铁磁材料磁滞回线的研究
铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告一、实验目的1、认识铁磁物质的磁化规律,加深对铁磁材料磁滞回线和基本磁化曲线概念的理解。
2、学会使用示波器观察并测绘铁磁材料的磁滞回线和基本磁化曲线。
3、测定样品的一些基本磁化参数,如饱和磁感应强度 Bs、剩磁感应强度 Br、矫顽力 Hc 等。
二、实验原理1、铁磁材料的磁化特性铁磁物质具有很强的磁化能力,其磁导率远大于非铁磁物质。
铁磁材料的磁化过程是不可逆的,存在磁滞现象。
2、磁滞回线当磁场强度 H 从零开始逐渐增加时,磁感应强度 B 随之增加。
当H 增大到一定值时,B 不再增加,达到饱和值 Bs。
随后逐渐减小 H,B 并不沿原曲线减小,而是滞后于 H 的变化。
当 H 减小到零时,B 不为零,而是保留一定的值 Br,称为剩磁感应强度。
要使 B 减为零,必须加反向磁场,当反向磁场达到一定值 Hc 时,B 才为零,Hc 称为矫顽力。
继续增大反向磁场,B 达到反向饱和值Bs,再逐渐增大正向磁场,B 又沿原来的曲线变化,形成一个闭合的曲线,称为磁滞回线。
3、基本磁化曲线将一系列不同幅值的正弦交变磁场依次作用于铁磁材料样品,可得到一系列大小不同的磁滞回线。
连接各磁滞回线顶点的曲线称为基本磁化曲线。
三、实验仪器示波器、实验变压器、电阻箱、标准互感器、待测铁磁材料环形样品等。
四、实验步骤1、按实验电路图连接好线路,检查无误后接通电源。
2、调节示波器,使其能清晰显示磁滞回线。
3、逐渐增大交流电压,使磁场强度 H 逐渐增加,观察示波器上磁滞回线的变化,直至达到饱和。
4、逐点记录磁滞回线顶点的坐标(H,B)。
5、减小交流电压,重复上述步骤,测量多组数据。
6、根据测量数据绘制磁滞回线和基本磁化曲线。
五、实验数据记录与处理1、实验数据记录表|交流电压(V)|磁场强度 H(A/m)|磁感应强度 B(T)|||||||||2、根据实验数据,在坐标纸上绘制磁滞回线。
3、连接磁滞回线的顶点,得到基本磁化曲线。
铁磁材料磁滞回线的研究

到充分放松, 最终调节中枢神经系统兴 由于具有以上特点必须说明的是在测定 B m )和 - B r (≈ - B m )两种不同
奋性的一种方法。研究表明, 这种方法 磁化曲线和磁滞回线时,首先必须对 的剩磁,矩磁材料常用作记忆元件,
在实际的训练和比赛中具有明显消除心 铁磁材料预先进行退磁,以保证外加 如电子计算机中存储器的芯片。
作者简介
“ 胖 ”、 窄 “ 瘦 ” 之 分 。 通 常 根 据 磁滞回线的不同将磁铁材料分为软磁材 料、硬磁材料和矩磁材料等。
软磁材料的磁滞回线窄而长,剩 余磁感应强度 Br 和矫顽磁力 Hc 都很 小,其基本特征是磁导率高,易于磁 化及退磁。软铁、硅钢及波莫合金属 于这一类,它们常用来制造变压器及 电机的转子。当铁磁质反复被磁化 时,介质要发热。实验表明,反复 磁化所发生的热与磁滞回线包围的面积 成正比,变压器选用软磁材料就是考 虑了这一点。
在实验室观察铁磁材料的磁滞回线 是在示波器上进行的。先要将原线圈 的磁场 H 和付线圈磁感应强度 B 转化 为对应的电压信号,在示波器的 X 偏 转板输入正比于样品的励磁磁场 H 的 电压,同时在 Y 偏转板输入正比于样 品中磁感应强度 B 的电压,结果在屏 上就得到样品的 B  ̄ H 回线, 如图 2 所 示。那么磁场 H 和磁感应强度 B 是如 何转化为对应的电压信号呢?
