铁磁材料的磁滞回线实验报告

合集下载

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告一、实验目的1、认识铁磁物质的磁化规律,加深对铁磁材料磁滞回线和基本磁化曲线概念的理解。

2、学会使用示波器观察并测绘铁磁材料的磁滞回线和基本磁化曲线。

3、测定样品的一些基本磁化参数,如饱和磁感应强度 Bs、剩磁感应强度 Br、矫顽力 Hc 等。

二、实验原理1、铁磁材料的磁化特性铁磁物质具有很强的磁化能力,其磁导率远大于非铁磁物质。

铁磁材料的磁化过程是不可逆的,存在磁滞现象。

2、磁滞回线当磁场强度 H 从零开始逐渐增加时,磁感应强度 B 随之增加。

当H 增大到一定值时,B 不再增加,达到饱和值 Bs。

随后逐渐减小 H,B 并不沿原曲线减小,而是滞后于 H 的变化。

当 H 减小到零时,B 不为零,而是保留一定的值 Br,称为剩磁感应强度。

要使 B 减为零,必须加反向磁场,当反向磁场达到一定值 Hc 时,B 才为零,Hc 称为矫顽力。

继续增大反向磁场,B 达到反向饱和值Bs,再逐渐增大正向磁场,B 又沿原来的曲线变化,形成一个闭合的曲线,称为磁滞回线。

3、基本磁化曲线将一系列不同幅值的正弦交变磁场依次作用于铁磁材料样品,可得到一系列大小不同的磁滞回线。

连接各磁滞回线顶点的曲线称为基本磁化曲线。

三、实验仪器示波器、实验变压器、电阻箱、标准互感器、待测铁磁材料环形样品等。

四、实验步骤1、按实验电路图连接好线路,检查无误后接通电源。

2、调节示波器,使其能清晰显示磁滞回线。

3、逐渐增大交流电压,使磁场强度 H 逐渐增加,观察示波器上磁滞回线的变化,直至达到饱和。

4、逐点记录磁滞回线顶点的坐标(H,B)。

5、减小交流电压,重复上述步骤,测量多组数据。

6、根据测量数据绘制磁滞回线和基本磁化曲线。

五、实验数据记录与处理1、实验数据记录表|交流电压(V)|磁场强度 H(A/m)|磁感应强度 B(T)|||||||||2、根据实验数据,在坐标纸上绘制磁滞回线。

3、连接磁滞回线的顶点,得到基本磁化曲线。

磁滞回线实验报告

磁滞回线实验报告

一、实验目的1. 理解磁滞回线的概念和特性;2. 掌握磁滞回线的测量方法;3. 分析磁滞回线与材料性能之间的关系。

二、实验原理磁滞回线是铁磁材料在外加磁场作用下,磁化强度(磁感应强度B)随磁场强度(磁场强度H)变化的关系曲线。

在磁滞回线中,磁化强度和磁场强度之间存在滞后现象,即当磁场强度减小到零时,磁化强度并不立即为零,而是保持一定的数值,这种现象称为磁滞。

磁滞回线的形状反映了铁磁材料的磁滞特性,主要包括以下参数:1. 矫顽力(Hc):磁化强度为零时,所需的反向磁场强度;2. 饱和磁感应强度(Bs):磁场强度达到饱和时,磁化强度达到的最大值;3. 剩磁(Br):磁场强度为零时,磁化强度所保持的值。

三、实验仪器与材料1. 磁滞回线测量仪;2. 待测铁磁材料;3. 示波器;4. 磁场发生器;5. 信号发生器;6. 测量磁感应强度和磁场强度的传感器。

四、实验步骤1. 将待测铁磁材料放置在磁滞回线测量仪中,调整磁场发生器,使磁场强度逐渐增加;2. 使用信号发生器产生一定频率的交流信号,输入到磁滞回线测量仪中;3. 示波器显示磁滞回线图形,记录不同磁场强度下的磁化强度值;4. 根据实验数据,绘制磁滞回线曲线;5. 分析磁滞回线与材料性能之间的关系。

