工业催化期末复习资料
工业催化考试复习资料

工业催化1.什么是催化剂?催化剂是一种能够改变一个化学反应的反应速度,却不改变化学反应热力学平衡位置,本身在化学反应中不被明显地消耗的化学物质。
2.什么是催化反应?涉及催化剂的反应3.催化作用有哪些基本特征1)催化剂只能加速热力学上可以进行的反应,而不能加速热力学上无法进行的反应2)只能加速反应趋于平衡,不能改变平衡的位置,只能加速热力学上可以进行的反应3)对加速反应具有选择性 4)催化剂的寿命4.催化剂为什么不会改变化学平衡的位置?化学平衡是由热力学决定的,∆G0=—RT1nKP ,其中KP为反应的平衡常数,∆G0是产物与反应物的标准自由焓之差,是状态函数,只决定于过程的始终态,而与过程无关,催化剂的存在不影响∆G0值,它只能加速达到平衡所需的时间,而不能移动平衡点。
5.催化剂为什么能加快反应速度?催化剂能降低反应的活化能6.按使用条件下的物态催化剂可分为几类,各是什么?酸碱催化剂,非纳米分子筛催化剂,金属催化剂,金属氧化物和硫化物催化剂,络合催化剂,7.催化剂的组成包括哪几部分?活性组分,助催化剂,载体8.吸附和催化有什么关系催化的前提是发生吸附,气—固相催化反应中,至少有一种反应物要吸附在催化剂的表面上。
吸附键的强度要适当,吸附的过强或过弱都不利于下一步化学反应的进行。
如果催化剂对反应物吸附过强,往往形成较稳定的表面络合物;吸附过弱,反应物分子活化不够,不利于反应。
9.物理吸附与化学吸附有什么区别。
物理吸附化学吸附吸附力范德华力化学键力吸附层单层或多层单层选择性无有热效应较小,近于液化热较大,近于化学反应热吸附速度较快,不受温度影响,不需活化能; 较慢,温度升高,速度加快,需要活化能a.物理吸附是表面质点和吸附分子之间的分子力而引起的。
具体地是由永久偶极、诱导偶极、色散力等三种范德华引力。
物理吸附就好像蒸汽的液化只是液化发生在固体表面上罢了。
分子在发生物理吸附后分子没有发生显著变化。
b.化学吸附是在催化剂表面质点吸附分子间的化学作用力而引起的,如同化学反应一样,而两者之间发生电子转移并形成离子型,共价型,自由基型,络合型等新的化学键。
工业催化复习

-1 -第二章IUPAC 于1981年提出的定义:催化剂是一种物质,它能够加速反应的速率而不改 变该反应的标准Gibbs 自由焓变化。
这种作用称为催化作用。
涉及催化剂的反应为催化 反应特征:(1) 催化剂只能加速热力学上可以进行的反应 .(2) 只能加速到达反应平衡的时间,不能改变化学平衡位置•对于可逆反应,能催 化正方向的催化剂,就能催化逆反应方向(3) 催化剂对反应具有选择性(4 )催化剂活性有一定寿命催化反应产物具有选择性的主要原因仍然是由于催化剂可以显著降低主反应的活 化能,而副反应活化能的降低则不明显.催化剂组成:1. 活性组分:化学活性2. 载体:高表面积,孔结构,机械强度等3. 助催化剂:对活性组分/载体改性活性组分:催化剂的主要成分,可由一种物质组成,也可由多种物质组成活性组分的分类:金属;过渡金属氧化物、硫化物;非过渡金属氧化物第四章固体酸:天然粘土物质,天然沸石,金属氧化物及硫化物,氧化物混合物,金属盐 等;固体碱:碱金属及碱土金属分散于氧化硅、氧化铝,金属氧化物,金属盐等液体酸:H2SO4,H3PO4,HCI 水溶液,醋酸等液体碱:NaOH 水溶液,KOH 水溶液杂化轨道中d 原子轨道所占的百分数称为 d 特性百分数(d%),金属的d%越大,相 应的d 能带中的电子填充越多,d 空穴就越少。
广为应用的金属加氢催化剂来说, d%在 40-50% 为宜。
d 带空穴的存在,使之有从外界接受电子和吸附物种并与之成键的能力。
但也不是 d 带空穴越多,其催化活性就越大。
因为过多可能造成吸附太强,不利于催化反应。
金属在载体上微细的程度用分散度 D ( Dispersion )来表示,其定因为催化 反应都是在位于表面上的原子处进行,故分散度好的催化剂,一般其催化效果较好。
当 D = 1时,意味着金属原子全部暴露。
第五章环境友好加工要求:极高的转化率;接近100%的选择性;污染物的浓度必须降至10-6级或零排放。
工业催化复习题

