小学奥数16数阵图讲解学习

合集下载

数阵图-奥数优秀课件

数阵图-奥数优秀课件
2,把2——9分别填入下图圆圈内,使每个大圆上的五个数 的和相等,并且最大。
【经典例题】
例题1 把2~6这五个数分别填入下图的“○”中,使得横行三数之和与竖列三 数之和都等于13。
【经典例题】
例题1 把2~6这五个数分别填入下图的“○”中,使得横行三数之和与竖列三数之和都 等于13。
解析: 横行三数之和与竖列三数的和是 : 13×2=26 各个数的和是:
解析: 横行三数之和与竖列三数的和是 : 13×2=26 各个数的和是:
2+3+4+5+6=20 中间的数是 : 26-20=6 2+5=4+3=7
【经典例题】
例题1 把2~6这五个数分别填入下图的“○”中,使得横行三数之和与竖列三数之和都 等于13。
解析: 横行三数之和与竖列三数的和是 : 13×2=26 各个数的和是:
7个数字总和:(1+7)×7÷2=28
中间数字为:30-28=2
2÷2=1
边上的数字和:10-1=9,
2+7=4+5=3+6
(答案不唯一)
【课堂练习】
练习3: 把3~9这七个数字分别填入下图的各“○”中,使每条线上三个“○”内数的和等
于16.
【课堂练习】
练习3: 把3~9这七个数字分别填入下图的各“○”中,使每条线上三个“○”内数的和等
【思路导航】 设中间两个圆中的数为a、b,则两个大圆的总和是1+2+3 +……+10+a+b=30×2,即55+a+b=60,a+b=5。在 1——10这十个数中1+4=5,2+3=5。 当a和b是1和4时,每个大圆上另外四个数分别是(2,6,8, 9)和(3,5,7,10);当a和b是2和3时,每个大圆上另 外四个数分别为(1,5,9,10)和(4,6,7,8)。

三年级奥数第16次课:数阵图(一)(学生版)

三年级奥数第16次课:数阵图(一)(学生版)

【我生命中最最最重要的朋友们,请你们认真听老师讲并且跟着老师的思维走。

学业的成功重在于考点的不断过滤,相信我赠予你们的是你们学业成功的过滤器。

谢谢使用!!!】数阵图(一)一、考点、热点回顾1、数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。

2、观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。

右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15。

上面两个图就是数阵图。

二、典型例题例1、把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。

例2 、把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。

例3 、把1~5这五个数填入右图中的○里,使每条直线上的三个数之和相等。

例4 、将1~7这七个自然数填入左下图的七个○内,使得每条边上的三个数之和都等于10。

例5 、将 10~20填入左下图的○内,其中15已填好,使得每条边上的三个数字之和都相等。

辐射型辐射型数阵图只有一个重叠数,重叠次数是“直线条数”-1,即m-1。

对于辐射型数阵图,有:已知各数之和+重叠数×重叠次数=直线上各数之和×直线条数。

由此得到:(1)若已知每条直线上各数之和,则重叠数等于(直线上各数之和×直线条数-已知各数之和)÷重叠次数。

如例1、例4。

(2)若已知重叠数,则直线上各数之和等于(已知各数之和+重叠数×重叠次数)÷直线条数。

如例2、例5。

(3)若重叠数与每条直线上的各数之和都不知道,则要从重叠数的可能取值分析讨论,如例3。

三、习题练习1、将1~7这七个数分别填入左下图中的○里,使每条直线上的三个数之和都等于12。

如果每条直线上的三个数之和等于10,那么又该如何填?2、将1~9这九个数分别填入右上图中的○里(其中9已填好),使每条直线上的三个数之和都相等。

三年级上奥数第16讲 数阵图(一)

三年级上奥数第16讲 数阵图(一)

三秋第16讲 数阵图(一)一、教学目标将一些数按照一定的规律排列而成的图形,通常叫做数阵图.向四周呈放射状的数阵就是放射式数阵.首尾相接的是封闭状数阵.填数阵图的方法是将题目所给的若干个数进行分析,找出规律,正确填充.填放射式数阵的关键是确定公共部分的数.填封闭状数阵的关键是确定首尾相连即相交部分的数. 二、例题精选【例1】 将10—18这九个数分别填入下图中的○里,使每条直线上的三个数之和都相等。