五、实验结果与分析1. 磁滞回线图形:根据实验数据,绘制磁滞回线曲线,如图1所示。

图1 磁滞回线曲线2. 磁滞回线参数:根据磁滞回线曲线,测量矫顽力(Hc)、饱和磁感应强度(Bs)和剩磁(Br)等参数。

3. 分析:(1)矫顽力(Hc):矫顽力是磁滞回线中的最大磁场强度,反映了材料抵抗磁化退磁的能力。

矫顽力越大,材料越难退磁,即磁滞特性越好。

(2)饱和磁感应强度(Bs):饱和磁感应强度是磁化强度达到的最大值,反映了材料的磁导率。

饱和磁感应强度越大,材料的磁导率越高。

(3)剩磁(Br):剩磁是磁场强度为零时,磁化强度所保持的值,反映了材料的剩磁特性。

剩磁越大,材料的剩磁特性越好。

铁磁材料的磁滞回线实验报告

铁磁材料的磁滞回线实验报告

铁磁材料的磁滞回线实验报告铁磁材料是一类在外加磁场下具有明显磁性的材料,其磁性能对于电磁设备和磁性传感器等领域具有重要的应用价值。

本实验旨在通过对铁磁材料的磁滞回线进行测量和分析,探究其在外磁场作用下磁化特性的变化规律。

1. 实验目的。

本实验旨在通过测量铁磁材料在外磁场作用下的磁化特性,绘制磁滞回线图,并分析其磁滞损耗和矫顽力等参数,从而深入了解铁磁材料的磁性能。

2. 实验原理。

铁磁材料在外磁场作用下会发生磁化过程,当外磁场强度逐渐增大时,材料内部的磁化强度也会随之增大,直至达到饱和状态;而当外磁场强度逐渐减小时,材料的磁化强度也会随之减小,直至回到初始状态。

这一过程形成的磁化特性曲线即为磁滞回线。

3. 实验步骤。

(1)准备铁磁材料样品和磁化装置;(2)将样品置于磁化装置中,并接通电源,施加不同大小的外磁场;(3)通过磁感应计或霍尔元件等磁场测量设备,测量不同外磁场下的磁感应强度,并记录数据;(4)根据记录的数据,绘制铁磁材料的磁滞回线图。