这样,在磁化电流变化的一周期
100 倍以上(例如,当 C 取为 10微法时, 内,电子束的径迹描出一条完整的磁
R 2 应取 3 0 K 欧以上)。这样,U 2 与 I2R2 相比可忽略(由此带来的误差小于 1%),于是(4)式简化为
滞回线,以后每个过程重复此过程。 可逐渐调节输入交流电压,使磁滞回 线由小到大扩展方法,把逐次在坐标
铁磁材料的磁滞回线实验报告

铁磁材料的磁滞回线实验报告磁滞回线是描述铁磁材料磁化特性的重要参数之一,它反映了材料在外加磁场作用下磁化状态的变化规律。
本实验旨在通过测量铁磁材料在不同外加磁场下的磁感应强度,绘制出相应的磁滞回线曲线,从而研究铁磁材料的磁化特性。
实验仪器与材料:1. 信号发生器。
2. 交流电桥。
3. 励磁线圈。
4. 磁滞回线测试线圈。
5. 铁磁材料样品。
6. 示波器。
7. 直流电源。
8. 万用表。
实验步骤:1. 将交流电桥接通,调节信号发生器输出频率和幅度,使得电桥平衡。
2. 通过励磁线圈对铁磁材料进行励磁,同时接通示波器,观察磁感应强度随时间的变化曲线。
3. 逐渐增大励磁电流,记录不同外加磁场下的磁感应强度值。
4. 根据实验数据,绘制铁磁材料的磁滞回线曲线。
实验结果与分析:通过实验测得的数据,我们成功绘制出了铁磁材料的磁滞回线曲线。
从曲线图中可以看出,在外加磁场逐渐增大时,铁磁材料的磁感应强度也随之增大,但在去除外加磁场后,并不完全回到初始磁化状态,出现了磁感应强度残留的现象,这就是磁滞回线的特征之一。
通过对磁滞回线曲线的分析,我们可以得出铁磁材料的磁滞回线是一个闭合的环形曲线,表征了铁磁材料在周期性外加磁场作用下的磁化-去磁化过程。
磁滞回线的面积大小反映了铁磁材料的磁滞损耗,面积越大表示磁滞损耗越大,材料的磁化特性越差。
结论:本实验通过测量铁磁材料的磁滞回线,成功揭示了铁磁材料在外加磁场作用下的磁化特性。
磁滞回线曲线的绘制和分析为我们深入了解铁磁材料的磁化特性提供了重要的实验数据,对于材料的磁性能评价具有一定的参考价值。
综上所述,本实验取得了预期的实验结果,成功实现了铁磁材料的磁滞回线实验,并对实验结果进行了详细的分析和总结,为进一步研究铁磁材料的磁化特性奠定了基础。
磁滞回线实验报告精选全文完整版

〖实验三十〗用示波器观测动态磁滞回线〖目的要求〗1、学习使用示波器对动态磁滞回线进行观察和测量,了解磁感应强度和磁场强度的测量方法;2、学习应用RC 积分电路;3、了解铁磁性材料的动态磁化特性。
〖仪器用具〗动态磁滞回线测量仪(包括正弦波信号源、待测铁磁样品及绕组、积分电路所用的电阻和电容),双踪读出示波器,直流电源,数字多用表,滑线变阻器。
〖实验原理〗1、铁磁材料的磁化特性把物体放在外磁场H 中,物体就会被磁化,其内部产生磁场。
设其内部磁化强度为M ,磁感应强度为B ,可以定义磁化率m χ和相对磁导率r μ表征物质被磁化的难易程度:0m r M H B Hχμμ==物质的磁性按磁化率m χ可以分为抗磁性、顺磁性和铁磁性三种。
抗磁性物质的磁化率为负值,通常在5610~10--的量级,且几乎不随温度变化;顺磁性物质的磁化率通常为2410~10--之间,且随温度线性增大;而铁磁性物质的磁化率通常远大于1,且随温度增高而变小。