1什么是催化剂?催化剂作用的特征是什么?催化剂定义:凡能加速化学反应趋向平衡,而在反应前后其化学组成和数量不发生变化的物质。
特征①不能改变化学平衡②通过改变化学反应历程而改变反应速度③对加速化学反应具有选 择性2工业催化剂的基本指标是什么?工业催化剂的性能要求有哪些? 基本指标:活性、选择性、寿命、经济性。
性能要求: 活性、选择性、生产能力、稳定性、寿命、机械强度、导热性能、形貌和粒度、 再生性。
3什么是催化剂的稳定性?什么是催化剂的寿命?催化剂的稳定性是指催化剂在使用条件下具有稳定活性的时间。
催化剂的寿命是指从开始使用到活性下降到生产不能再用时所经历的时间。
4什么是催化剂失活?导致催化剂失活的主要原因有哪些?定义:在恒定反应条件下进行的催化反应的转化率随时间增长而下降的的现象叫催化剂失活。
原因:中毒、生焦、烧结、活性组分流失5如何计算催化剂的活性(转化率 X 、转换数TON 转换频率TOF ? ( P 12) 反应速率表示法、反应速率常数表示法、转化率表示法。
转化率X:反应物A 的总量/流经催化床层进料中反应物 A 的总量转换数TON 催化剂上每个活性位通过催化循环使总反应发生的次数 转换频率TOF 每个活性位每秒时间内完成的催化循环的次数6固体催化剂的组成有几部分?说明合成氨催化剂各部分的作用?说明 各部分的作用? 组成:活性组分(主催化剂和共催化剂)、载体、助催化剂。
各部分作用:Fe为活性组分;AI2O3为载体;K20为助催化剂。
Pt 活性组分,Sn 助催化剂,AI2O3酸功能性载体。
7. 固体催化剂载体的作用是什么?常用的载体有哪几种? 作用:分散作用、稳定化作用、支撑作用、传热和稀释作用、助催化作用。
常用载体:低比表面(刚玉、碳化硅、浮石、硅藻土、石棉、耐火砖);高比表面(氧化铝、 SiO2/Al2O3、铁矶土、白土、氧化镁、硅胶、活性炭)。
8. 多相催化反应的步骤有哪些?(课本 P 14)外扩散-内扩散-化学吸附-表面反应-脱附-内扩散-外扩散I物理过程 9、什么是扩散控制、动力学控制?提高宏观反应速率措施? 扩散控制:最慢步骤是物理过程--扩散 动力学控制:最慢步骤是化学过程--吸附、脱附、表面反应 措施:外扩散控制:提高气流速率。
工业催化期末复习题

工业催化期末复习题 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-第二章催化作用与催化剂电子型助催化剂的作用:改变主催化剂的电子结构,促进催化活性及选择性。
金属的催化活性与其表面电子授受能力有关。
具有空余成键轨道的金属,对电子有强的吸引力,吸附能力的强弱是与催化活性紧密相联的在合成氨用的铁催化剂中,由于Fe是过渡元素,有空的d轨道可以接受电子,故在Fe-Al2O3中加入K2O后,后者起电子授体作用,把电子传给Fe,使Fe原子的电子密度增加,提高其活性,K2O是电子型的助催化剂第三章吸附与多相催化1简述多相催化反应的步骤包括五个连续的步骤。
(1)反应物分子从气流中向催化剂表面和孔内扩散;(2)反应物分子在催化剂表面上吸附;(3)被吸附的反应物分子在催化剂表面上相互作用或与气相分子作用进行化学反应;(4)反应产物自催化剂表面脱附;(5)反应产物离开催化剂表面向催化剂周围的介质扩散。
上述步骤中的第(1)和(5)为反应物、产物的扩散过程。
属于传质过程。
第(2)、(3)、(4)步均属于在表面进行的化学过程,与催化剂的表面结构、性质和反应条件有关,也叫做化学动力学过程2外扩散与内扩散的区别外扩散:反应物分子从流体体相通过吸附在气、固边界层的静止气膜(或液膜)达到颗粒外表面,或者产物分子从颗粒外表面通过静止层进入流体体相的过程,称为外扩散过程。
内扩散:反应物分子从颗粒外表面扩散进入到颗粒孔隙内部,或者产物分子从孔隙内部扩散到颗粒外表面的过程,称为内扩散过程。
为充分发挥催化剂作用,应尽量消除扩散过程的影响外扩散阻力:气固(或液固)边界的静止层。
消除方法:提高空速内扩散阻力:催化剂颗粒孔隙内径和长度.消除方法:减小催化剂颗粒大小,增大催化剂孔隙直径3解离吸附的Langmuir等温式的推导过程4物理吸附与化学吸附的区别物理吸附是表面质点和吸附分子之间的分子力而引起的。
工业催化总复习30页文档

谢谢!