4. 实验结果与分析。

通过实验测量和数据处理,我们得到了铁磁材料的磁滞回线图。

从图中可以明显看出,在外磁场逐渐增大时,磁感应强度也随之增大,直至达到饱和状态;而在外磁场逐渐减小时,磁感应强度也随之减小,直至回到初始状态。

这一过程呈现出明显的磁滞特性,磁滞损耗和矫顽力等参数也可以通过磁滞回线图进行计算和分析。

5. 实验结论。

通过本次实验,我们深入了解了铁磁材料的磁滞特性,掌握了磁滞回线图的绘制和分析方法,对铁磁材料的磁性能有了更深入的认识。

这对于进一步研究和应用铁磁材料具有重要的意义。

6. 实验总结。

本次实验通过对铁磁材料的磁滞回线进行测量和分析,深入了解了其在外磁场作用下的磁化特性。

同时,我们也发现了一些实验中存在的问题和不足之处,为今后的实验和研究工作提供了一定的参考和借鉴。

通过本次实验,我们对铁磁材料的磁滞回线有了更深入的了解,这对于相关领域的研究和应用具有一定的指导意义。

铁磁材料的磁滞回线实验报告

铁磁材料的磁滞回线实验报告

铁磁材料的磁滞回线实验报告一、实验目的。

本实验旨在通过实验方法测量铁磁材料的磁滞回线,了解铁磁材料的磁滞特性。

二、实验原理。

磁滞回线是指在磁场的作用下,材料磁化强度随着磁场的变化而发生变化,并且在去除磁场后,材料的磁化强度不完全回到零点,形成一个闭合的回线。

铁磁材料的磁滞回线特性是其重要的磁性能指标之一。

三、实验仪器与设备。

1. 电磁铁。

2. 电源。

3. 示波器。

4. 铁磁材料样品。

四、实验步骤。

1. 将铁磁材料样品放置在电磁铁中间位置。

2. 调节电源输出电压,使电磁铁通电,产生磁场。

3. 用示波器测量铁磁材料的磁感应强度随磁场变化的曲线。

4. 逐渐减小电磁铁的电流,观察示波器上的磁滞回线变化。

五、实验数据记录与分析。

根据实验测得的数据,我们绘制了铁磁材料的磁滞回线曲线图。

从曲线图中可以清晰地看出铁磁材料的磁化特性。

在磁场强度增加时,磁感应强度随之增加,但当磁场强度减小时,磁感应强度并不完全回到零点,而是形成一个闭合的回线。

六、实验结论。

通过本次实验,我们深入了解了铁磁材料的磁滞回线特性。

磁滞回线是铁磁材料在磁化过程中产生的一种特殊现象,对于材料的磁性能有着重要的影响。

通过测量和分析磁滞回线,可以更好地了解铁磁材料的磁化特性,为材料的应用提供重要参考。

七、实验注意事项。

1. 在实验中要注意安全,避免触电和磁场对身体造成的影响。

2. 实验过程中要注意仪器的正确使用和操作方法,保证实验数据的准确性和可靠性。

八、参考文献。

1. 《材料物理学实验指导》。

2. 《磁性材料与器件》。

以上为铁磁材料的磁滞回线实验报告。

铁磁材料的磁滞回线

铁磁材料的磁滞回线

铁磁材料的磁滞回线和基本磁化曲线实验报告【实验目的】1、了解铁磁材料的磁化过程及磁化规律。

2、掌握用示波器法观察磁滞回线。

3、测定样品的基本磁化曲线。

4、测绘样品的磁滞回线。

【实验仪器】磁滞回线试验仪、示波器【实验原理】铁磁物质——在外磁场作用下能被强烈磁化,故磁导率µ很高。

磁场强度 -- H磁感应强度 -- B磁导率 -- µ= B/H铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质下图为铁磁物质磁感应强度 B与磁场强度H之间的关系曲线。

原点0:磁中性状态,即B=H=0,当H增至Hs时,B到达饱和值,0abs称为起始磁化曲线。

当磁场从Hs逐渐减小至零,磁感应强度B并不沿起始磁化曲线恢复到“0”点,而是沿另一条新曲线SR下降比较线段OS和SR可知,H减小B相应也减小,但B的变化滞后于H的变化,这现象称为磁滞。

磁滞——铁磁物质的另一特征,即磁化场作用停止后,铁磁质仍保留磁化状态。

磁滞的明显特征是当H=0时,B 不为零,而保留剩磁Br 。

当磁场反向从0逐渐变至 -HD 时,磁感应强度B 消失,说明要消除剩磁,必须施加反向磁场,HD 称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力。

线段RD 称为退磁曲线。

当磁场按HS →0→-HD →-HS →0→HD ′→HS 次序变化,相应的磁感应强度B 则沿闭合曲线SRDS ′R ′D ′S 变化,这条闭合曲线称为磁滞回线。