你有几种填法呢?(至少填出两种)【巩固1】在空格内填入1、2、3、4、5各数,使每条线上三个数的和都相等,你能写出几种呢?【例2】 把2、3、4、5、6五个数填入下面的圆圈里,使横行、竖行三个数相加的和都是13.【巩固2】将7~1这七个数填入左下图中,使每条直线上的三个数的和为10。

【例3】 一天喜羊羊在回羊村的路上遇到了灰太狼,灰太狼有意刁难他,挡住他的去路对他说:“只要你用16这六个数字填在图中的圆圈内,使每条线上的三个数之和等于12,我就让你过去。

”喜羊羊想了想,不慌不忙的就填了出来。

你知道喜羊羊是怎么解决的吗?【巩固3】从1、2、3、4、5、6中选取适合的数填在圆圈里,使每个圆上四个数的和都等于15.【例4】将1~9这九个数分别填入下左图中,使每个三角形的顶点上的三个数的和相等。

【巩固4】将1,2,3,5,6,7这六个数填入下左表中,使每行中三个数的和相等,同时使每列两个数的和也相等。

【例5】在下左图中,三个圆圈两两相交成7块小区域,分别填上1~7这七个自然数,在一些小区域中已填好数字,请你把其余的数填到空着的小区域中,要求每个圆圈中四个数的和都是15。

375【例6】在下左列表格中填上0~8这9个数字,使得各行各列的和都恰好等于表格边上的数。

(每个数字只能用1次)21312121014。

人教版小学三年级数学第讲 数阵图(一)

人教版小学三年级数学第讲 数阵图(一)

第16讲数阵图(一)在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。

它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。

那么,到底什么是数阵呢?我们先观察下面两个图:左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。

右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你就算算。

上面两个图就是数阵图。

准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。

要排出这样巧妙的数阵图,可不是一件容易的事情。

我们还是先从几个简单的例子开始。

例1把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。

同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。

下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。

分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。

也就是说,横行的三个数之和加上竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。

因为横行的三个数之和与竖列的三个数之和都等于9,所以(1+2+3+4+5)+重叠数=9+9,重叠数=(9+9)-(1+2+3+4+5)=3。

重叠数求出来了,其余各数就好填了(见右上图)。

例2把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。

分析与解:与例1不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。

所以,必须先求出这个“和”。

根据例1的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍,所以两条直线上的三个数之和都等于[(1+2+3+4+5)+5]÷2=10。

小学奥数之数阵图解题方法(完整版)

小学奥数之数阵图解题方法(完整版)

小学奥数之数阵图解题方法1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.模块一、封闭型数阵图【例 1】 把1~8的数填到下图中,使每个四边形中顶点的数字和相等。

【考点】复合型数阵图 【难度】3星 【题型】填空 【关键词】学而思杯,3年级,第6题 【解析】5-1-3-1.数阵图教学目标知识点拨例题精讲【答案】【例 2】 将1~8这八个自然数分别填入下图中的八个○内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上.应如何填?【考点】封闭型数阵图 【难度】2星 【题型】填空 【解析】 为了叙述方便,先在各圆圈内填上字母,如下图(2).由条件得出以下四个算式:a+b+c=14(1) c+d+e=14 (2) e+f+g=14 (3)a+h+g=14 (4)由(1)+(3),得:a+b+c+e+f+g=28,(a+b+c+d+e+f+g+h )-(d+h )=28,d+h=(1+2+3+4+5+6+7+8)-28=8,由(2)+(4),同样可得b+f=8, 又1,2,3,4,5,6,7,8中有1+7=2+6=3+5=8.又1要出现在顶点上,d+h 与b+f 只能有2+6和3+5两种填法. 又由对称性,不妨设b=2,f=6,d=3,h=5. a ,c ,e ,g 可取到1,4,7,8若a=1,则c=14-(1+2)=11,不在1,4,7,8中,不行.若c=1,则a=14-(1+2)=11,不行. 若e=1,则c=14-(1+3)=10,不行. 若g=1,则a=8,c=4,e=7. 说明:例题为封闭型数阵,由它的分析思考过程可以看出,确定各边顶点所应填的数为封闭型数8765432187654321()(2)h gf ed c ba阵的解题突破口.【答案】【例 3】 在如图6所示的○内填入不同的数,使得三条边上的三个数的和都是12,若A 、B 、C 的和为18,则三个顶点上的三个数的和是 。