除了磁导率高以外,铁磁材料还具有特殊的磁化规律。
对一个处于磁中性状态(H=0且B=0)的铁磁材料加上由小变大的磁场H 进行磁化时,磁感应强度B 随H 的变化曲线称为起始磁化曲线,它大致分为三个阶段:①可逆磁化阶段,当H 很小的时候,B 随H 变化可逆,见图中OA 段,若减小H ,B 会沿AO返回至原点;②不可逆磁化阶段,见图中AS 段,若减小H ,B 不会沿SA 返回(比如当磁场从D 点的D H 减小到D H H -∆,再从D H H -∆增大到D H ,B-H 轨迹会是图中点线所示的回线样式);③饱和磁化阶段,见图中SC 段,在S 点材料已经被磁化至饱和状态,继续增大H ,磁化强度M 不再增大,由于0(M H)βμ=+,B 会随H 线性增大,但增量极小。
图中S H 和S B 表示M 刚刚达到饱和值时的H 和B 的值,分别称为饱和磁场强度和饱和磁感应强度。
如果将铁磁材料磁化到饱和状态(图中S 点)后再减小磁场H ,那么磁感应强度B 会随H 减小而减小,但并不沿起始磁化曲线SAO 减小,而会沿着SP 这条更缓慢的曲线减小。
磁铁的磁滞回线实验

磁铁的磁滞回线实验磁滞回线实验是一种常见的物理实验,通过制作磁滞回线图来展示磁铁在不同磁场强度下的磁化特性。
本文将介绍磁滞回线实验的原理、实验步骤和实验结果的分析。
一、实验原理磁滞回线实验是通过改变磁铁的外部磁场,测量磁铁的磁化强度与外部磁场强度的关系。
在应用过程中,磁铁的磁化强度并不是简单地随外部磁场强度的升高而线性增加,而是出现一定的滞后现象,这种滞后现象被称为磁滞。
二、实验步骤1. 准备实验所需材料:一块铁芯、螺线管、直流电源、电流表以及磁场强度计等。
2. 将螺线管绕在铁芯上,固定好,并将电流表接在螺线管两端。
3. 将铁芯置于电磁铁的磁场中,并调整直流电源的电流,使其产生不同的磁场强度。
4. 测量电流表的读数和磁场强度计的读数,并记录下来。
5. 依次改变磁场强度,并重复步骤4,直到得到一条完整的磁滞回线。
三、实验结果分析通过实验得到的磁滞回线图能够直观地表达磁铁的磁滞现象。
在图中,横轴表示外部磁场强度,纵轴表示磁化强度。
磁滞回线的形状会告诉我们关于磁铁的磁化特性。
磁滞回线图的形状可以呈现出以下几种情况:1. 矩形:矩形回线表示磁铁完全磁化时的特征,当外部磁场的方向与磁铁相同时,磁滞回线为一个闭合的矩形。
2. S形:当外部磁场的方向与磁铁相反时,磁滞回线呈现出S 形,这是因为磁铁开始磁化时,其磁感应强度增大速度比较快,而当磁铁接近饱和时,磁感应强度增大速度减慢,因此形成曲线较为平缓的部分。
3. 弯曲:弯曲的磁滞回线表明磁铁的磁化特性具有不对称性,也就是当外部磁场强度减小或增大时,磁滞回线出现了偏移。
通过观察磁滞回线图,我们可以了解磁铁的磁化特性,包括饱和磁感应强度、残余磁感应强度、矫顽力等参数。
在实际应用中,磁滞回线的形状也会对磁铁的使用产生一定的影响,因此对磁滞回线进行研究具有重要的意义。
总结起来,磁滞回线实验是一种用来展示磁铁磁化特性的常见实验方法。
通过测量磁铁在外部磁场作用下的磁化强度,并制作磁滞回线图,可以直观地了解磁铁的磁化特性和滞后现象。
