龙格现象
拉格朗日插值龙格现象的matlab实现

拉格朗日插值法在实践中的应 用
在数值分析中的应用
单击此处添加标题
插值法:拉格朗日插值法是数值分析中常用的插值方法之一,具有简单易 行、计算量小等优点。
单击此处添加标题
数据拟合:拉格朗日插值法可以用于数据拟合,通过对已知数据进行插值, 得到未知数据的近似值。
单击此处添加标题
数值微积分:拉格朗日插值法在数值微积分中也有广泛应用,例如在求解 函数的导数、积分等运算时,可以利用拉格朗日插值法进行近似计算。
龙格现象
龙格现象的定义
定义:当插值多项式的阶数过高时, 插值结果可能变得不可预测或出现 剧烈振荡
解决方法:在实际应用中,应避免 使用过高的插值多项式阶数,而应 选择合适的阶数以保证插值结果的 稳定性和准确性
添加标题
添加标题
添加标题
添加标题
原因:由于高阶插值多项式对数据 点的敏感性增强,导致插值结果不 稳定
拉格朗日插值龙格现象的 Matlab实现
汇报人:XX
单击输入目录标题 拉格朗日插值法 龙格现象 拉格朗日插值法在Matlab中的实现 拉格朗日插值法的龙格现象分析 拉格朗日插值法在实践中的应用
添加章节标题
拉格朗日插值法
插值法的定义
插值法是一种数学方法,通过已知的离散数据点,构造一个多项式函数,使得该函数在 数据点处的取值等于已知的数据点值。
算法收敛性:在某些情况下,龙格现象可能导致算法收敛速度减慢,增加计算时间和计算成本。
实际应用限制:由于龙格现象的存在,某些数值方法在实际应用中可能受到限制,无法处理某些 复杂问题。
算法改进需求:为了克服龙格现象的影响,需要研究和发展新的数值方法和算法,提高数值计算 的稳定性和精度。
拉格朗日插值法在Matlab中的 实现
Runge现象的研究

[ ] =a a0 , a1,, an T ∈ Rn+1
1
=V
1
x0 x1
x0n x1n
∈
R ( n +1)×( n +1)
1
xn
xnn
[ ] =y y0 , y1,, yn T ∈ Rn+1
DOI: 10.12677/aam.2019.88175
Received: August 6th, 2019; accepted: August 21st, 2019; published: August 28th, 2019
Abstract
Firstly, this paper explains the Runge phenomenon generated by high-order polynomial interpolation, and proves that the interpolation polynomial divergence is obtained by calculating the systematic error. Secondly, taking the Runge function, inverse trigonometric function and fractional function as examples, the interpolation polynomial of the function is obtained by using the equally spaced Newton interpolation, and then the interpolation residual function expression is obtained, and then the midpoint of adjacent two nodes is calculated. The error at the location determines that the above three functions have generated the Runge phenomenon. Thirdly, the three algorithms of Chebyshev node, piecewise linear interpolation and cubic spline interpolation are introduced and verified, which can avoid the Runge phenomenon. Finally, the approximation performance index is proposed, and based on the optimal polynomial construction coefficient and order double determination method, the algorithm has excellent function approximation effect while avoiding the Runge phenomenon.