工业催化总复习
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
工业催化 复习资料

第一章:催化剂催化剂: 一类能够改变化学反应的速度,不改变热力学平衡,并不被明显消耗的物质。
正催化剂:能加快反应速度的Cat.负催化剂:能减慢反应速度的Cat.催化作用:是一种化学作用,是靠用量极少而本身不被明显消耗的一种叫催化剂的外加物质来加速或减慢化学反应速度的现象。
催化剂的基本特性:(1)只加速热力学可行的反应;(2)催化剂不影响平衡常数;(3)k 正与k 逆相同倍数增加(4)改变反应历程;(5)降低了反应活化能。
Arrhenius 方程: 催化剂好差的评价(价值):重要性顺序:选择性>寿命>活性(1) 催化剂的活性(activity )(2) 催化剂的选择性(selectivity ) (3) 催化剂的寿命(lifetime ),可以分为三个部分,成熟期,稳定期和衰老期。
(4) 催化剂的价格(cost )(5) 催化剂的稳定性(stability ) 补偿效应:在用不同方法制备的催化剂上,研究一个给定的催化反应时,用Arrhenius 方程表示反应速率常数时,不同催化剂的指前因子A 和活化能E 是以彼此补偿的方式变化的,导致不同的催化剂在相同的温度和压力下的反应速率常数(或反应速率)为恒值。
工业催化剂着重考虑的问题:(1)活性(包括选择性)(2)稳定性(3)流体流动性(4)机械性质多组分催化剂的成分:(1)活性组分(active components )或称主催化剂(maincatalist );对催化剂的活性起着主要作用。
它是催化剂设计的第一步,没有它,催化反应几乎不发生。
其类别主要有三:即导体、半导体和绝缘体。
(2)载体 (support 或 carrier );① 最重要的功能是分散活性组分、作为活性组分的基底,使活性组分保持大的表面积。
② 降低对毒物的敏感性;③ 载体为Cat.提供一定的孔隙结构;④ 改进催化剂的机械强度,及抵抗条件的应力能力⑤ 有些载体具有双功能性。
(3)助催化剂(promoter ):本身没有活性或活性很小,但在加入催化剂后(一般小于催化剂总量的10%)能使催化剂具有所期望的活性、选择性或稳定性。
工业催化复习题

工业催化复习题工业催化复习题工业催化是现代化工生产中不可或缺的重要环节,它涉及到催化剂的选择、反应机理的研究以及反应条件的控制等方面。
为了更好地复习工业催化相关知识,本文将从催化剂的种类、催化反应的机理以及工业催化中的应用等方面展开讨论。
一、催化剂的种类催化剂是催化反应中起到促进反应速率的物质,常见的催化剂种类包括金属催化剂、酸碱催化剂和酶催化剂等。
金属催化剂是指以金属元素为主要成分的催化剂,如铂、钯、铑等。
酸碱催化剂是指具有酸性或碱性的物质,如硫酸、氢氧化钠等。
酶催化剂是指生物体内具有催化活性的酶,如淀粉酶、蛋白酶等。
二、催化反应的机理催化反应的机理是指催化剂参与反应的具体过程。
常见的催化反应机理包括表面吸附、活化、反应和解离等步骤。
在表面吸附步骤中,反应物分子被吸附到催化剂表面上形成中间体。
在活化步骤中,催化剂通过与反应物发生相互作用,改变反应物的能量状态,使其更容易发生反应。
在反应步骤中,反应物分子在催化剂表面上发生化学反应,生成产物。
在解离步骤中,产物从催化剂表面解离,释放出来。
三、工业催化的应用工业催化广泛应用于化学工业、石油化工、环境保护等领域。