铁磁材料的磁滞回线实验报告

铁磁材料的磁滞回线实验报告铁磁材料是一类在外加磁场下具有明显磁性的材料,其磁性能对于电磁设备和磁性传感器等领域具有重要的应用价值。
本实验旨在通过对铁磁材料的磁滞回线进行测量和分析,探究其在外磁场作用下磁化特性的变化规律。
1. 实验目的。
本实验旨在通过测量铁磁材料在外磁场作用下的磁化特性,绘制磁滞回线图,并分析其磁滞损耗和矫顽力等参数,从而深入了解铁磁材料的磁性能。
2. 实验原理。
铁磁材料在外磁场作用下会发生磁化过程,当外磁场强度逐渐增大时,材料内部的磁化强度也会随之增大,直至达到饱和状态;而当外磁场强度逐渐减小时,材料的磁化强度也会随之减小,直至回到初始状态。
这一过程形成的磁化特性曲线即为磁滞回线。
3. 实验步骤。
(1)准备铁磁材料样品和磁化装置;(2)将样品置于磁化装置中,并接通电源,施加不同大小的外磁场;(3)通过磁感应计或霍尔元件等磁场测量设备,测量不同外磁场下的磁感应强度,并记录数据;(4)根据记录的数据,绘制铁磁材料的磁滞回线图。
4. 实验结果与分析。
通过实验测量和数据处理,我们得到了铁磁材料的磁滞回线图。
从图中可以明显看出,在外磁场逐渐增大时,磁感应强度也随之增大,直至达到饱和状态;而在外磁场逐渐减小时,磁感应强度也随之减小,直至回到初始状态。
这一过程呈现出明显的磁滞特性,磁滞损耗和矫顽力等参数也可以通过磁滞回线图进行计算和分析。
5. 实验结论。
通过本次实验,我们深入了解了铁磁材料的磁滞特性,掌握了磁滞回线图的绘制和分析方法,对铁磁材料的磁性能有了更深入的认识。
这对于进一步研究和应用铁磁材料具有重要的意义。
6. 实验总结。
本次实验通过对铁磁材料的磁滞回线进行测量和分析,深入了解了其在外磁场作用下的磁化特性。
同时,我们也发现了一些实验中存在的问题和不足之处,为今后的实验和研究工作提供了一定的参考和借鉴。
通过本次实验,我们对铁磁材料的磁滞回线有了更深入的了解,这对于相关领域的研究和应用具有一定的指导意义。
铁磁材料的磁滞回线实验原理

铁磁材料的磁滞回线实验原理一、引言铁磁材料的磁滞回线实验是材料科学中的重要实验之一,它可以通过测量铁磁材料在外加磁场下的磁化强度和磁场强度之间的关系来了解铁磁材料的磁性质。
本文将详细介绍铁磁材料的磁滞回线实验原理。
二、实验原理1. 磁滞回线概念当一个铁磁体置于外加恒定电流或恒定电压下时,其内部会产生一个恒定的磁场。
如果在这个恒定的电流或电压基础上再施加一个变化的电流或电压,那么这个变化就会引起铁磁体内部产生一个变化的磁场。
当施加到一定程度时,这个变化就会导致铁磁体发生饱和现象,即无论施加多大的电流或电压,其内部产生的磁场都不再增大。
当减小施加电流或电压时,铁磁体内部产生的磁场也会随之减小。
如果将此过程中所得到的铝片上记录下来,则得到的图像就被称为磁滞回线。
2. 磁滞回线实验装置磁滞回线实验需要使用到磁滞回线测试仪,它是一种专门用于测量铁磁材料磁性质的设备。
其主要由电源、电流表、电压表、磁场计和铝片等组成。
其中,电源用于提供恒定的电流或电压,电流表和电压表分别用于测量施加在铁磁体上的电流和电压,磁场计则用于测量施加在铁磁体上的磁场强度。
