产生电动势。
这种现象可以用以下公式表示:EMF = -dΦ/dt其中EMF表示电动势,Φ表示磁场通量,dt表示时间的微小变化。
根据该定律可知,当磁场强度或磁场方向发生变化时,会在导体中产生电动势。
2. 磁电效应原理磁电式传感器的核心部件是磁电材料,如铁电材料或磁电材料。
磁电材料具有磁电效应,即在外加磁场的作用下,会产生磁感应强度与电场强度之间的线性关系。
磁电效应可以通过以下公式表示:E = k * H其中E表示电场强度,k表示磁电系数,H表示磁场强度。
根据该公式可知,当磁场强度发生变化时,磁电材料会产生相应的电场强度变化。
3. 磁电式传感器的构成磁电式传感器通常由磁电材料、电极、封装以及相关电路组成。
磁电材料:磁电材料是磁电式传感器的核心部件,它通过磁电效应将磁场的变化转化为电场的变化。
常见的磁电材料包括铁电材料和磁电材料。
电极:电极用于连接磁电材料和外部电路,将磁电材料产生的电场信号引出。
封装:封装是保护磁电材料和电极的外壳,通常采用环氧树脂或金属外壳进行封装。
相关电路:相关电路包括放大电路、滤波电路和输出电路等,用于放大和处理磁电材料产生的电场信号,提供给外部电路使用。
4. 磁电式传感器的工作原理磁电式传感器的工作原理基于磁电效应和电磁感应的原理。
当存在磁场时,磁电材料会产生相应的电场变化。
根据电磁感应原理,当磁场的强度或方向发生变化时,会在磁电材料中产生电动势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁电式传感器原理
磁电式传感器是一种常用的传感器类型,特别适用于测量磁场变化的应用。
其原理基于磁敏效应和压电效应,具有灵敏度高、响应速度快等优点。
下面详细介绍磁电式传感器的原理。
一、磁敏效应
磁敏效应是指材料在磁场作用下的电学性质发生变化。
主要包括磁电效应(即磁场引起电位移)和磁阻效应(即磁场影响材料电阻)。
磁敏效应的基本原理是磁场会对材料内的电子进行力学作用,使得电子偏离原来的轨道,从而导致尺寸变化。
二、压电效应
压电效应是指材料在受到力的作用下产生电场,或者在电场的作用下发生尺寸变化。
这是一种固体物质的基本性质,与晶体的对称性密切相关。
在晶体中,原子排列的对称性会影响电子云的稳定性,进而影响固体的压电性质。
磁电式传感器的原理基于磁敏效应和压电效应。
其工作过程如下:
1.磁场变化引起晶体的压电效应,产生电荷。
2.电荷会被转换为电流信号,交由后续电路处理。
3.电路会对电信号进行放大、滤波等处理,得到最终的输出信号。
磁电式传感器的关键是要选用适合的材料,并且对材料进行精细加工,以使其能够精确地检测磁场的变化。
常见的磁电材料包括PZT(铅锆钛)、PMN(铅镁酸锶)、LFO(铁氧体)、TGS(硼酸锌)等。
这些材料具有不同的磁敏、压电性质,可以根据具体的应用需求选用。
四、应用领域
磁电式传感器广泛应用于测量磁场变化的场合,例如测量电流、磁场强度、自身磁场等。
具体应用包括:
1.电流测量:电流会产生磁场,利用磁电式传感器可以测量电流的大小。
3.自身磁场测量:磁电式传感器可以测量材料本身的磁场,例如测量磁随机存取存储器(MRAM)中的磁场。
总之,磁电式传感器具有灵敏度高、响应速度快等优点,适用于多种测量场合。
随着技术的不断进步,磁电式传感器的应用前景将越来越广阔。