工具箱檩条墙梁计算参数

合集下载

檩条计算

檩条计算

一.1b=100t=10h=230s=6B=200T=10#VALUE!mm2#VALUE!mm #VALUE!mm#VALUE!mm 4#VALUE!mm 3#VALUE!mm 32混凝土等级C208.08板厚h d 100梁跨度6000梁左相邻净距1800梁右相邻净距1800板托顶宽b 0300板托高度h t150b 1 =600b 2 =6001500mm150000mm 2#VALUE!mm 2#VALUE!mm混凝土板顶面至组合截面中和轴的距离 x= [b e *h d 2/(2*αE )+A*y]/A 0 =#VALUE!mm 混凝土截面惯性矩 I c = b e *h d 3/12=1.3E+08mm 4换算成钢截面的组合截面惯性矩 I 0 = I c /αE + A c *(x-0.5h d )2/αE + I + A(y-x)2=#VALUE!mm 4#VALUE!mm 4#VALUE!mm 4#VALUE!mm 4#VALUE!mm43#VALUE!mm 2混凝土板顶面至组合截面中和轴的距离x c = [b e *h d 2/(4*αE )+A*y]/A 0c=#VALUE!mm #VALUE!mm 4#VALUE!mm 4#VALUE!mm 4#VALUE!mm 4#VALUE!mm 4二施工阶段的验算1弯矩和剪力钢梁自重:#VALUE!kN/m板自重: 6.00kN/m2000mm)板托重:0.90kN/m #VALUE!kN/m 自重标准值 g 1:#VALUE!kN/m 施工荷载: 2.80kN/m 施工阶段弯矩设计值M #VALUE!kN.m (梁跨度:6000mm)施工阶段剪力设计值V #VALUE!kN 2钢梁抗弯强度设计#VALUE!N/mm 2<215N/mm 2#VALUE!#VALUE!N/mm2<215N/mm2#VALUE!3钢梁剪应力计算面积矩 S=#VALUE!mm 3#VALUE!N/mm 2<125N/mm 2#VALUE!4挠度计算考虑混凝土徐变的组合截面特征计算换算成钢截面的组合截面面积 A 0c = A c / 2αE + A =换算成钢截面的组合截面惯性矩 I 0c = I c /(2*αE ) + A c *(x c -0.5h d )2/(2*αE) + I + A(y-x c )2 =(平台梁间距:钢梁剪应力τ1max = v 1*s 1/I*t w =混凝土板截面面积A c = b e * h d =换算成钢截面的组合截面面积A 0=A c /αE +A =对混凝土板底面的组合截面弹性抵抗矩 w 0c b=αE *I 0 / (x - h d ) =对钢梁上翼缘的组合截面弹性抵抗矩 w 0t = I 0 / (d-x) =对混凝土板顶面的组合截面弹性抵抗矩 w 0c tc = 2αE *I 0c / x c =对钢梁下翼缘的组合截面弹性抵抗矩 w 0b = I 0 / (H-x) =屋面檩条计算截面特征计算钢梁面积 A =b*t + h*s +B*T =钢梁中和轴至钢梁顶面的距离为 y t = [0.5b*t 2 + h*s*(0.5h + t) + B*T*(t+h+0.5T)] / A =钢梁截面特征计算:钢梁中和轴至钢梁顶面的距离为 y b = h + t + T - y t =钢梁截面惯性矩 I= (b*t 3 + s*h 3 + B*T 3) / 12 + b*t*(yt-0.5t)2 + s*h*(y t -0.5h-t)2 + B*T*(0.5T+h+t-y t )2 =钢梁上翼缘的弹性抵抗矩 W 1 = I / y t =混凝土板顶面至钢梁截面中和轴的距离 y = h d + h t +y t =对混凝土板顶面的组合截面弹性抵抗矩 w 0c t = αE *I 0 / x=混凝土板计算宽度b e =钢梁上翼缘的弹性抵抗矩 W 2 = I / y b =组合截面特征计算:钢与混凝土弹性模量比αE =自重标准值 g 1k :对混凝土板底面的组合截面弹性抵抗矩 w 0c bc =2αE *I 0c / (x c - h d ) =对钢梁上翼缘的组合截面弹性抵抗矩 w 0tc= I 0c/ (d-x c) =对钢梁下翼缘的组合截面弹性抵抗矩 w 0bc = I 0c / (H-x c ) =钢梁上翼缘应力 M / r x *W 1 =钢梁下翼缘应力 M / r x *W 2 =△=5*g*l 4/(384*E*I)=#VALUE!mm < L/400 =15mm #VALUE!三使用阶段的验算1弯矩及剪力找平层重: 1.9kN/m 活荷载:15.6kN/m (活荷载:6kn/m 2)78.84kN.m 52.56kN22.1#VALUE!N/mm 2<10N/mm 2#VALUE!#VALUE!N/mm 2<10N/mm 2#VALUE!#VALUE!N/mm 2<215N/mm2#VALUE!#VALUE!N/mm 2<215N/mm 2#VALUE!2.2#VALUE!N/mm 2<10N/mm 2#VALUE!#VALUE!N/mm 2<10N/mm2#VALUE!#VALUE!N/mm 2<215N/mm 2#VALUE!#VALUE!N/mm 2<215N/mm 2#VALUE!2.3(略)2.4(略)3钢梁的剪应力#VALUE!mm 3#VALUE!mm 3#VALUE!N/mm 2<125N/mm 2#VALUE!4组合梁的挠度#VALUE!mm< L/400 =15mm #VALUE!τ=V 1S 1/It w +V 2S o /I o T w =两个受力阶段的荷载对组合梁的钢梁产生的剪应力△=5q k l 4/384EI o +5g k l 4/384EI o c =组合梁中由于混凝土收缩引起的内力钢梁腹板顶面处对钢梁中和轴的面积矩S 1=钢梁腹板顶面以外的砼及钢梁上翼缘对组合截面中和轴的面积矩S o =使用阶段弯矩设计值M 使用阶段剪力设计值V 组合梁的抗弯强度在垂直荷载作用下的正应力考虑混凝土徐变在垂直荷载作用下的正应力混凝土板顶面应力:σ0c tc =-(M 2g /W 0c tc +M 2q /W 0c t )=混凝土板顶面应力σ0c t =-M/W 0c t =混凝土板底面应力σ0c b =-M/W 0c b =钢梁上翼缘应力σ0t = -M 1/W 1+M 2/W 0t=钢梁下翼缘应力σ0b = -M 1/W 2+M 2/W 0b =σ0bc = -M 1/W 2+(M 2g /W 0bc +M 2q /W 0b )=钢梁下翼缘应力温度差产生的应力σ0c bc =-(M 2g /W 0c bc +M 2q /W 0c b )=混凝土板底面应力:钢梁上翼缘应力σ0tc = -M 1/W 1+(M 2g /W 0tc +M 2q /W 0t )=。