铝片则用于记录施加在铁磁体上的磁场强度和其内部产生的磁化强度之间的关系。
3. 实验步骤(1)将待测试的铁磁材料放置在测试仪中,并通过夹具固定住。
(2)通过测试仪中的控制面板设置所需的实验参数,如施加恒定电流或恒定电压等。
(3)开始实验后,通过测试仪中的控制面板逐渐改变施加在铜片上的电流或电压,并记录下每个时刻所得到的铝片图像。
(4)实验结束后,将所得到的铝片图像进行处理,得到磁滞回线图像。
三、实验注意事项1. 在进行实验前,需要对测试仪进行校准,以确保测量结果的准确性。
2. 在进行实验时,需要注意施加在铁磁体上的电流或电压不要超过其承受范围,否则会导致测试仪器损坏。
3. 在记录铝片图像时,需要确保铝片与测试仪中的磁场计之间没有任何干扰,否则会影响测量结果的准确性。
四、总结通过以上介绍可以看出,铁磁材料的磁滞回线实验是一种简单而重要的材料科学实验。
铁磁材料的磁滞回线实验报告

铁磁材料的磁滞回线实验报告一、实验目的。
本实验旨在通过实验方法测量铁磁材料的磁滞回线,了解铁磁材料的磁滞特性。
二、实验原理。
磁滞回线是指在磁场的作用下,材料磁化强度随着磁场的变化而发生变化,并且在去除磁场后,材料的磁化强度不完全回到零点,形成一个闭合的回线。
铁磁材料的磁滞回线特性是其重要的磁性能指标之一。
三、实验仪器与设备。
1. 电磁铁。
2. 电源。
3. 示波器。
4. 铁磁材料样品。
四、实验步骤。
1. 将铁磁材料样品放置在电磁铁中间位置。
2. 调节电源输出电压,使电磁铁通电,产生磁场。
3. 用示波器测量铁磁材料的磁感应强度随磁场变化的曲线。
4. 逐渐减小电磁铁的电流,观察示波器上的磁滞回线变化。
五、实验数据记录与分析。
根据实验测得的数据,我们绘制了铁磁材料的磁滞回线曲线图。
从曲线图中可以清晰地看出铁磁材料的磁化特性。
在磁场强度增加时,磁感应强度随之增加,但当磁场强度减小时,磁感应强度并不完全回到零点,而是形成一个闭合的回线。
六、实验结论。
通过本次实验,我们深入了解了铁磁材料的磁滞回线特性。
磁滞回线是铁磁材料在磁化过程中产生的一种特殊现象,对于材料的磁性能有着重要的影响。
通过测量和分析磁滞回线,可以更好地了解铁磁材料的磁化特性,为材料的应用提供重要参考。
七、实验注意事项。
1. 在实验中要注意安全,避免触电和磁场对身体造成的影响。
2. 实验过程中要注意仪器的正确使用和操作方法,保证实验数据的准确性和可靠性。
八、参考文献。
1. 《材料物理学实验指导》。
2. 《磁性材料与器件》。
以上为铁磁材料的磁滞回线实验报告。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
次级线圈N2: 121匝 电阻R2: 16kΩ
磁导率:μ= (1.75±0.25) ×10-3
平均磁路L: 0.132m
电容器C:10×10-6 F
标准互感器M: 0.1H
样品截面积A:0.208×10-3 m2
相对磁导率:μr= (1.4±0.2)×10-3
A
13
实验内容
A
14
注意事项
✓ 测绘磁化曲线和磁滞回线时,必须将材料预先
对同一铁磁材料,开始时不带磁性,依次选取磁化电
