niti相变 温度
NiTi形状记忆合金电阻特性研究

2.1计算参数选取 计算参数主要分为两部分:一部分是与电阻率相关的参数,见文献[12];另一部分是与相变温
度及力学特性相关的参数,见文献[13]. 2.2计算工况
根据NiTi SMA的相变温度确定计算工况,见表1.表1给出了NiTi SMA的温度历史及对应 的初始状态.其中,M+A和A+M表示NiTi SMA处于马氏体相和奥氏体相的混合状态.
Coastal Liaoning Province,Dalian University,Dalian 116622.China;2.State Key Laboratory of
and Offshore
Engineeringt Dalian University of Technology,Dalian 116024,China;3.Department ot Mechanical
第11卷第5期 2008年10月
建筑 材 料学 报
JOURNAL OF BUILDING MATERIAI,S
v01.11,No.5 OCt.,2008
文章编号:1007—9629(2008)05--0567—07
ni-ti合金中的形状记忆效应

ni-ti合金中的形状记忆效应下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!niti合金中的形状记忆效应导论形状记忆效应是指某些特殊合金在经历了变形后能够通过加热或其他外部刺激重新恢复到其原来的形状的性质。
[doc]镍钛形状记忆合金的相变温度滞后
![[doc]镍钛形状记忆合金的相变温度滞后](https://img.taocdn.com/s3/m/adfa4938443610661ed9ad51f01dc281e53a56bf.png)
镍钛形状记忆合金的相变温度滞后镍钛形状记忆合金的相变温度滞后秦桂英俞学节金恒王景成内窖提要用透射电镜,正电子湮没和电阻测量,研究yNiTi形状记忆台金的组织结构与相变滞后的关系.结果表明,经不同时效制度处理的组织,其相变温度滞后大小的顺匿.序是:片状马氏体>R相>束状马氏体.Til1Ni14相质点周围的共格应力场对这些!相的可逆转变起障碍作用.正电子湮没多普勒展宽能谱s参数值与试样的温度滞后值之间存在线性关系,从而确认T|1lNil4相析出的错配位错密度及由此而建立的晶体中弹性应力场分布是决定NiTi台金相变温度滞后的主要因素. 关键词:形状记忆台金,相变温度滞后,共格应力,错配位错.一,引言众所周知,NiTi形状记忆台金的双态温度特征是温度滞后型的,其滞后量与热处理,加工,外加应力和加入第三元素有关.在实际工程应用中,有的场合需要温度滞后大,如用于管接头,这时在室温也可保持马氏体状态,而不需要将管接头在扩径后保存在液氨中运到现场使用.相反,对于兼具传感器作用的促发元件,相变滞后温度应当小,这样才能达到高的灵敏度.现已清楚,在NiTi形状记忆台金中存在两种马氏体塑相变:R相变r和M相变【.】,及一种Til1Ni14 相的时效析出[…】.这些相变对形状记忆效应都有贡献或影响‟I】,但是有关决定台金相变滞后的组织因素文献上报导尚少.本文对此用透射电镜,正电子湮没和电阻测量方法进行了研究.二,研究方法以电解Ni和海绵Ti为原料,采用二次真空熔炼制度.台金成份为Ti-51at%Ni.铸锭经锻,轧成0.4ram厚带材‟部份拉成0.6 mm丝材.将带材裁成60×8×0.4m经不32同热处理工艺,制成u型试样.把试样从室温逐渐加热到Af以上温度,然后再遥渐降至室温,测量各温度下U型元件两端的距离1,得不同热处理制度下试样的滞后回线‟随后在这些试样上进行正电子湮没多普勒展宽能谱s参数测定和透射电子显微镜观察,以确定台金的组织结构与相变滞后的关系.