奥数精编训练-数阵图(一)

奥数精编训练-数阵图(一)

1. 了解数阵图的种类2. 学会一些解决数阵图的解题方法3. 能够解决和数论相关的数阵图问题.一、数阵图定义及分类:1. 定义:把一些数字按照一定的要求,排成各种各样的图形,这类问题叫数阵图.2. 数阵是一种由幻方演变而来的数字图.数阵图的种类繁多,这里只向大家介绍三种数阵图:即封闭型数阵图、辐射型数阵图和复合型数阵图. 3.二、解题方法:解决数阵类问题可以采取从局部到整体再到局部的方法入手: 第一步:区分数阵图中的普通点(或方格)和关键点(或方格);第二步:在数阵图的少数关键点(一般是交叉点)上设置未知数,计算这些关键点与相关点的数量关系,得到关键点上所填数的范围;第三步:运用已经得到的信息进行尝试.这个步骤并不是对所有数阵题都适用,很多数阵题更需要对数学方法的综合运用.模块一、封闭型数阵图【例 1】 把1~8的数填到下图中,使每个四边形中顶点的数字和相等。

例题精讲知识点拨教学目标5-1-3-1.数阵图【例 2】 将1~8这八个自然数分别填入下图中的八个○内,使四边形每条边上的三个数之和都等于14,且数字1出现在四边形的一个顶点上.应如何填?(1)【例 3】 在如图6所示的○内填入不同的数,使得三条边上的三个数的和都是12,若A 、B 、C的和为18,则三个顶点上的三个数的和是 。

CBA【例 4】 将1至6这六个数字填入图中的六个圆圈中(每个数字只能使用一次),使每条边上的数字和相等.那么,每条边上的数字和是 .789fedcba 789【例 5】 将1到8这8个自然数分别填入如图数阵中的8个圆圈,使得数阵中各条直线上的三个数之和都相等,那么A 和B 两个圆圈中所填的数之差(大数减小数)是______.BA【例 6】如图所示,圆圈中分别填人0到9这10个数,且每个正方形顶点上的四个数之和都是18,则中间两个数A与B的和是________。

BA【例 7】把2~11这10个数填到右图的10个方格中,每格内填一个数,要求图中3个22的正方形中的4个数之和相等.那么,这个和数的最小值是多少?11109 8765432【例 8】下图中有五个正方形和12个圆圈,将1~12填入圆圈中,使得每个正方形四角上圆圈中的数字之和都相等.那么这个和是多少?861102912311457【例 9】如图,大、中、小三个正方形组成了8个三角形,现在把2、4、6、8四个数分别填在大正方形的四个顶点;再把2、4、6、8分别填在中正方形的四个顶点上;最后把2、4、6、8分别填在小正方形的四个顶点上.⑴能不能使8个三角形顶点上数字之和都相等?⑵能不能使8个三角形顶点上数字之和各不相同?如果能,请画图填上满足要求的数;如果不能,请说明理由.246824688642【例 10】 将1~16分别填入下图(1)中圆圈内,要求每个扇形上四个数之和及中间正方形的四个数之和都为34,图中已填好八个数,请将其余的数填完.【例 11】 一个3 3的方格表中,除中间一格无棋子外,其余梅格都有4枚一样的棋子,这样每边三个格子中都有12枚棋子,去掉4枚棋子,请你适当调整一下,使每边三格中任有12枚棋子,并且4个角上的棋子数仍然相等(画图表示)。