流为I1、I2、…、Im(I1<I2<…<Im),则相应的磁场 强度为H1、H2、…、Hm。
am
由图的实线段可知,铁 磁材料的磁导率μ=B /H不是常数
图14-3 基本磁化曲线
A
6
实验原理
二、示波器显示磁滞回线的原理和线路
1.示波器X轴输入正比于磁 场强度H
Ux
LR1 N1
Hபைடு நூலகம்
2.示波器Y轴输入正比于磁感强
度B,当 R21/2fC 时,
则有
UY
Uc
N2 A B CR2
yx
图14-4 测量磁滞回线的实 验电路图
A
7
实验原理
a(x, y)
图14-5 用示波器观测到的 磁滞回线
A
8
实验原理
三、测定磁滞回线上的任一点的B、H值
1、示波器偏转板上的电压
UxxDx,UyyDy
2、磁滞回线上所求点的B、H值
HN 1D xx L1R
BR 2CyD y N 2A
A
9
实验仪器
CZ-2型磁滞回线测量仪 GY-4型可调隔离变压器 示波器
A
10
实验内容
一、测绘铁磁材料的基本磁化曲线
1.按图14-4连接线路,调节示波器,使电子束光迹呈现在 坐标网络中心。
2.对试样进行退磁,消除剩磁即H=B=0。 3.观察磁滞回线。调整示波器,令U=60V,调节X、
退磁,以保证 H = 0,B = 0。
✓ 为了避免样品磁化后温度过高,初级线圈通电 时间应尽量缩短,通电电流不可过大。
✓ 可调隔离变压器的电压可以达到100V,使用他 时,要注意安全。
A
15
思考题
➢ 示波器显示的磁滞回线是真实的H-B曲线吗? 如果不是,为什么可以用它来描绘磁滞回线?
➢ 我们常用的永久铁磁是怎样制成的?我们有 没有办法让永久磁铁失去磁性?
A
16
谢谢!
A
17
2.在方格坐标纸上按1∶1的比例描绘屏上显示的磁滞回
线,记下如图14-2中a、b、c、d、e、f具有代表性的 一些点的坐标xi,yi 。 3.读出示波器的偏转因数Dx、Dy,计算出跟xi,yi 点对 应的Hi,Bi 值,并标在描绘磁滞回线的坐标纸上。
A
12
实验内容
技术指标
初级线圈N1:2000匝
电阻R1: 12Ω
大学物理实验
A
1
预习
举例说明铁磁材料有哪些应用? 什么叫做磁畴? 为什么铁磁质会产生剩磁和磁滞现象呢?
A
2
实验目的
了解铁磁质在磁场中磁化的原理及其磁化 规律。 理解磁场强度与磁感应强度的关系。
掌握测定样品的磁滞回线,确定矫顽力、 剩磁感应强度、最大磁感应强度及磁滞损 耗等参数的实验方法。
A
Y轴的灵敏度,使显示屏上出现大小合适的磁滞回线。 4.从零开始,分8次,每次增加10V,保持示波器增益不变。
读记每条磁滞回线顶点坐标,描绘基本磁化曲线。
A
11
实验内容
二、根据给定技术指标,计算Bm、Br、
Hm、Hc等参数和测定磁滞回线
1.令U=60.0V,测定样品的Bm、Br、Hm、Hc等参 数。
3
实验原理
一 、铁磁材料的磁化原理
图14-1 铁磁质在外加磁场作用下磁畴的变化
A
4
实验原理
1.起始磁化曲线、磁滞回线
图14-2 磁滞回线
O到饱和状态a这段B-H曲线,称为
起始磁化曲线
封闭曲线abcdefa,这条曲线称为
磁滞回线。
B r 称为剩磁 H c 称为矫顽磁力
A
5
实验原理
2.基本磁化曲线