同时将士6×130丝材进行与U型试样相同制度的热处理,测量升降温过程的电阻一温度曲线,礴定相变温度.三,研究结果图l示出经500℃时效后试样温度滞后回线和对应的电阻一温度曲线.滞后回线在冷却段可分成三个温度区j当M>T=>Mf, 由于R相变,试样随温度降低形状变化快.在Mf>T>Ms,这时形状随温度降低变化速率减小.这时发生的可能是不同取向R相片的取向调整和R—M转变.在Ms>T> Mf第三温度区,形状变化速率又加快,这时发生了从母相的M相变.在升温过程中,当T<As,试样形状稍有变化,这时发生的可能是不同取向M片的取向调整I”.当T>As时,试样的形状突然变化,并迅速达到图l经5oo℃时效试样的温度滞宿与电阻-一温度曲线原始高温形状,这时发生了M和R相的可逆转变.图l的滞后回线在Mf>T>Ms冷却与R相和片状M相的相对量有关.后低程度图2经500℃时效的透射电镜衍衬象图2示出上述试样的透射电镜衍衬象.Ti11Ni14相以凸透镜状析出,呈魏氏组织分布.在每片Ti11Ni14相周围都有强共格应力衬度.如黑,白箭头所示处.在此试样晶体取向下马氏休的孳晶树度较弱,但是仍可看出马氏休被Til1Nil4相分隔.在试样的升温和降温过程中,R相和马氏体相的长大和逆转变过程的相界移动显然都会受Ti11Nil4 相的共格应力场的阻碍,导致Ml和As点的温度差,呈现形状变化的滞后现象.图3示出经450℃时效的透射电镜衍村象及选区衍射花样.与图2比较,这时组织明显细化.选区电子衍射花样中强斑点是(111)花样,1/3位置斑点是R相衍射“1/2”位置是马氏休衍射斑,箭头所指的是Ti11Ti14衍射斑.由于R相衍射斑较强. 表明这时组织主要是R相.图4是对应这种组织的滞后回线和电阻一温度曲线.在电阻一温度曲线上仅反映单一相变,由图3的电镜组织可知,这主要是R相变.由于M,/与A,M{与Af点接近,相变滞后小,因而形状变化的滞后量比图l显着减小.(a)一(b)图3,经450℃时效的试样透射电镜衍衬象及对应的选区衍射花样进~步降低时效温度,马氏体的形态也33£E一蘩图4经450℃时效后试样的温度滞后回线和相应电阻一温度曲线图5经420℃时效的透射电镜衍衬象和选区电子衍射花样发生变化,图5示出经42o℃时效后的透射电镜明场象和对应选区衍射花样.花样中强斑点是母相(1I1)花样.箭头所指的是马氏体衍射斑,这时的马氏体与图2中形貌不同,呈束状.Til1N114相高度弥散.图6为该种组织的试样温度滞后回线和相应的电阻—温度曲线.Mf与AsMs与Af几乎重合,其形状变化的最大温度溢后Sl℃.低于50℃滞后完全消失,这时的形状变化可能是马氏体变体的取向调整引起的.34‟4E三3一等z善.02030{05060080T.℃图6经420时效后的试样温度滞后回线和相应的电阻—温度曲线从图2,3和5中可以看出,Ti11Ni14相的粒度分布和由此而建立的共格应力场对R相和马氏相变有影响.Til1Ni14相的共格应力场与错配位错相联系.如果共格应力场L(mm)图7经不同温度时效后正电子遵投S参数与滞后温度值的关系,S值测量部位如图所示.是引起滞后的原因,那么错配位错密度与滞后回线的滞后量应有一定的关系.因为错配位错作为一种晶体缺陷可捕获正电子,强I定正电子湮没多普勒展宽能谱s参数可反映位错密度大小,图7是测量结果.图7纵坐标是s参数值,s参数测量部位在元件的弯随处和接近端部处,如图中所示.横坐标标定, 对辟腰状回线(如图】),取马氏体转变部份回线的最大滞后值,对R相相变和柬状马氏体转变(如图4,6),取回线中部两点温度差.图7示出,在试样弯曲处,s参数值与滞后温度值呈直线关系,在端部位置测量,S参数值虽偏离直线,但随滞后温度值增大呈单调升高.