檩条墙梁设计指南

檩条墙梁设计指南

墙梁檩条设计指南(Version 1.0 2010-5-5)第一部分计算参数的选取一、檩条部分1、屋面一般采用斜卷边Z形连续檩条。

当柱距≥12米,且屋面荷载较大时,可采用格构式檩条或高频焊接H型钢。

2、注意不是所有的屋面檩条都是5连跨,下列情况就需要考虑檩条的实际跨度:(1)屋顶通气器和屋顶天窗在端跨一般不设置(有时候第二跨也不设置),此时檩条为单跨简支(或两跨连续);(2)屋面有横向采光通风天窗或顺坡通气器时,檩条可能会被打断,檩条应根据实际情况确定跨数;(3)檩条本身的跨数就少于5跨。

3、屋面材料选择时,若有吊顶,须选取“有吊顶”选项。

檩条仅支承压型钢板屋面时,挠度控制为l/200;有吊顶时,挠度控制为l/240。

4、屋面倾角:建筑图所标的是坡度,需要换算成角度。

有弧形屋面梁时,须考虑檩条倾角的不断变化。

5、拉条道数的设置:当檩条跨度≤4米时,一般不设置拉条;当檩条跨度>4米、≤6米时,一般在檩条跨中设置一道拉条;当檩条跨度>6米、≤9米时,一般设置两道拉条(三分点处);当檩条跨度为12米时,一般设置三道拉条。