在化学工业中,工业催化被用于合成有机化合物、聚合物以及合成氨等反应。
例如,合成氨工艺中使用铁催化剂和铑催化剂,通过催化剂的作用,将氮气和氢气反应生成氨气。
在石油化工中,工业催化被用于裂化反应、加氢反应以及催化重整等过程。
例如,裂化反应中使用酸碱催化剂,将重质石油分子裂解成轻质石油产品。
在环境保护领域,工业催化被用于废气处理、废水处理以及催化转化等过程。
例如,废气处理中使用催化剂将有害气体转化为无害物质,达到净化空气的目的。
综上所述,工业催化是一门重要的学科,它涉及到催化剂的种类、催化反应的机理以及工业催化的应用等方面。
通过复习工业催化相关知识,我们可以更好地理解催化反应的原理和应用,为工业生产提供更高效、环保的解决方案。
希望本文的内容能够帮助读者更好地复习工业催化知识,为未来的学习和工作打下坚实的基础。
工业催化复习纲要

第一章催化剂与催化作用1.催化剂的定义与特征催化剂是一种物质,它能加速反应的速率而不改变该反应的标准Gibbs自由能变化改变反应途径,降低反应活化能,加快反应速度(催化剂的共性—活性),催化剂对反应具有选择性(催化剂的专用性),只能加速热力学上可行的反应,而不能加速热力学上不能进行的反应,只能加速反应趋于平衡,而不能改变平衡位置(平衡常数)2、催化反应分类催化反应机理分类反应:均相催化反应非均相(多相)催化反应酶催化反应机理:酸碱型催化反应氧化还原型催化反应2.催化剂的基本组成以及表示方法:主催化剂助催化剂载体4. 催化剂的反应性能:活性稳定性选择性 (转化率选择性产率) 活性:催化剂对反应加速的程度,用来衡量催化剂效能大小的指标稳定性是指催化剂活性和选择性随时间变化的情况热稳定性(活性组分挥发、流失;活性组分烧结或微晶长大,进而比表面、活性位减少)化学稳定性(稳定的催化剂化学组成和化合状态,活性组分和助催化剂不产生化学变化)抗污稳定性(催化剂表面积焦、积炭)抗毒稳定性(催化剂对有害物质毒化的抵抗能力)选择性:指所消耗的原料中转化成目的产物的分率。
用来描述催化剂上两个以上相互竞争反应的相对速率S(选择性)= [转化为目的产物所消耗的该反应物量 / 某反应物转化总量] × 100%Y(产率) = 转化率×选择性第二章吸附作用与多相催化1.多相催化的反应过程 (外扩散内扩散阻力消除措施效率因子)外扩散:反应物分子从气流中向催化剂颗粒外表面扩散(孔)内扩散:反应物分子从颗粒外表面向颗粒内表面扩散吸附:反应物分子在催化剂内表面吸附表面反应:吸附的反应物分子在催化剂表面上反应脱附:产物分子自催化剂内表面脱附(孔)内扩散:产物分子从颗粒内表面向颗粒外表面扩散外扩散:产物分子从催化剂颗粒外表面向气流中扩散効率因子η = 观测的反应速度 / 本征反应速率 < 12.吸附作用 (类型强弱大小)物理吸附和化学吸附化学吸附大于物理吸附3.固体吸附剂的表面模型理想表面模型(Langmuir表面模型)——理想吸附固体表面能量分布均匀,吸附分子间无相互作用●真实表面模型——真实吸附➢原有不均匀表面模型(Surface heterogeneity)固体原有表面能量分布是不均匀的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、简述催化作用的定义与特征。
定义:1981年,根据IUPAC于提出的定义,催化剂是一种物质,它能够加速反应的速率而不改变该反应的标准Gibbs自由焓变化。