四,讨论图7表明,正电子湮多普勒展宽能谱s参数值与温度滞后量有关.在试样弯曲处,由于存在较大的残余应力,使两者呈直线关系.S参数值反映了晶体的缺陷浓度,这里主要是位错的浓度.s参数值愈大,点缺陷和位错浓度越高.形状记忆效应本质上是热弹性马氏体的可逆转变.在NiTi台金中R相也是马氏体型转变….NiTi合金产生双向和全程记忆效应的一个重要条件是材料内部必须内在某种应力场现已清楚,这种应力场与Til1Nil4相析出的大小和分布有关[4”】.Til1Ni4相析出与基休(M)的取向关系为(100)m//(241)M,[o01]11NjII//[112]M.这种半共格相界就出现错配位错,位错数量随相长大而增多.Ti11Ni14相呈凸镜状及其四周的应力场衬度,这都表明共格弹性应力场的存在.看来s参数反映的主要是这类错配位错.图7表明在试样弯曲处测得的s参数值比平直端部处的高,这是由于形变使晶体缺陷(如位错塞积解)浓度增加.也使共格应力场重新调正.马氏体转变是共格切变.图8示意一片透镜状马氏体局围的应它由一个半径和马氏体片半径r相同盼肆体围绕着.切变的形状变化由几条基准线示意.在球体区域内母相单位体积的应变能可近似遣给定为一G.C.Es=…丁式中G为母相切变弹性模量,c为马氏体片厚度,为图中所定义的切变角.显然,当马氏体变厚时(c增大),周围母相中必将发生附加的应变.对热弹性马氏体,因切变量和过冷度小,这种附加应变在马氏体长大过程中始终以弹性应变存在,即Es为弹性应变能.在每一温度下,当转变驱动力AGr--m=Es时,马氏体长大停止,继续长大需要降低温度提高AGr--m.当母相中存在因Ti11Nil4析出的禅性应变场时,马氏体长大产生的应变场就要与之作用,这时马氏体转变图8一片马氏体周围应变场的示意图的能量平衡条件为AGr--m=Esq-E】,E】为两种应变场的交互作用能.使转变的驱动力增加,也就是使马氏体长大相界移动困难. 这种情况对分析马氏体I句母相转变的逆转变过程也成立,即由于存在额外的应力场交互作用能,也使AGm~r增加,因而相变滞后增大.高温时效,Til1Ni14相粗,共格应变场大,因而EI也大}如图1所示,500℃时效后Mf与As相差40℃以上.R相转变的驱动力比马氏体转变小,同时低温时效TI1L Nil4质点小,因而州及A5点接近,相变滞后减小.在更低温度时效,Til1NI14相高35度弥撒,马氏体形貌也变成柬状,这时M和As点近于重台,相变滞后进一步减小(如图4,6).文献[6]指出,R相比马氏体槽转变温度滞后小.元件的动作范周也小.这与本文结果一致.综上所述,从组织因素看,相变滞后与R檀,马氏体相的分布和形貌有关,也与Til1Nil4相析出的大小数量和分布有关.但从结构上看,NiTi台金中相变温度滞后量主要决定于晶体内各种相变过程建立的弹性应力场的交互作用情况.五,结论1,NiTi形状记忆台金的槽变温度滞后与400--500℃温度范围的时效工艺有关, 时效温度低,温度滞后小,元件的动作范围相应也小.2,从组织角度看,温度滞后与元件的动作范围和R相,马氏体相的分布与形貌有关,也与Til1Nil4相析出的大小数量和分布有关.3,正电子湮没s参数测定表明,温度滞后量与晶体缺陷浓度直接有关,这种缺陷是Til1Nil4相析出的界面错配位错.因而推断这种错配位错建立的共格弹性应变场与R 36‟相和马氏体相转变的切变弹性应变场的交互作用,是决定相变温度后滞的主要因素. 