一起学奥数有趣的数阵图资料讲解

一起学奥数有趣的数阵图资料讲解

因为1-12是一个等差数列,确定1-4为四个顶角,且按逆时针方向排列后,可以把剩下 的分成5-8,9-12两组,分别填在直线上对应的位置。
最后一步的规律必须让学生领会。可以把和都为22的条件去掉做讲解
例4、把1~7这七个数分别填入下图中的各个圆圈内,使每条线段上三个 ○内的数的和相等。
7
2
1
4 5
上两题相比较,图形特征与数字特征存在雷同性,但每条线上 三个数字和受限制。因此需要确定公共圆圈的值。
五条线段上的数字和相加为: 22×5=110 11个圆圈内的数字和为: 11×12÷2=66 则公共圆圈的数字为: (110-66)÷(5-1)=11
剩余圆圈上的填法,与之前题目相同。对剩下的10个数首尾取 数即可。
而 A+B+C+D+E+F+G+H+I=45
F
C
对上面等式进行简化,则: (D+E+F)-(G+H+I)=18
对1~9这9个数进行分析,最大三个数的和为: 7+8+9=24;最小为: 1+2+3=6 两者差为18。所以D+E+F=18
试试枚举法解这个题目(对枚举法也可以做初步分析)
例:将1~10这十个数填入下图的圆圈内,使每个正方形的四个数字之 和都等于23,应怎样填?
接着从这八个数中找出4个和为34的数的组合,放在正方形中。(1、4、13、16)、 (2、4、12、16)
没有条件四个数之和为34,是否可以解答本题?
例:把数字1~9分别填入下图的9个圈内,要求三角形ABC和三角形 DEF的每条边上三个圈内数字之和都等于18.下图中D、E、F的三个圈 中所填数之和为什么?

小学数学-数阵图讲解学习

小学数学-数阵图讲解学习

第一题图
第二题图
第三题图
例题3(书例2):
将1-9九个数字分别填在下图 圆圈内,使三角形 每条边上四个数的和是17.
1+2+3+……+9=45
每条边上的和是17,共有3条
17
17
边那么总和是17×3=51.
每个角上的数都被用了两次也 就是每个角上的数都加了一次。
17
51-45=6 6=1+2+3
17—1—2=14 14=5+9
3、(选做)把1--8这八个自然数分别填入图 中,使每个正方形四个角及每个对角线上四 个数的和均是18。(P17综3)
(书例4)把1--7七个数分别填入下图,使每条 线上三个数之和等于12
先看竖着的三条线,有一个公用数 12x3=36,1+2+3+4+5+6+7+8=28 36-28=8,公用数用了两次8÷2=4
三组数都用到了最中间的数,那么每组都减去 中间的那个数剩下的两个数的和相等
1 2 34567
7
1
4
23
6
5
1 1+7=2+6=3+5 2 2+7=3+6=4+5 3 1+6=2+5=3+4
7
2
1
43
5
6
1
6
7 45
3221来自54376
2 3
5 1 4 76
2
1 4
7
3
6
5
1. P16综1 2. P17能1 3. P16基1
不论是辐射型数阵阵、封闭型数还是复合型 数阵解题的要点都是先确定公共部分的数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数16数阵图1.10.5数阵图1.10.5.1基础知识数阵是由幻方演化出来的另一种数字图。