这种物质起的作用称为催化作用。
四个基本特征:(1)催化剂只能加速热力学上可以进行的反应,不能加速热力学上无法进行的反应;(2)催化剂只能加速反应趋于平衡,而不能改变平衡的位置(平衡常数);(3)催化剂对反应具有选择性;(4)催化剂存在一定的寿命.2、催化剂组成及其功能。
组成:一般包括三种成分:①活性组分、②助催化剂;③载体(1)活性组分或称主催化剂;对催化剂的活性起着主要作用。
它是催化剂设计的第一步,没有它,催化反应几乎不发生。
其类别主要有三:即导体、半导体和绝缘体。
(2)载体;①最重要的功能是分散活性组分、作为活性组分的基底,使活性组分保持大的表面积。
②降低对毒物的敏感性;③载体为Cat.提供一定的孔隙结构;④改进催化剂的机械强度,及抵抗条件的应力能力⑤有些载体具有双功能性。
(3)助催化剂:本身没有活性或活性很小,但在加入催化剂后(一般小于催化剂总量的10%)能使催化剂具有所期望的活性、选择性或稳定性。
其作用是:①帮助载体,控制载体的稳定性,控制不希望有的活性,②帮助活性组分,可能是结构的或电子的,③助抗中毒3、简述化学工业对催化剂的一般要求。
化学工业要求催化剂具有较高的活性,良好的选择性、抗毒害性、热稳定性、环境友好性和合理的价格。
1、活性:反映催化剂的效能高低的重要性能指标。
即反应催化剂改变化学反应速度能力的高低。
表示方法:1)比活性或比速率。
用在某指定条件下(T,P)一定量催化剂上的反应速率来衡量。
2)转化率Xa=已反应的反应物量/起始的反应物量注明:指定条件下(T,P),相同的反应空时或空速空速:在流动体系中,物料的流速(单位时间的体积或质量)除以催化剂的体积或质量。
S-1或者h-13)温度相同的反应转化率、压力、空时或空速2、选择性:反映催化剂抑制副反应能力大小的性能指标。
3、寿命:催化剂从开始使用至活性下降到不能再用所经历的时间。
寿命试验:在正常条件下连续运转1000h以上。
4、稳定性:即催化剂在使用条件下的化学稳定性,对热的稳定性、耐压、耐磨和耐冲击等的稳定性。
5、环境友好和自然界相容性::社会发展对催化反应过程要求适应循环经济,催化剂不仅具有高转化率和高选择性,还要具有无毒无害,对环境友好,反应尽量遵循“原子经济性”,反应剩余物与自然相容。
6:价格合理。
4、多相催化的基本步骤。
⑴反应物分子从气流中向催化剂表面和孔内扩散。
⑵反应物分子在催化剂内表面上吸附。
⑶吸附的反应物分子在催化剂表面上相互作用或与气相分子作用进行化学反应。
⑷反应产物自催化剂内表面脱附。
⑸反应产物在孔内扩散到反应气流中去⑴⑸扩散为物理过程;⑵⑶⑷为化学过程外扩散:上述步骤中的第(1)为反应物、产物的扩散过程,从气流层经过滞流层向催化剂颗粒表面的扩散或其反向的扩散,称为外扩散。
外扩散与外扩散系数:在反应条件下,催化剂颗粒周围由反应物分子、产物分子和稀释剂分子等混合物组份形成一稳定的滞流层,一个反应物分子必须穿过此滞流层才能到达催化剂颗粒的外表面。
根据费克定律:外扩散通量=外扩散系数×浓度差(稳态)=DE×(ch-cs)实际上最有用的是无因次传质因子jD内扩散:上述步骤中的第(5)-从颗粒外表面向内孔道的扩散或其反向扩散,称为内扩散。
这两个步骤均属于传质过程,与催化剂的宏观结构和流体流型有关。
当反应物分子到达催化剂颗粒外表面、经反应后尚未转化的部分,就会在外表面与内孔的任一点间出现第二种浓度差,穿过这种浓度梯度的过程,即发生所谓的内扩散,将反应分子带到内表面活性中心。