插值MATLAB实现(牛顿差商插值误差龙格现象切比雪夫插值)

插值MATLAB实现(牛顿差商插值误差龙格现象切比雪夫插值)插值是数值分析中的一种方法,通过已知数据点的函数值来估计函数在其他点的值。
MATLAB提供了多种方法来实现插值,包括牛顿差商插值、插值误差分析、龙格现象和切比雪夫插值。
下面将详细介绍这些方法的实现原理和MATLAB代码示例。
1.牛顿差商插值:牛顿差商插值是一种基于多项式插值的方法,其中差商是一个连续性的差分商。
该方法的优势在于可以快速计算多项式的系数。
以下是MATLAB代码示例:```matlabfunction [coeff] = newton_interpolation(x, y)n = length(x);F = zeros(n, n);F(:,1)=y';for j = 2:nfor i = j:nF(i,j)=(F(i,j-1)-F(i-1,j-1))/(x(i)-x(i-j+1));endendcoeff = F(n, :);end```该代码中,输入参数x和y分别表示已知数据点的x坐标和y坐标,返回值coeff表示插值多项式的系数。
2.插值误差分析:插值误差是指插值函数与原始函数之间的差异。
一般来说,通过增加插值节点的数量或使用更高次的插值多项式可以减小插值误差。
以下是MATLAB代码示例:```matlabfunction [error] = interpolation_error(x, y, x_eval)n = length(x);p = polyfit(x, y, n-1);y_eval = polyval(p, x_eval);f_eval = sin(pi*x_eval);error = abs(f_eval - y_eval);end```该代码中,输入参数x和y分别表示已知数据点的x坐标和y坐标,x_eval表示插值节点的x坐标,error表示插值误差。
3.龙格现象:龙格现象是插值多项式在等距插值节点上错误增长的现象。
数值分析中的插值误差控制技巧

数值分析中的插值误差控制技巧数值分析是解决实际问题中涉及数值计算的方法和技术的学科。
在数值计算中,插值是一种常用的数值分析技术,用于在给定的有限数据点集合上估计函数在其他点上的值。
然而,插值过程中会产生误差,为了保证插值结果的准确性,需要掌握一些插值误差控制技巧。
本文将介绍数值分析中常用的插值误差控制技巧。
一、余项估计法余项估计法是一种常用的插值误差控制技巧。
在数值分析中,我们通常使用多项式插值方法进行插值计算。
多项式插值的基本思想是通过已知数据点构造一个多项式,然后利用该多项式在其他点上的值来估计函数的值。
余项估计法通过对多项式插值的余项进行估计来控制插值误差。
二、龙格现象与插值节点的选择在实际问题中,插值节点的选择对插值结果的准确性有重要影响。
龙格现象是指在某些特定的插值节点选择下,插值多项式在边界上会出现振荡现象。
为了避免龙格现象,需要选择合适的插值节点。
常用的插值节点选择方法有均匀节点、切比雪夫节点等。
三、样条插值与光滑插值除了多项式插值,样条插值也是一种常用的插值方法。
样条插值通过在每个小区间上构造一个低次多项式来实现插值。
样条插值不仅能够满足插值条件,还能够保证插值函数在节点处的光滑性。
光滑插值是为了减小插值误差而采用的一种技巧。
四、自适应插值与网格剖分自适应插值是一种根据插值误差大小来调整插值节点的方法。
通过不断调整插值节点,自适应插值能够有效控制插值误差,并使插值结果更加精确。
网格剖分是自适应插值的一种实现方式,通过将插值区域划分成多个小区间进行插值计算,以提高插值的准确性。
五、边界条件的选取在插值过程中,边界条件的选取也对插值结果的准确性有重要影响。
常用的边界条件有自然边界条件、固定边界条件等。
合理选择边界条件能够有效控制插值误差,并提高插值结果的准确性。
综上所述,数值分析中的插值误差控制技巧是保证插值结果准确性的重要手段。
通过合理选择插值节点、掌握余项估计法、利用样条插值和自适应插值等方法,可以有效控制插值误差,提高插值结果的准确性。
龙格现象

在计算方法中,有利用多项式对某一函数的近似逼近,这样,利用多项式就可以 计算相应的函数值。例如,在事先不知道某一函数的具体形式的情况下,只能测 量得知某一些分散的函数值。例如我们不知道气温随日期变化的具体函数关系, 但是我们可以测量一些孤立的日期的气温值,并假定此气温随日期变化的函数满 足某一多项式。这样,利用已经测的数据,应用待定系数法便可以求得一个多项 式函数 f(x)。应用此函数就可以计算或者说预测其他日期的气温值。一般情 况下,多项式的次数越多,需要的数据就越多,而预测也就越准确。 例外发生了:龙格在研究多项式插值的时候,发现有的情况下,并非取节点(日 期数)越多多项式就越精确。著名的例子是 f(x)=1/(1+25x^2).它的插值函数 在两个端点处发生剧烈的波动,造成较大的误差。究其原因,是舍入误差造成的。 