参考文献[I]H.C.LingandR.Kaplow~Metalt. Trarts.,11A(~gso)r7[2]H.C.IingandR.KaplowlMeta11. Trans.,12A(19s1)zloz[8]D.P.DautovichandG.R.Purdy~ Can.Metal1.Qua.,4(196s)129[4]N.Nischids,C.M.WdymanandT HonmalSeriptaMetall,,19(~98s)983[5]M.NisehidsandT.Honma.,Serlp-. taMeta11.,18(I984)1293,1299[6]清水谦一,金属so(1989)No.8,95[7]C.M.Hwang,Mmeichle,M.B.Sal amonandC.M.wayrrtan.,Phil.Mag.,A47(1983)9,31,177[8]M.Nischida,C.M.WaymanandT—H0nma.,Metal1.Trans.,17A(1986)l505[9]M.E.FineJPhaseTransformationsinC0ndensedSystems,Macmi11.an.NewY ork,l964。
相变材料有哪些

相变材料有哪些相变材料是指在特定温度下,由于外部刺激(如温度、压力、电场等)而发生结构相变的材料。
相变材料具有非常广泛的应用领域,包括电子器件、传感器、能量存储和转换等。
下面是一些常见的相变材料:1. PCM(相变储能材料):PCM是一种能够吸收和放出大量热量的材料,广泛应用于建筑、汽车和电子设备等领域。
常见的PCM包括聚乙二醇(PEG)、硅油和氟化物等。
2. 碘化铋:碘化铋是一种具有不对称结构的相变材料,可以用于制备红外探测器和可编程反射镜等光学器件。
3. 热记忆合金:热记忆合金是一种能够在不同温度下发生相变的材料。
常见的热记忆合金包括镍钛合金(NiTi)、铜铝合金和铜锌铝合金等。
4. 铁电材料:铁电材料是一种具有铁电性质的材料,可以通过施加电场来改变其结构和性能。
常见的铁电材料包括钛酸钡(BaTiO3)、锆钛酸铅(PZT)和钨酸铁(LiNbO3)等。
5. 磁性形状记忆合金:磁性形状记忆合金是一种能够通过磁场而不是温度来实现相变的材料。
常见的磁性形状记忆合金包括镍锌合金(NiZn)和磁性形状记忆聚合物等。
6. 液晶材料:液晶材料是一种能够在不同温度下发生相变的有机或无机化合物。
常见的液晶材料包括液晶聚合物和液晶小分子等,广泛应用于显示技术和光学器件等领域。
7. 球墨铸铁:球墨铸铁是一种由石墨球和铁基体组成的材料,具有良好的延展性和抗拉强度。
常见的球墨铸铁包括球墨铸铁、铁碳合金和球墨铸铁等。
除了以上列举的相变材料,还有很多其他的相变材料,如形状记忆合金、磁性相变材料和光致相变材料等。
这些相变材料不仅具有丰富的相变性质,还具有独特的物理和化学性质,将在未来的科学研究和工业应用中发挥重要作用。
niti形状记忆合金的dsc曲线

一、概述形状记忆合金(SMAs)是一种具有记忆性能的功能材料,具有形状可逆性和超弹性等独特性能。
其中,niti形状记忆合金由镍和钛两种元素组成,具有优良的记忆性能和机械性能,被广泛应用于医疗器械、汽车、航空航天等领域。
而动态扫描量热仪(DSC)曲线是研究niti形状记忆合金相变行为的重要手段。
二、niti形状记忆合金的基本性能1. 记忆效应niti形状记忆合金具有记忆效应,即在预设的形状被改变后,当受到外力或温度变化等刺激后,能够恢复到其预设的形状,这一特性使得niti形状记忆合金在医疗领域中得到广泛应用,如血管支架等医疗器械的制造。
2. 超弹性niti形状记忆合金还具有超弹性,即在受到外力作用时,能够产生较大的形变而不会发生塑性变形,一旦外力消失,又能够自行恢复原有形状,这种性能使得niti形状记忆合金在汽车和航空航天领域中得到广泛应用。
三、动态扫描量热仪曲线的意义1. 相变温度动态扫描量热仪曲线可以帮助研究人员测定niti形状记忆合金的相变温度,包括马氏体相变和铁素体相变的温度范围和特性,这对于合金的性能评价和应用具有重要意义。