拉条均为双层拉条,同时约束檩条上、下翼缘。

6、檩条间距:檩条的间距一般控制在1.0~1.5米之间,常用的间距有1.2、1.4、1.5米。

檩条间距不得超过1.5米;对于屋面荷载较大的部位(例如高低垮处),局部檩条间距可以小于1米。

7、檩条搭接长度的取值:檩条搭接长度取跨长的10%(两边各5%)。

9米跨度一般取500mm,12米跨度一般取600mm。

8、截面选择:设计时尽量选择标准截面,常用的标准截面高度有:200、220、250mm,常用的标准截面厚度有2.0、2.2、2.5mm,若需选择非标准截面,可通过“檩条库”选项增加截面参数。

(标准截面详见《钢结构设计手册》和《冷弯薄壁型钢结构技术规范》)注意:(1)非标准截面的截面厚度不得大于3.0mm;(2)非标准截面的截面高度不宜大于280mm,若高度大于280mm,须采用加强措施,避免檩条侧向失稳。

工具箱檩条墙梁计算参数

工具箱檩条墙梁计算参数

简支檩条设计合肥地区参数1.C型截面一般用于单跨简支;Z型可用于多跨连续;一般跨度大于7.5m采用连续式。

壁厚取1.8-3.0mm,优先选用较薄壁厚,檩条间距一般采用1.5m,局部可加密;2.屋面倾斜角度1:20换算成角度,arctan0.05=2.8624;3.檩条布置,应考虑天窗、通风屋脊、采光带、屋面材料、檩条供货规格等因素,檩条间距应按计算确定,檩条在边区会采取加密,檩条跨度4-6m,宜在跨中设置拉条或撑杆,当檩条跨度大于6m时,在檩条跨度三分点各设一道拉条或撑杆(见门钢规范P33);4.拉条的约束作用一般要看建筑选取的屋面板类型及其对檩条的约束情况,同时还要考虑荷载不利位置。

(一般情况下拉条都要约束檩条下翼缘,但如果风载很大,起主导作用,就要约束檩条上翼缘)①外层屋面板一般选取可滑动(可随冷热伸缩)的,这样的屋面板不能约束檩条上翼缘,(不勾选屋面板能阻止檩条上翼缘侧向失稳)拉条作用要选择约束檩条上、下翼缘;②如外层屋面板是打钉板、卡扣板等不可活动的(勾选屋面板能阻止檩条上翼缘侧向失稳),拉条作用选择约束檩条下翼缘;③如选取内外双层屋面板(勾取构造保证下翼缘风吸力作用稳定性)拉条作用选择约束檩条下翼缘,再根据外层屋面板类型选取是否约束檩条上翼缘;4.净截面系数(是考虑到构件表面打孔等处理导致截面削弱时,导致的被削弱断面的应力增大),当拉条位于跨中(跨中弯矩打孔对最大弯矩有影响,)时应适当折减,可取0.95;当拉条位于三分点处则折减。

5.屋面自重(不含檩条自重)一般取0.2-0.25KN/m2之间均可;6.屋面活载和雪荷载分别输入,程序会选择较大者进行计算;(见荷载规范P73全国各城市50年一遇雪压、风压值);屋面活载要考虑活载不均匀布置,当采用压型钢板轻型屋面时,屋面竖向均布活荷载标准值应取0.5KN/ m2 (当受荷水平投影面积大于60m2时可取0.3KN/m2)(见门钢规范P7);7.积灰荷载,一般不取积灰荷载,只有一些热处理车间取(见荷载规范P14、P15屋面积灰荷载取值;)表中没有列出的取0;8.施工荷载,见荷载规范P16施工和检修荷载及栏杆水平荷载;9.调整后基本风压,按荷载规范规定值乘以1.05(见门钢规范P56);10.风压高度变化系数,见荷载规范P25表;11.体型系数取值会随建筑形式和分区的选择而自动变化;12.当屋面有通风器等构件时,要单独计算.13.屋面板惯性矩是指每米屋面板的惯性矩,如果按门规CESC102:2002计算(风吸力作用按附录E计算)时,必须输入该数据;当输入轴力设计值(>0)时,程序默认为刚性檩条,按压弯构件计算。