具体的情况可参考下列 Mathematica 程序: n = 10; x = Range[-1, 1, 2/n]; y = 1./(1 + 25 x^2); p = Transpose[{x, y}]; Clear[t]; f = LagrangeInterpolation[x, y, t]; Show[ Plot[{1./(1 + 25 t^2), f}, {t, -1, 1}], ListPlot[p, PlotStyle -> PointSize[0.02]] ] 程序演示 Matlab 程序演示 (一) 代码 >> f=inline('1/6-y/30','t','y'); [t,y]=ode45(f,[0,5],[0]); plot(t,y) >> hold on plot(t,5-5*exp(-t/30面是 MATLAB 中演示插值的 M 文件: %演示龙格函数的插值情况 for i=3:2:11
计算方法复习题

一、判断1、0.026900x *=-作为x 的近似值,它的有效数字位数为5位。
( × )2、迭代法的敛散性与迭代初值的选取无关。
( × )3、牛顿插值多项式的优点是:在计算时,高一级的插值多项式可利用前一次插值的结果。
( √ )4、已知观察值()(),0,1,i i x y i n =,用最小二乘法求得的拟合多项式其次数为n 次。
( × )5、改进欧拉公式是一种隐式的方法。
( × )6、一个近似数的有效数位愈多,其相对误差限愈小。
( √ ) 6、求方程310x x --=在区间[1, 2]内根的迭代法总是收敛的。
( × )7、矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--521253113是主对角占优矩阵。
( × )8、在求插值多项式时,插值多项式的次数越高,误差越小。
( × ) 9、具有n+1各节点的插值型求积公式至少具有n+1次代数精度。
( × ) 二、填空题1、误差来源: 舍入误差 , 截断误差 , 观测误差 , 模型误差 。
2、古代数学家祖冲之曾以113355作为圆周率π的近似值,此近似值有 7 位有效数字。
3、用二分法求方程f(x)=x3+x-1=0在区间[0,1]内的根,进行一步二分后根所在区间为,进行二步二分后根所在区间为。
4、方程求根中牛顿迭代公式,收敛速度是。
5、求线性解方程组 5x1-3x2-0.1x3=1-2x1+6x2+0.7x3=0x1+2x2+3.5x3=0的高斯—赛德尔迭代格式为,取迭代初值x 1(0)=1,x 2(0)=-1,x 3(0)=1,则x 1(1)= -0.38 ,x2(1)= -0.24, x3(1)= 351。
6、Gauss 求积公式⎰baf(x )dx≈∑=Nn n)Anf(x 具有 2N+1 次代数精度。
7、n+1个插值节点构造的拉格朗日插值公式Ln(x)= 1 余项Rn(x)= 1 。
龙格现象

3. 多项式插值的龙格现象考虑在一个固定的区间上用插值逼近一个函数。
显然,拉格朗日插值中使用的节点越多,插值多项式的次数就越高,自然关心插值多项式的次数增加时,()n L x 是否也更加靠近被逼近的函数。
龙格给出的一个例子是极著名并富有启发性的。
设在区间[]1,1-上的函数为:()21125f x x =+,考虑区间[]1,1-的一个等距划分,分点为:21,0,1,2,,iix i nn=-+=则拉格朗日插值多项式为: ()()201125nn i i iL x l x x ==+∑ 其中(),0,1,2,i l x i n =是n 次拉格朗日插值基函数。
要求:(1)选择不断增大的分点数目2,3,n =画出原函数()f x 及插值多项式函数()n L x 在区间[]1,1-的图像,比较并分析实验结果。
解:算法为function lagrangeinterp% graphs of different 'n' clear all;clc x=-1:.01:1;y=1./(1+25.*x.^2); plot(x,y,'-') hold onn=input('n='); x=-1:2/n:1;y=1./(1+25.*x.^2); u=-1:.01:1;v=lagrange(x,y,u);function v = lagrange(x,y,u) % algorithm of lagrange n = length(x); v = zeros(size(u)); for k = 1:nw = ones(size(u)); for j = [1:k-1 k+1:n]w = (u-x(j))./(x(k)-x(j)).*w; endv = v + w*y(k); endplot(x,y,'o',u,v,'--') hold off当选定为2等分时:当选定为3等分时:当选定为5等分时:当选定为10等分时:当选定为15等分时:由上述五个图形可得:在一定范围内,拉格朗日插值中使用的节点越多,插值多项式的L x也更加靠近被逼近的函数,插值节点但并不是越多越好,当超过某一次数就越高,()n值后,就会在端点处出现龙格现象,而且节点越多,龙格现象越严重。
龙格现象难题破解之系数与阶次双确定方法