幻方一般均为正方形。

图中纵、横、对角线数字和相等。

数阵则不仅有正方形、长方形,还有三角形、圆、多边形、星形、花瓣形、十字形,甚至多种图形的组合。

变幻多姿,奇趣迷人。

一般按数字的组合形式,将其分为三类,即辐射型数阵、封闭型数阵、复合型数阵。

数阵的特点是:每一条直线段或由若干线段组成的封闭线上的数字和相等。

它的表达形式多为给出一定数量的数字,要求填入指定的图中,使其具备数阵的特点。

解数阵问题的一般思路是:1.求出条件中若干已知数字的和。

2.根据“和相等”,列出关系式,找出关键数——重复使用的数。

3.确定重复用数后,对照“和相等”的条件,用尝试的方法,求出其他各数。

有时,因数字存在不同的组合方法,答案往往不是唯一的。

1.10.5.2辐射型数阵例1 将1~5五个数字,分别填入下图的五个○中,使横、竖线上的三个数字和都是10。

解:已给出的五个数字和是:1+2+3+4+5=15题中要求横、竖每条线上数字和都是10,两条线合起来便是20了。

20-15=5,怎样才能增加5呢?因为中心的一个数是个重复使用数。

只有5连加两次才能使五个数字的和增加5,关键找到了,中心数必须填5。

确定中心数后,按余下的1、2、3、4,分别填在横、竖线的两端,使每条线上数的和是10便可。

例2将1~7七个数字,分别填入图中的各个○内,使每条线上的三个数和相等。

解:图中共有3条线,若每条线数字和相等,三条线的数字总和必为3的倍数。

设中心数为a,则a被重复使用了2次。

即,1+2+3+4+5+6+7+2a=28+2a,28+2a应能被3整除。

(28+2a)÷3=28÷3+2a÷3其中28÷3=9…余1,所以2a÷3应余2。

由此,便可推得a只能是1、4、7三数。

当a=1时,28+2a=30 30÷3=10,其他两数的和是10-1=9,只要把余下的2、3、4、5、6、7,按和为9分成三组填入两端即可。

同理可求得a=4、a=7两端应填入的数。

例3将从1开始的连续自然数填入各○中,使每条线上的数字和相等。

解:图中共有三条线,若每条线数字和相等,三条线的数字总和必为3的倍数。

设中心数为a,a被重复使用了两次,即:1+2+3+……+10+2a=55+2a,55+2a应能被3整除。

(55+2a)÷3=55÷3+2a÷3其中,55÷3=18余1,所以2a÷3应余2。

由此,可推知a只能在1、4、7中挑选。

在a=1时,55+2a=57,57÷3=19,即中心数若填1,各条线上的数字和应为19。

但是除掉中心数1,在其余九个数字中,只有两组可满足这一条件,即:9+7+2=18,8+6+4=18,7+5+3=15所以,a不能填1。

经试验,a=7时,余下的数组合为12(19-7=12),也不能满足条件。

因此,确定a只能填4。

例4将1~9九个数字,填入下图各○中,使纵、横两条线上的数字和相等。

解:1~9九个数字和是:1+2+3+……+9=5×9=45,把45平分成两份:45÷2=22余1。

这就是说,若使每行数字和为23,则需把1重复加一次,即中心数填1;若使数字和为24,中心数应填3……。

总之,因45÷2余数是1,只能使1、3、5、7、9各个奇数重复使用,才有可能使横、竖行的数字和相等。

因而,此题可有多种解法。

但中心数必须是9以内的奇数。

例5 将1~11十一个数字,填入下图各○中,使每条线段上的数字和相等。

解:图中共有五条线段,全部数字的总和必须是5的倍数,每条线上的数字和才能相等。

1~11十一个数字和为66,66÷5=13余1,必须再增加4,可使各线上数字和为14。

共五条线,中心数重复使用4次,填1恰符合条件。

此题的基本解法是:中心数重复使用次数与中心数的积,加上原余数1,所得的和必须是5的倍数。

据此,中心数填6、11均可得解。

1.10.5.3封闭型数阵例1把2、3、4、5、6、7六个数字,分别填入○中,使三角形各边上的数字和都是12。

解:要使三角形每边上的数字和都是12,则三条边的数字和便是12×3=36,而2+3+4+5+6+7=27,36与27相差9。

三个角顶的数字都重复使用两次,只有这三个数字的和是9,才能符合条件。

确定了角顶的数字,其他各数通过尝试便容易求得了!这题还可有许多解法,上图只是其中一种。

例2把1~9九个数字,分别填入下图○中,使每边上四个数的和都是21。

解:要使三角形每条边上的数字和是21,则三条边的数字和便是:21×3=63。

而1~9九个数字的和只有45。

45比63少18,只有使三角形三个顶角的数字和为18,重复使用两次,才能使总和增加18。

所以应确定顶点的三个数。

下面是填法中的一种。

确定了顶角的数后,其他各数便容易了。

例3下图是四个互相联系的三角形。

把1~9九个数字,填入○中,使每个三角形中数字的和都是15。

解:每个三角形数字和都是15,四个三角形的数字和便是:15×4=60,而1~9九个数字和只有45。

45比60少15。

怎样才能使它增加15呢?靠数字重复使用才能解决。

中间的一个三角形,每个顶角都联着其他三角形,每个数字都被重复使用两次。

因此,只要使中间的一个三角形数字和为15,便可以符合条件。

因此,它的三个顶角数字,可以分别为:1、9、5 2、8、5 2、7、6 4、6、5及2、9、4 3、8、4 3、7、5 8、6、1。

把中间的三角形各顶角数字先填出,其他各个三角形便容易解决了。

前页下图是其中的一种。

例4 把2~10九个数字,分别填入下图○中,使每条直线上的三个数和为15。

解:2~10九个数字的和为:2+3+4+……+10=6×9=54若排成每个三角形每边的数字和都是15,图中含有每边都三个数字的三角形有两个,共六条边,数字总和应是15×6=90。