当初始态为H=B=0的铁磁材料,在交变磁场强度由弱到强依次进行磁化,可以得到面积由小到大向外扩张的一簇磁滞回线,如图所示。

这些磁滞回线顶点的连线即为铁磁材料的基本磁化曲线安培环路定理1H NH U LR =⋅22B C R B UnS=。

四、实验步骤1、电路连接:选样品1按实验仪上所给的电路图连接线路,并令R1=2.5Ω, “U 选择”置于0位。

UH 和UB 分别接示波器的“X 输入”和“Y 输入”,插孔为公共端。

铁磁性材料的磁滞回线特性研究

铁磁性材料的磁滞回线特性研究

铁磁性材料的磁滞回线特性研究磁滞回线是描述铁磁性材料磁化特性的重要参数,也是研究材料磁性的关键指标之一。

本文将探讨铁磁性材料的磁滞回线特性,包括其形成原因、磁滞回线的意义以及对材料性能的影响。

磁滞回线是描述材料磁化强度与外加磁场强度之间关系的曲线。

它通常呈现出闭合的环形,因此得名为“磁滞回线”。

磁滞回线的形成是由于铁磁性材料在磁化过程中,磁域的分布和磁矩的转向发生变化所致。

当外加磁场逐渐增大时,材料内部的磁矩会逐渐转向与外磁场方向一致,直到达到饱和磁化强度。

这一过程中,磁矩的转向会引发磁域的移动和改变,从而导致磁滞回线的形成。

磁滞回线的形状和特性可以反映出材料的磁性能,比如饱和磁化强度、剩余磁矩以及矫顽力等。

磁滞回线的形状对于铁磁性材料的应用具有重要意义。

例如,在电机中,设计师需要根据不同的磁滞回线形状来选择合适的材料,以实现期望的电机性能。

此外,磁滞回线还能够提供材料的磁导率、磁阻等磁性参数的信息,对电器设备的设计和制造具有指导意义。

磁滞回线特性的研究也涉及到材料的磁化机制。

常见的铁磁性材料磁化机制有畴壁翻转和粒子磁矩旋转两种。

畴壁翻转是指材料中微观磁区的畴壁在外磁场的作用下发生翻转,从而引起磁矩的变化。

而粒子磁矩旋转是指材料中的微观磁区内的各个粒子磁矩在外磁场的作用下同时发生旋转,导致磁矩总量的变化。

不同的磁化机制对磁滞回线特性有着不同的影响。

例如,畴壁翻转主导的材料通常会表现出典型的方形磁滞回线,而粒子磁矩旋转主导的材料则会呈现出圆形或椭圆形的磁滞回线。

因此,通过研究磁滞回线的形状和特性,可以深入了解材料的磁化机制,并为材料的选用和应用提供依据。

此外,磁滞回线特性还受材料的晶体结构、磁畴大小、温度等因素的影响。

晶体结构的差异会导致材料的磁滞回线特性差异。

磁畴大小对于磁滞回线的形状和宽度也有一定影响,而随着温度的升高,材料磁滞回线的形状和特性也会发生变化。

总之,铁磁性材料的磁滞回线特性是研究材料磁性的重要方面。

铁磁材料的磁滞回线实验报告

铁磁材料的磁滞回线实验报告

铁磁材料的磁滞回线实验报告铁磁材料的磁滞回线实验报告引言铁磁材料是一类具有磁性的材料,其在外加磁场下会表现出磁化的特性。

磁滞回线实验是研究铁磁材料磁化行为的重要实验方法之一。

本实验旨在通过测量铁磁材料在不同外加磁场下的磁化强度,绘制磁滞回线曲线,并分析其中的物理规律。

实验步骤1. 实验仪器准备:准备好铁磁材料样品、电磁铁、磁场强度计等实验仪器。

2. 样品准备:将铁磁材料样品切割成适当大小,并清洗干净,以确保测量结果准确。

3. 实验装置搭建:将电磁铁与磁场强度计固定在实验台上,保证电磁铁与磁场强度计之间的距离合适。

4. 实验参数设置:设置电磁铁的电流大小,即外加磁场的强度,记录下每次改变电流的数值。

5. 实验数据测量:在每个电流值下,使用磁场强度计测量样品的磁场强度,并记录下来。

6. 数据处理与分析:根据实验数据,绘制磁滞回线曲线,并进行进一步的分析。

实验结果与讨论根据实验所得数据,我们绘制了铁磁材料的磁滞回线曲线。

磁滞回线曲线是描述铁磁材料在外加磁场作用下磁化行为的重要指标。

磁滞回线曲线呈现出一定的特征。

首先,在磁滞回线的起始点,也就是零磁场时,材料的磁化强度为零。

随着外加磁场的增加,材料的磁化强度逐渐增加,直到达到饱和磁化强度。

此时,外加磁场再增加,材料的磁化强度不再增加,保持在饱和磁化强度的数值。

当外加磁场减小时,材料的磁化强度也会相应减小,但并不会降为零,而是保持一个残余磁化强度。

当外加磁场减小到一定程度时,材料的磁化强度会迅速减小到零,形成一个闭合的磁滞回线。

磁滞回线的形状与铁磁材料的性质密切相关。

不同的铁磁材料具有不同的磁滞回线形状,这与材料的晶体结构、磁畴结构等有关。