2013, 49 (3)
Computer Engineering and Applications 计算机工程与应用
龙格现象难题破解之系数与阶次双确定方法
张雨浓, 李名鸣, 陈锦浩, 劳稳超, 吴华荣
ZHANG Yunong, LI Mingming, CHEN Jinhao, LAO Wenchao, WU Huarong
1
引言
在数值方法领域中, 经常需要利用插值对某一函数进
出, 对于龙格函数, 在区间 [ - 1 1] 内, 选取等距插值点, 利 用插值多项式进行逼近时, 其逼近多项式在逼近区间两端 会产生振荡, 且插值多项式的阶次越高, 其振荡现象越严 重, 从而造成较大的逼近误差。因此, 一般认为, 龙格函数 不适宜利用基于等距节点的高阶多项式进行逼近。 为了良好地逼近龙格函数, 解决龙格现象, 通常使用 切比雪夫节点 [10] 代替等距插值点, 使逼近误差随插值多项 式的阶次的增大而减少。但由于统计与科学分析中采集 的数据点一般都是等间距的 (如等时间间距采样得到的数 据) , 采集变间距的切比雪夫节点数据将会增加实际操作 的难度。另外, 也可以使用分段样条插值 [11] 代替多项式插 值, 利用分区间的低阶多项式对龙格函数进行良好的逼近。 区别于以上采用变间距的切比雪夫节点或分区间低 阶的分段样条插值的方法, 基于人工神经网络的最新研究
中山大学 信息科学与技术学院, 广州 510006 School of Information Science and Technology, Sun Yat-sen University, Guangzhou 510006, China ZHANG Yunong, LI Mingming, CHEN Jinhao, et al. Solving the problem of Runge phenomenon by coefficients-and-orderdetermination method. Computer Engineering and Applications, 2013, 49 (3) : 44-49. Abstract:The Runge phenomenon demonstrates that it is not suitable to use high-order interpolation polynomials with equidistant nodes to approximate the Runge function, as oscillation occurs near the ends of the interpolation interval. Nevertheless, this paper presents an innovative method called Coefficients-And-Order-Determination (CAOD)method to solve the problem of the Runge phenomenon. This method can efficiently determine the coefficients and the order of the optimal polynomial that approximates the target function. By such a CAOD method, high-order optimal polynomials are constructed for different numbers of equidistant nodes, which all approximate the Runge function without causing oscillation. Thus, such constructed optimal polynomials can achieve high approximation accuracy (i.e., eliminate the Runge phenomenon) . Numerical experiment results further substantiate the efficacy and accuracy of the CAOD method. Key words:Runge phenomenon; function approximation; equidistant nodes; high-order polynomials; Coefficients-And-OrderDetermination (CAOD)method 摘 要: 龙格现象指出, 使用基于等距节点的高阶插值多项式逼近龙格函数时, 插值多项式在逼近区间两端会产生明显的
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二.主要方、步骤:
1.运用FORTRAN编制原函数,拉格朗日插值和线性插值程序;
2.将数据运用grapher将实验数据绘制成图.