内扩散通量=内扩散系数×浓度差(稳态)=DI×(cs-c)5、简述物理吸附、化学吸附与催化的关系。
反应物分子通过扩散到达催化剂活性表面附近时,它们可能进行化学吸附,与活性表面相互作用产生新的化学物种。
催化中的吸附总是化学吸附。
化学吸附本身是一个复杂的过程,分两步进行,即物理吸附和化学吸附。
物理吸附是借助分子间力,吸附力弱,吸附热小(8~20kJ/mol),接近于气体的液化热,且是可逆的,无选择性,分子量越大越容易发生,吸附稳定性不高,吸附与解吸速率都很快,可单分子层或多分子层吸附,不需要活化能。
化学吸附与一般的化学反应相似,是借助于化学键力,遵从化学热力学和化学动力学的传统定律,具有选择性特征,吸附热大(40~800kJ/mol),吸附很稳定,一般是不可逆的,尤其是饱和烃分子的解离吸附更是如此,吸附是单分子层的,具有饱和性。
6、简述固体酸催化剂的催化作用机理。
固体酸类型:B酸:能够给出质子的都是酸。
L酸:能够接受电子对的都是酸。
(B酸中心和L酸中心两类。
)测定方法:离子交换法、电位滴定法、高温酸性测定法、红外光谱法、紫外-可见光谱法和核磁共振法。
表征:酸类型、酸强度、酸(浓)度为了阐明固体酸的催化作用,常常需要区分B酸中心还是L酸中心固体酸的强度:B 酸强度是指给出质子的能力;L酸强度是指接受电子对的能力。
强度越大,与反应物形成正电物质的能力越强。
酸强度通常用Hammeett函数酸强度函数(H0)表示H0定义:固体酸表面吸附中性碱,并且将它转变为相应的共轭酸的能力大小。
H0 越小酸度越强,H0 越大酸度越弱酸强度测定方法:a 指示剂法:原理:当达到等电点即B 和BH+ 浓度相等时PKa=H0b.程序升温脱附。
原理:用峰脱附温度来表示峰强度变化,即低温脱附下来的酸中心强度较弱,高温脱附下来的酸中心强度较强。
酸量(酸度):固体表面上的酸量,通常表示为单位重量或单位表面积上酸位的毫摩尔数,即m mol/wt或m mol/m2。
酸性中心产生与催化的关系:催化反应对固体酸催化剂酸中心的依赖关系很复杂。
重油加氢裂化反应,要求L酸和B酸中心在表面临近处共存,L酸中心在B酸中心附近,可以提高B酸中心的酸强度,产生协同作用。
烃类催化氧化反应不被B酸催化,但B酸的存在,可以影响反应物和产物的吸附和脱附速率,或成为副反应的活性中心。
酸强度与催化作用关系:1、固体酸催化剂表面上,不同酸强度部位有一定分布,并有不同的催化活性。
(γ-Al2O3有强酸部位和弱酸部位,强酸部位是催化异构化的活性中心,弱酸部位是催化脱水的中心。
)2、酸中心强度也会影响催化剂选择性。
酸浓度与催化作用关系:1、催化剂酸浓度影响催化剂的活性。
2、酸催化剂加入碱后催化活性下降。
举例:SiO2-TiO2复合氧化物中,TiO2为主要成分时,正电荷过剩时,为L酸;SiO2为主要成分时,负电荷过剩,为B酸。
6.1、给你一种固体酸,你将采用哪些表征方法来说明这种固体酸的酸性质?固体酸的性质包括三层涵意:酸中心性质,即B酸或L酸,酸中心的强度和酸中心的数量(酸量),酸浓度的测定,可用非水溶液正丁胺滴定法确定(表酸中心密度),结合不同Hammett指示剂可测定不同酸中心强度和酸强度分布;通过红外光谱法测定吸附毗陡的酸碱键的振动频率,可确定B酸中心及L酸中心,在红外光谱上1540 cm‘峰是吡啶在B酸中心的特征峰,1450 cm‘是L酸中心上的特征峰,1490cm‘是两种酸中心的总和峰。