通过对磁滞回线的分析,可以了解铁磁材料的磁化特性以及其在实际应用中的潜在问题。

实验中还可以通过改变外加磁场的强度来观察磁滞回线的变化。

当外加磁场强度增加时,磁滞回线的面积也会增大,这表明材料的磁化能力增强。

而当外加磁场强度减小时,磁滞回线的面积也会减小,这表明材料的磁化能力减弱。

物理实验报告 铁磁材料的磁滞回线和基本磁化曲线

物理实验报告 铁磁材料的磁滞回线和基本磁化曲线

物理实验报告铁磁材料的磁滞回线和基本磁化曲线一、实验原理铁磁材料在磁场的作用下会发生磁化现象,而磁化程度随着磁场强度的变化而发生变化。

在一定的磁场范围内,铁磁材料的磁化程度与磁场的强度之间存在着一种函数关系,成为基本磁化曲线。

而铁磁材料在外磁场作用下,它的磁化状态会发生变化,在磁场强度逐渐增大时,磁矩也逐渐变大,这种变化的过程称为磁滞回线。

本实验旨在通过使用霍尔效应仪器和实验方法,实现对铁磁材料磁滞回线和基本磁化曲线的测定,探讨磁滞回线和基本磁化曲线之间的关系,并对实验结果进行分析和讨论。

二、实验装置实验仪器主要包括霍尔效应电路、锁相放大器、磁力计、线圈等实验器材。

三、实验步骤1、首先将磁力计放置在霍尔效应电路的输出端,然后将电路连接好。

2、在运行实验之前,需要先将霍尔效应电路进行调零操作,以保证实验的精度。

3、在调零之后,需要将待测物品即铁磁材料放置在磁力计的测量端。

4、接下来,可以利用锁相放大器对磁力计的输出信号进行检测,并进行相应的数据采集和处理。

5、在不同磁场强度下,可以对待测物品的磁化状态进行测量和记录,并记录相应的数据。

6、最终,可以将所得数据绘制成磁滞回线和基本磁化曲线图形,并对实验结果进行分析和讨论。

四、实验结果通过对铁磁材料的实验测量和数据处理,可以得到所得到的磁滞回线和基本磁化曲线图形如下:[图1] 铁磁材料的磁滞回线根据实验结果可知,铁磁材料的磁滞回线和基本磁化曲线之间存在着一定的关系,当外磁场逐渐增大时,铁磁材料的磁矩也逐渐增大,并随着磁场的逐渐增大而逐渐达到饱和状态。

当外磁场逐渐减小时,铁磁材料的磁矩也逐渐减小,并在磁场降低到一定程度时达到磁剩余状态。

五、实验分析此外,铁磁材料的基本磁化曲线也具有一定的特点,即其呈现S形曲线,表明在一定的磁场强度范围内,铁磁材料的磁化程度与磁场强度之间呈现一定的正比关系,但随着磁场强度的逐渐增大,铁磁材料的磁化程度将达到饱和状态,磁化度不再增大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

铁磁材料的磁滞回线实验报告
磁滞回线是描述铁磁材料磁化特性的重要参数之一,它反映了材料在外加磁场作用下磁化状态的变化规律。

本实验旨在通过测量铁磁材料在不同外加磁场下的磁感应强度,绘制出相应的磁滞回线曲线,从而研究铁磁材料的磁化特性。

实验仪器与材料:
1. 信号发生器。

2. 交流电桥。

3. 励磁线圈。

4. 磁滞回线测试线圈。

5. 铁磁材料样品。

6. 示波器。

7. 直流电源。

8. 万用表。

实验步骤:
1. 将交流电桥接通,调节信号发生器输出频率和幅度,使得电桥平衡。

2. 通过励磁线圈对铁磁材料进行励磁,同时接通示波器,观察磁感应强度随时间的变化曲线。

3. 逐渐增大励磁电流,记录不同外加磁场下的磁感应强度值。

4. 根据实验数据,绘制铁磁材料的磁滞回线曲线。

实验结果与分析:
通过实验测得的数据,我们成功绘制出了铁磁材料的磁滞回线曲线。

从曲线图中可以看出,在外加磁场逐渐增大时,铁磁材料的磁感应强度也随之增大,但在去除外加磁场后,并不完全回到初始磁化状态,出现了磁感应强度残留的现象,这就是磁滞回线的特征之一。

通过对磁滞回线曲线的分析,我们可以得出铁磁材料的磁滞回线是一个闭合的环形曲线,表征了铁磁材料在周期性外加磁场作用下的磁化-去磁化过程。

磁滞回线的面积大小反映了铁磁材料的磁滞损耗,面积越大表示磁滞损耗越大,材料的磁化特性越差。

结论:
本实验通过测量铁磁材料的磁滞回线,成功揭示了铁磁材料在外加磁场作用下的磁化特性。

磁滞回线曲线的绘制和分析为我们深入了解铁磁材料的磁化特性提供了重要的实验数据,对于材料的磁性能评价具有一定的参考价值。

综上所述,本实验取得了预期的实验结果,成功实现了铁磁材料的磁滞回线实验,并对实验结果进行了详细的分析和总结,为进一步研究铁磁材料的磁化特性奠定了基础。

相关文档
最新文档