工具箱檩条墙梁计算参数

工具箱檩条墙梁计算参数

③如选取内外双层屋面板(勾取构造保证下翼缘风吸力作用稳定性)拉条作用选择约束檩条下翼缘,再根据外层屋面板类型选取是否约束檩条上翼缘;4.净截面系数(是考虑到构件表面打孔等处理导致截面削弱时,导致的被削弱断面的应力增大),当拉条位于跨中(跨中弯矩打孔对最大弯矩有影响,)时应适当折减,可取0.95;当拉条位于三分点处则折减。

5.屋面自重(不含檩条自重)一般取0.2-0.25KN/m2之间均可;6.屋面活载和雪荷载分别输入,程序会选择较大者进行计算;(见荷载规范P73全国各城市50年一遇雪压、风压值);屋面活载要考虑活载不均匀布置,当采用压型钢板轻型屋面时,屋面竖向均布活荷载标准值应取0.5KN/ m2(当受荷水平投影面积大于60m2时可取0.3KN/m2)(见门钢规范P7);7.积灰荷载,一般不取积灰荷载,只有一些热处理车间取(见荷载规范P14、P15屋面积灰荷载取值;)表中没有列出的取0;8.施工荷载,见荷载规范P16施工和检修荷载及栏杆水平荷载;9.调整后基本风压,按荷载规范规定值乘以1.05(见门钢规范P56);10.风压高度变化系数,见荷载规范P25表;11.体型系数取值会随建筑形式和分区的选择而自动变化;12.当屋面有通风器等构件时,要单独计算.13.屋面板惯性矩是指每米屋面板的惯性矩,如果按门规CESC102:2002计算(风吸力作用按附录E计算)时,必须输入该数据;当输入轴力设计值(>0)时,程序默认为刚性檩条,按压弯构件计算。

无论是否输入轴力设计值,程序最终会输出檩条所承担最大轴力设计值。

14.风吸力作用验算方法:选择门规验算时,风吸力下翼缘稳定性验算方法可选门规附录E或门规(式6.3.7-2)计算(结果差异较大)。

在设置拉条且约束上翼缘时,式6.3.7-2结果偏大;拉条同时约束上下翼缘时,附录E结果偏大。

选择原则:1亚星钢板屋面(厚度>0.66mm),屋面和檩条有可靠连接(自攻螺钉等紧固件),设置单层拉条靠近上翼缘,按门规附录E计算;2刚度较弱的屋面(塑料瓦材料等)、非可靠连接的压型钢板(扣合式等),应选6.3.7-2式或冷弯规范计算,应设双层拉条、交叉拉条、型钢条,拉条同时约束上下翼缘。

墙面檩条计算 - C型檩条 - 简支檩条

墙面檩条计算 - C型檩条 - 简支檩条

L
AB
C
D
E
F
G
H
I
J
76
77
78
2020/2/2 13:30
File: 2061510562.xls Shee: 1 span-C 3 of 3
46
qx = 1.4*Px*d =
47
48
qy - 垂直于 y 轴(地面)的荷载设计值
49
qy = 1.2*(Py*d+m/100) =
50
ቤተ መጻሕፍቲ ባይዱ
51
qkx - 垂直于 x 轴(墙面)的荷载标准值 =
52
qkx = Px*d =
53
1.27 kN/m 0.24 kN/m 0.91 kN/m
54 D. 55
20 B. 荷载类型:
21
Px - Max (Px1, Px2) =
0.61 kN/m2
22
* Px1 - 垂直于墙面吸风荷载 = μ s*μ z*ω 0 =
-0.605 kN/m2
23
μ s=
-1.1
24
μ z=
1.00
25
* Px2 - 垂直于墙面压风荷载 =μ s*μ z*ω 0 =
0.55 kN/m2
26
μ s=
1.0
27
μ z=
1.00
28
Py - 垂直于地面恒载(墙板、保温棉重量) =
29
0.10 kN/m2
30 C. 荷载组合: 31
2020/2/2 13:30
File: 2061510562.xls Shee: 1 span-C 1 of 3
L
AB
C
D