用NH:吸附程序升温脱附方法也可以测定固体酸表面的酸强度和酸浓度。
7、沸石催化剂特性与催化关系。
分子筛的化学组成沸石分子筛是结晶硅铝酸盐,其化学组成实验式可表示为:M x/n 【(AlO2)x(SiO2)y】 wH2OM为阳离子;n为阳离子的价数;x铝氧四面体的个数;y硅氧四面体个数;w为H2O分子的分子数。
特性与催化关系:1、离子交换能力沸石分子筛由于结构中Si和Al的价数不一,造成的电荷不平衡必须由金属阳离子来平衡。
硅铝比越高,分子筛在酸性溶液中就越稳定。
2、热稳定性分子筛在真空中或惰性气流中受热,H2O分子在逐渐解吸,在100-250℃即可吸热失重,失重多少取决于补偿阳离子性质。
分子筛的热稳定温度:A型:700℃;X和Y型:800℃;丝光沸石>800℃;ZSM-5>1100℃.X型和Y型分子筛,采用Ca2+等多价阳离子交换可增加它们的稳定性。
H型分子筛热稳定性要比母晶分子筛低百倍。
硅铝比增加有利于分子筛的水热稳定性。
3、酸性B酸中心和L酸中心在分子筛中都存在,B酸是连接在晶格氧原子上的H+,L酸是补偿电荷的阳离子,或是缺位氧,或是三配位Al3+强化酸位形成。
4、阳离子在沸石分子筛中的位置阳离子在X-,Y-型分子筛中有三种位置。
阳离子在分子筛中的位置可以说明离子交换度对分子筛催化活性的影响。
5、沸石分子筛的择形催化性质择形催化:分子筛具有特定尺寸的孔道、通道或空腔,只允许有一定分子尺寸的反应物、产物进出和中间物(过渡态)在其中停留,这种性质称为分子筛的择形选择性。
导致择形催化的机理:质量传递选择性和过渡态选择性。
反应物的择形催化:反应混合物中某些分子因太大而不能进入分子筛的空腔内,只有直径小于内孔径的分子才能进入内孔径进行催化反应,即反应物的择形催化。
产物的择形催化:当产物混合物中某些分子太大,难于从分子筛窗口扩散出来,就形成产物的择形选择性。
过渡态限制的择形催化:某些反应的反应物、产物分子都不受分子筛窗口孔径限制,只需要内孔径或笼状腔有较大空间,才能形成相应的过渡状态,否则受扩散限制使反应无法进行,即限制过渡态的择形催化。
分子交通控制的择形催化:在具有两种不同形状和大小的孔道分子筛中,反应物分子可以很容易地通过一种孔道进入到分子筛活性部位,进行催化,产物分子从另一孔道扩散出去,尽可能减少逆扩散,增加反应速率,即分子交通控制择形催化。
沸石分子筛酸性来源:(B酸中心和L酸中心的形成)骨架外铝离子强化酸位,形成L 酸中心。
多价阳离子对水分子的极化作用,产生B酸中心。
Na型分子筛可以用高价离子交换产生酸性。
过渡金属离子还原形成B酸中心。
8、简述化学沉淀法制备催化剂,沉淀剂如何选择。
沉淀法制催化剂的原料,条件,成型。
沉淀法的基本原理是在含金属盐类的水溶液中,加进沉淀剂,以便生成水合氧化物、碳酸盐的结晶或凝胶。
将生成的沉淀物分离、洗涤、干燥、焙烧、成型后,即得催化剂。
沉淀剂选择:⑴尽可能使用易分解并含易挥发成分的沉淀剂。
常用的有NH3、NH3•H2O、CO2、CO(NH2)2、(NH4)2CO3 ⑵形成的沉淀物必须便于过滤和洗涤。
盐类沉淀剂原则上可以形成晶形沉淀,而碱类沉淀剂都会生成非晶形沉淀;⑶沉淀剂的溶解度要大一些;⑷形成的沉淀的溶解度要小,沉淀较完全;⑸沉淀剂不应造成环境污染。
注意事项:1、原料选择原则:符合性能要求、杂质容易除去、原料易得,廉价,便于加工、对环境无污染。
2、洗涤过程:洗涤液:水。