2. 相变热DSC曲线还可以用来测定niti形状记忆合金的相变热,即相变过程中所释放或吸收的热量,这对于理解合金的相变机制和热力学性能具有重要意义。
四、niti形状记忆合金的DSC曲线特征1. 马氏体相变峰在DSC曲线上,马氏体相变通常会呈现出一个明显的放热峰,该峰对应着马氏体相变所释放的热量,通过测定该峰的温度和面积可以得到相变温度和相变热。
2. 铁素体相变峰在DSC曲线上,铁素体相变也会呈现出一个放热峰,该峰对应着铁素体相变所释放的热量,通过测定该峰的温度和面积可以得到相变温度和相变热。
五、niti形状记忆合金的DSC曲线分析1. 相变温度通过分析DSC曲线上的马氏体相变和铁素体相变的温度峰值可以得到合金的相变温度范围,并进一步研究相变温度与合金组织结构和成分之间的关系。
ASTM F2063-05及镍钛合金知识与应用

ASTM F2063-05及镍钛合金知识与应用2008年3月内容提要镍钛超弹记忆合金基础知识 ASTM F2063-05 介绍镍钛超弹记忆合金的应用 镍钛超弹记忆合金在微创镍钛超弹合金(Nitinol)近等原子比的镍和钛组成的金属间化合物(镍:50 at.% or 55 wt. %) (a nearly equal mixture of nickel (50 at.% or 55 wt. %) and titanium)英文专用名字Nitinol(an acronym for NIckel TItanium Naval Ordinance Laboratory)显示形状记忆效应(Shape Memory Effect)和超弹性行为(Superelasticity)形状记忆效应(Shape Memory Effect )马氏体相(martensite ):较低温度结构状态(<Ms ),柔软态,易形变奥氏体相(austenite):较高温度结构状态(>Af ),较高强度,不易形变形变在马氏体状态下进行,加热到奥氏体状态,可恢复到原来的形状 应变不要高于8% AfMs超弹性(Superelasticity)形变在奥氏体状态(austenite) (较高温度>Af)下进行当应力撤除时,材料恢复至原来的形状超弹性应变范围8%从0.5 %至8%的应变范围内,应力基本保持恒定使用温度的影响Dependence on Temperature形状记忆效应和超弹性是一种材料同时兼有的“品质”使用温度影响形状记忆效应或超弹性在高于Af50°C的温度范围内,材料保持超弹性耐腐蚀性能Corrosion Resistant为什么担心NITINOL的耐腐蚀性能?高的Ni 含量(55wt%), 和可能在人体溶液中的溶解表面损坏后的自修复能力与其他材料连接后的电位差腐蚀形成TiO2保护层,耐腐蚀能力优于316L不锈钢Nitinol和316LSS不锈钢具有相当的Ni溶解能力。
NiTi形状记忆合金的超弹性及医学应用研究

NiTi形状记忆合金的超弹性及医学应用研究一、本文概述本文旨在深入探讨NiTi形状记忆合金的超弹性特性及其在医学应用领域的广泛影响。
NiTi,即镍钛合金,以其独特的形状记忆效应和超弹性,在众多工程领域中占据了举足轻重的地位。
尤其在医学领域,NiTi形状记忆合金的应用已逐渐成为研究热点,其在牙科、骨科、心血管科等领域的应用前景广阔。
本文将首先介绍NiTi形状记忆合金的基本特性,包括其形状记忆效应和超弹性的原理及其产生机制。
随后,将重点讨论NiTi合金在医学领域的应用现状,包括其在牙科正畸、骨科植入物、心血管支架等方面的实际应用案例。
本文还将探讨NiTi合金在医学应用中的优势和挑战,以及未来可能的发展方向。