三.程序代码:
!龙格现象/高次插值的病态性质
PROGRAM LONGERend
parameter(n=10)
real(8) y(0:20),x(0:20),x1(0:20),y1(0:20),Ih(0:20)
!计算f(x)
open(2,file='y.doc')
write(2,"('x',30x,'f(x)')")
do i=0,n
x(i)=-5.0+10*i/n
y(i)=1.0/(1+x(i)**2)
write(2,*) x(i), y(i)
end do
!计算Ln(x),拉格朗日插值程序
OPEN(2,file='y1.doc')
write(2,"('x1',30x,'Ln(x)')")
do i=0,n-1
x1(i)=(x(i)+x(i+1))/2
y1(i)=0.0
do j=0,n
!计算Wn+1(x),W'n+1(x)
w=1.0
wp=1.0
do k=0,n
w=w*(x1(i)-x(k))
if(k/=j) then
wp=wp*(x(j)-x(k))
end if
end do
y1(i)=y1(i)+y(j)*w/wp/(x1(i)-x(j))
end do
write(2,*) x1(i),y1(i)
end do
!分段线性插值程序
open(2,file='Ih.doc')
write(2,"('x1',30x,'Ih')")
do k=0,n-1
Ih(k)=(x1(k)-x(k+1))/(x(k)-x(k+1))*y(k)+(x1(k)-x(k))/(x(k+1)-x(k))*y( k+1)
write(2,*) x1(k),Ih(k)
end do
print*,'数据已写入指定文件'
end
四.数值结果:
x f(x)
-5.00000000000000 3.846153846153846E-002 -4.00000000000000 5.882352941176471E-002 -3.00000000000000 0.100000000000000 -2.00000000000000 0.200000000000000 -1.00000000000000 0.500000000000000
0.000000000000000E+000 1.00000000000000
1.00000000000000 0.500000000000000
2.00000000000000 0.200000000000000
3.00000000000000 0.100000000000000
4.00000000000000
5.882352941176471E-002
5.00000000000000 3.846153846153846E-002
x1 Ln(x)
-4.50000000000000 1.57872102169562 -3.50000000000000 -0.226196282498366 -2.50000000000000 0.253755465606773 -1.50000000000000 0.235346591310803 -0.500000000000000 0.843407429828903
0.500000000000000 0.843407429828903
1.50000000000000 0.235346591310803
2.50000000000000 0.253755465606773
3.50000000000000 -0.226196282498366
4.50000000000000 1.57872102169562
x1 Ih
-4.50000000000000 4.864253393665158E-002 -3.50000000000000 7.941176470588235E-002 -2.50000000000000 0.150000000000000 -1.50000000000000 0.350000000000000 -0.500000000000000 0.750000000000000
0.500000000000000 0.750000000000000
1.50000000000000 0.350000000000000
2.50000000000000 0.150000000000000
3.50000000000000 7.941176470588235E-002
4.50000000000000 4.864253393665158E-002
Grapher制图部分:
原函数图像:
f(x)
x 拉格朗日插值函数图像:
Ln(x)
x
分段线性插值函数图象:
Ih(x)
x原函数
五.数值结果分析:
○1.从拉格朗日插值函数图象与原函数图像的对比可看出:随着自变量|x︱的增大Ln(x)与f(x)总体上呈现出偏离越来越远的效果;
○2.从分段线性插值函数图象与原函数图像的对比可看出:二者较为近似,
拉格线性插值函数能较好的逼近原函数;
从以上两点可以看出,高次插值多项式Ln(x)近似的效果并不一定好,而通过分段线性插值多项式则能很好的避免高次插值的病态现象。
六.实验收获和体会:
收获:1.能熟练的运用FORTRAN编制原函数,拉格朗日插值和线性插值程序;
2.能够运用grapher将实验数据绘制成图。
体会:由于FORTRAN还处在学习阶段,导致编写程序花掉了较长时间;而且由于不会该程序的有格式输出,导致数据绘图阶段花费了更多的功夫。