用PKPM工具箱计算檩条常见错误纠正

用PKPM工具箱计算檩条常见错误纠正

用PKPM工具箱计算檩条常见错误纠正第一部分:檩条计算---用PKPM工具箱计算檩条我们在进行车间和库房设计时,经常要计算檩条,由于手算比较繁杂,很多人用PKPM 工具箱来计算檩条。

但是在使用PKPM工具箱计算时,由于不能正确的选用参数,所以提供的计算书往往错误很多,当然也就不能准确计算出所需檩条的规格。

实际上,PKPM 工具箱檩条的计算版面格式是为《门规》库房量身定做的,并且风荷载的计算参数设置是完全按照《门规》要求来的,即没有按照《荷规》设置阵风系数等参数。

那么什么样的结构是符合《门规》的结构?《门规》附录A.0.1条文说明指出:当柱脚铰接且刚架的L/h大于2.3和柱脚刚接且L/h大于3的低矮房屋计算风荷载时应该按照《门规》取值,而不应按照《荷规》来取值。

所以我们平时进行檩条计算时,就应该分为两种:符合《门规》的结构按照《门规》来计算、不符合《门规》的结构要按照《荷规》来计算。

实质上,就是两种风荷载计算方法不同而已,而风荷载参数的正确选用对檩条的影响是至关重要的,下面就总结一些利用PKPM工具箱计算檩条时参数选取的注意点。

一,参数选取1,檩条形式:此项提供12种截面形式供选择,一般常用“C形檩条”及“Z形檩条”。

①,跨度大于9m时檩条宜采用格构式构件(《门规》6.3.1条)。

②,坡度较大时(i>1/3)宜用直边和斜卷边Z形檩条,这是因为当屋面坡度增大,Z型檩条对称于竖直方向的抗弯截面模量利用率增大。

③,连续檩条宜采用Z形檩条,因其搭接方便可通过可靠搭接实现刚接,从而可按连续梁计算。

2,截面名称:与檩条形式相对应。

从节约用钢量的角度,选取的原则是“偏大不偏厚”。

比如C180X70X20X2.5与C220X75X20X2.0各初始设计条件相同时,计算结果中强度、挠度、稳定性均相差无几,二者的单重却差别较大,在用量大的情况下可以节约不少用钢。