通过对NiTi形状记忆合金超弹性特性的深入研究,以及对其在医学应用领域的系统梳理,本文旨在为相关领域的研究者提供有价值的参考,为推动NiTi合金在医学领域的进一步发展提供理论支持和实践指导。
二、NiTi形状记忆合金的基本性质NiTi形状记忆合金,也被称为镍钛合金,是一种独特的金属合金,其特性源于其独特的晶体结构和相变行为。
NiTi合金由大约50%的镍(Ni)和50%的钛(Ti)组成,其原子比例接近等原子比,这使得它具有非凡的形状记忆效应和超弹性。
形状记忆效应:NiTi合金的形状记忆效应是指合金在经历一定的塑性变形后,通过加热到某一特定温度(即Af温度以上),能够恢复其原始形状的特性。
这种效应源于合金内部发生的可逆马氏体相变。
在低温下,合金处于马氏体相,具有较高的塑性;而在高温下,合金转变为奥氏体相,具有较低的塑性。
当合金在马氏体相下发生塑性变形后,再加热至奥氏体相,合金就能通过相变恢复其原始形状。
超弹性:NiTi合金的超弹性是指合金在受到外力作用时,能够发生大的弹性变形而不产生永久塑性变形的特性。
这种特性使得NiTi 合金在受到外力后,能够迅速恢复到原始状态,具有良好的回复性。
超弹性的产生与合金内部的应力诱发马氏体相变有关。
ni-ti形状记忆合金热压缩变形行为及本构关系

ni-ti形状记忆合金热压缩变形行为及本构关系该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
该ni-ti形状记忆合金热压缩变形行为及本构关系该文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注。
文档下载说明Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document ni-ti形状记忆合金热压缩变形行为及本构关系can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!形状记忆合金是一种具有良好的形状记忆性能和超弹性的特殊金属材料,具有广泛的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
niti相变温度
摘要:
1.介绍niti 相变材料
2.niti 相变的温度范围
3.niti 相变材料的应用
正文:
1.介绍niti 相变材料
iti(镍钛合金)是一种具有独特相变特性的材料。
相变是指物质在温度、压力等条件变化时,由固态、液态或气态之间的一种状态转变为另一种状态的过程。
在niti 材料中,这种相变表现为在外部条件改变时,材料会在固态和液态之间转换。
2.niti 相变的温度范围
iti 材料的相变温度范围通常在-100℃至100℃之间。
在这个温度范围内,niti 材料可以实现快速的相变,从而为许多应用提供了便利。
需要注意的是,niti 材料的相变温度可以通过改变其成分、制备工艺等方法进行调整。
3.niti 相变材料的应用
由于niti 材料具有独特的相变特性,使其在许多领域具有广泛的应用前景。
以下是一些典型的应用实例:
(1)热管理:niti 材料可用于制作热交换器、热电偶等热管理器件,实现高效的热能传递和温度控制。
(2)形状记忆合金:niti 材料在相变过程中可实现形状的自适应变化,可用于制作具有记忆功能的器件,如形状记忆合金。
(3)能源转换:niti 材料可用于制作太阳能电池、燃料电池等能源转换器件,提高能源转换效率。
(4)生物医疗:niti 材料具有良好的生物相容性,可用于制作生物医疗器件,如植入式传感器、血管支架等。
总之,niti 相变材料凭借其独特的相变特性和广泛的应用领域,成为了材料科学研究的热点之一。