54比90少36。

在外围的六个数都被重复使用了两次,它们又分属于两个三角形。

所以,每个三角形三个顶角的数和应为:36÷2=18。

这样,便可以先填外三角形三个顶角的数。

三个数和为18的有很多组,可以通过试验筛选出适宜的一组。

填好了外围三角形各个数后,里面的三角形,因为顶角的数已知,其他各数便容易填写了。

上面是填法中的一种。

例5 把1~10十个数字,分别填入下图○中,使每个三角形三个顶角的三个数字和相等。

解:图中有三个三角形,顶角数字互不联系,中心的一个数独立于各个三角形之外。

因此,要使各三角形顶角的数字和相等。

去掉中心数后,数字总和应是3的倍数,而且三角形顶角的数字三组中不能出现重复。

如:以10为中心数,可填为如上图样。

例6 将1~12分别填入下图○中,使图中每个三角形周边上的六个数的和都相等。

解:图中共有四个三角形,共有六个边。

1~12的数字和是78。

每条边上的数字和应为:78÷6=13。

这样,我们可以推想:因为内部的三条边都被重复计算两次,只要每个数增加1,十二个数的总和便增加6,它们同样可以填出来,因而,本题的解法是很多的。

7、把127125433212161413121、、、、、、、、九个数分别填入下图○中,使每条直线上的三个数的和都相等。

解:九个分数排成方阵,使纵、横、对角线的三个数和相等,这已经符合幻方的要求了,因此,可以按幻方的制作方法求解。

这十二个分数,按从小到大的顺序排列是:433212721125314161121、、、、、、、、 把它们按序排列为斜方形:将上、下两数,左、右两数对调,再把中间四数向外拉出,这样重新组成的数阵,便是求得的解了。

例8 将1~8八个数字,分别填入下图○中,使每个小三角形顶点上三数之和为12。

解:图中共有四个小三角形,每个三角形顶点数字的和若都是12,数字总和便是12×4=48,可是1~8八个数字总和只有36。

36比48少12。

只有靠共用顶角上数的重复使用,才能解决。

因此,必须把四个公用顶角的数字和填成12。

把1~8八个数四个一组,和为12的有:6+3+2+15+4+2+1上述两组中,经验证,只有6+3+2+1可以作公用顶点的数字。

例9 在下图五个○内,各填入一个自然数,使图中八个三角形中顶点的数字和各不相同。

求能满足这个条件的自然数中最小的五个数。

解:能满足使八个三角形顶点数字和各不相同的任意自然数有很多组,但自然数中能满足这个条件的最小自然数却只有一组。

最小的一组自然数中的五个数,若有两个相同的,其中三个数的和可以多到有7个不同值,因此,五个数互不相同。

如果这五个数是1,2,3,4,5,则其中三个数的和有如下组合方式:1+2+3=6 2+3+4=9 3+4+5=121+2+4=7 1+3+4=8 2+3+5=102+4+5=11这样,总共只有七种不同的和,而图中共八个三角形,可知1,2,3,4,5五个自然数不能满足条件。

例10 在下列图中三个正方形中,每个正方形的四个顶点上,只填入1,2,3,4四数,使图中八个三角形顶点数字和互不相同。

解:图中,顶角在大正方形边上的四个三角形,顶角都分别为两个三角形共用,只有正方形的四个角分别只属于一个三角形,所以,四个三角形顶点数字的和应等于:(1+2+3+4)×3=3030不是4的倍数,因而,外面的四个三角形顶点数字和不可能相等。

同理,里面的四个三角形顶点数字和也不可能相等。

题中要求,每个三角形顶点数字和不相同,1~4四个数之和最小值是1+1+2=4,最大值是4+4+3=11,这样共可组成八组数,将八组数分别填入各个三角形顶点,便可符合条件。

例11 将1~8八个数字,分别填入下图○中,使每个面的四个数和相等。

解:数字图是个正立方体,共有六个面。

每个面四个顶点上的数都是三个面重复使用的。

1~8八个数的数字总和是:1+2+3+……+8=36因为每个顶点的数都被重复使用三次,所以六个面的数字总和是:36×3=108每个面的数字和便是:108÷6=18这样,便可填为下图或其他形式。

相关文档
最新文档