同理,C180X70X20X2.2也可用C200X70X20X2.0代替,节约钢材用量。

墙面檩条计算书

墙面檩条计算书

简支墙檩计算书==================================================================== 计算软件:MTS钢结构设计系列软件计算时间:2013年09月22日09:14:03====================================================================一. 设计资料采用规范:《门式刚架轻型房屋钢结构技术规程CECS 102:2002》《冷弯薄壁型钢结构技术规范GB 50018-2002》墙檩间距为1.5m;简支墙檩的跨度为9m截面采用:C-200*70*20*2.2-Q235;以下为截面的基本参数:A(cm2)=7.96 e0(cm)=4.93I x(cm4)=479.87 i x(cm)=7.77W x(cm3)=47.99I y(cm4)=50.64 i y(cm)=2.52W y1(cm3)=25.31W y2(cm3)=10.13 I t(cm4)=0.1284I w(cm6)=3963.82跨度中等间距的布置2道拉条;净截面折减系数为0.98;墙檩截面开口向上;墙檩单侧挂压型钢板;简图如下所示:二. 荷载组合及荷载标准值考虑恒载工况(D)、风吸力工况(W1)、风压力工况(W2)强度验算时考虑以下荷载工况组合:1.2D+1.4W11.2D+1.4W21.35D整稳验算时考虑以下荷载工况组合:1.2D+1.4W11.35D挠度验算时考虑以下荷载工况组合:D+W1D+W2恒载:墙体自重: 0.1kN/m2自动考虑檩条自重;风载:基本风压: 0.3kN/m2风吸力体型系数-1.1,风压力体型系数1,风压高度变化系数1风振系数为1;风压综合调整系数1;风吸力标准值:-1.1×1×1×1×0.3=-0.33kN/m2;风压力标准值:1×1×1×1×0.3=0.3kN/m2;三. 验算结果一览验算项验算工况结果限值是否通过受弯强度 1.2D+1.4W1 163.936 205 通过2轴受剪强度 1.2D+1.4W1 10.8704 120 通过3轴受剪强度 1.35D 2.59525 120 通过2轴挠度D+W1 42.9907 45 通过3轴挠度D+W1 1.1165 30 通过2轴长细比- 79.3651 200 通过3轴长细比- 77.2201 200 通过四. 受弯强度验算最不利工况为:1.2D+1.4W1最不利截面位于,离开首端4500mm绕3轴弯矩:M3= 7.016kN·m绕2轴弯矩:M2= 0.05758kN·m计算当前受力下有效截面:毛截面应力计算σ1=7.016/47.99×1000-(0.05758)/25.31×1000=143.928N/mm2(上翼缘支承边)σ2=7.016/47.99×1000+(0.05758)/10.13×1000=151.887N/mm2(上翼缘卷边边)σ3=-(7.016)/47.99×1000-(0.05758)/25.31×1000=-148.478N/mm2(下翼缘支承边)σ4=-(7.016)/47.99×1000+(0.05758)/10.13×1000=-140.519N/mm2(下翼缘卷边边)计算上翼缘板件受压稳定系数k支承边应力:σ1=143.928N/mm2非支承边应力:σ2=151.887N/mm2较大的应力:σmax=151.887N/mm2较小的应力:σmin=143.928N/mm2较大的应力出现在非支承边压应力分布不均匀系数:ψ=σmin/σmax=143.928/151.887=0.9476部分加劲板件,较大应力出现在非支承边,ψ≥-1时,k=1.15-0.22ψ+0.045ψ2=1.15-0.22×0.9476+0.045×0.94762=0.9819计算下翼缘板件受压稳定系数k支承边应力:σ1=-148.478N/mm2非支承边应力:σ2=-140.519N/mm2全部受拉,不计算板件受压稳定系数计算腹板板件受压稳定系数k第一点应力:σ1=-148.478N/mm2第二点应力:σ2=143.928N/mm2较大的应力:σmax=143.928N/mm2较小的应力:σmin=-148.478N/mm2压应力分布不均匀系数:ψ=σmin/σmax=-148.478/143.928=-1.032在计算k时,当ψ<-1时,取ψ值为-1。

檩条用量计算公式

檩条用量计算公式

檩条用量计算公式檩条是建筑中常用的一种材料,它通常用于支撑屋顶和地面结构。

在建筑设计和施工中,正确计算檩条的用量是非常重要的,可以确保结构的稳固和安全。

因此,掌握檩条用量计算公式是非常必要的。

檩条用量计算公式通常包括以下几个方面,檩条长度、檩条间距、檩条数量等。

下面我们将逐一介绍这些计算公式。

首先是檩条长度的计算公式。

檩条长度的计算通常是根据实际需要的横跨距离来确定的。

一般来说,檩条的长度应该比实际需要的横跨距离长出一定的余量,以确保檩条可以完全覆盖到需要支撑的区域。

檩条长度的计算公式可以表示为,檩条长度 = 实际需要的横跨距离 + 余量。

其次是檩条间距的计算公式。

檩条的间距通常是根据檩条的尺寸和支撑结构的要求来确定的。

檩条间距的计算公式可以表示为,檩条间距 = 支撑结构的要求檩条尺寸。

最后是檩条数量的计算公式。

檩条数量的计算通常是根据支撑结构的长度和横跨距离来确定的。

檩条数量的计算公式可以表示为,檩条数量 = 支撑结构的长度 /檩条间距。

需要注意的是,在实际的建筑设计和施工中,檩条的用量计算还需要考虑到其他因素,如檩条的材质、横截面积、承重能力等。

因此,在进行檩条用量计算时,需要综合考虑这些因素,并根据具体情况进行调整。

除了上述的基本计算公式外,还有一些特殊情况需要特别注意。

例如,在檩条的连接处需要考虑到搭接长度和连接方式,这些都会对檩条的用量产生影响。

另外,如果支撑结构的形状不规则,还需要进行相应的调整计算。

因此,在进行檩条用量计算时,需要根据具体情况进行灵活处理。

总之,檩条用量计算公式是建筑设计和施工中非常重要的一部分。

正确的檩条用量计算可以保证结构的稳固和安全,避免浪费材料和资源。

因此,建筑设计师和施工人员需要熟练掌握檩条用量计算公式,并根据实际情况进行灵活应用,以确保建筑结构的质量和安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简支檩条设计
合肥地区参数
1.C型截面一般用于单跨简支;Z型可用于多跨连续;一般跨度大于7.5m采用连续式。

壁厚取1.8-3.0mm,优先选用较薄壁厚,檩条间距一般采用1.5m,局部可加密;
2.屋面倾斜角度1:20换算成角度,arctan0.05=2.8624;
3.檩条布置,应考虑天窗、通风屋脊、采光带、屋面材料、檩条供货规格等因素,檩条间距应按计算确定,檩条在边区会采取加密,檩条跨度4-6m,宜在跨中设置拉条或撑杆,当檩条跨度大于6m时,在檩条跨度三分点各设一道拉条或撑杆(见门钢规范P33);
4.拉条的约束作用一般要看建筑选取的屋面板类型及其对檩条的约束情况,同时还要考虑荷载不利位置。

(一般情况下拉条都要约束檩条下翼缘,但如果风载很
大,起主导作用,就要约束檩条上翼缘)
①外层屋面板一般选取可滑动(可随冷热伸缩)的,这样的屋面板不能约束檩
条上翼缘,(不勾选屋面板能阻止檩条上翼缘侧向失稳)拉条作用要选择约束檩条上、下翼缘;
②如外层屋面板是打钉板、卡扣板等不可活动的(勾选屋面板能阻止檩条上翼
缘侧向失稳),拉条作用选择约束檩条下翼缘;
③如选取内外双层屋面板(勾取构造保证下翼缘风吸力作用稳定性)拉条作用选择约束檩条下翼缘,再根据外层屋面板类型选取是否约束檩条上翼缘;
4.净截面系数(是考虑到构件表面打孔等处理导致截面削弱时,导致的被削弱断面的应力增大),当拉条位于跨中(跨中弯矩打孔对最大弯矩有影响,)时应适当折减,可取0.95;当拉条位于三分点处则折减。

5.屋面自重(不含檩条自重)一般取0.2-0.25KN/m2之间均可;
6.屋面活载和雪荷载分别输入,程序会选择较大者进行计算;(见荷载规范P73全国各城市50年一遇雪压、风压值);屋面活载要考虑活载不均匀布置,当采用压型钢板轻型屋面时,屋面竖向均布活荷载标准值应取0.5KN/ m2 (当受荷水平投影面积大于60m2时可取0.3KN/m2)(见门钢规范P7);7.积灰荷载,一般不取积灰荷载,只有一些热处理车间取(见荷载规范P14、P15屋面积灰荷载取值;)表中没有列出的取0;
8.施工荷载,见荷载规范P16施工和检修荷载及栏杆水平荷载;
9.调整后基本风压,按荷载规范规定值乘以1.05(见门钢规范P56);
10.风压高度变化系数,见荷载规范P25表;
11.体型系数取值会随建筑形式和分区的选择而自动变化;
12.当屋面有通风器等构件时,要单独计算.
13.屋面板惯性矩是指每米屋面板的惯性矩,如果按门规CESC102:2002计算(风吸力作用按附录E计算)时,必须输入该数据;当输入轴力设计值(>0)时,程序默认为刚性檩条,按压弯构件计算。

无论是否输入轴力设计值,程序最终会输出檩条所承担最大轴力设计值。

14.风吸力作用验算方法:选择门规验算时,风吸力下翼缘稳定性验算方法可选门规附录E或门规(式6.3.7-2)计算(结果差异较大)。

在设置拉条且约束上翼缘时,式6.3.7-2结果偏大;拉条同时约束上下翼缘时,附录E结果偏大。

选择原则:1亚星钢板屋面(厚度>0.66mm),屋面和檩条有可靠连接(自攻螺钉等紧固件),设置单层拉条靠近上翼缘,按门规附录E计算;2刚度较弱的屋面(塑料瓦材料等)、非可靠连接的压型钢板(扣合式等),应选6.3.7-2式或冷弯规范计算,应设双层拉条、交叉拉条、型钢条,拉条同时约束上下翼缘。

连续檩条设计。

相关文档
最新文档