高等数学基本公式整理(级数部分)

合集下载

高等数学公式汇总(大全)

高等数学公式汇总(大全)

高等数学公式汇总(大全)一 导数公式:二 基本积分表:三 三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ四 一些初等函数: 五 两个重要极限:六 三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ七 高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑八 中值定理与导数应用:拉格朗日中值定理。

高等数学公式大全(几乎包含了所有)

高等数学公式大全(几乎包含了所有)

高等数学公式大全1、导数公式:2、基本积分表:3、三角函数的有理式积分:一些初等函数:两个重要极限:三角函数公式:·诱导公式:函数sin cos tg ctg角A-α-sinαcosα-tgα-ctgα90°-αcosαsinαctgαtgα90°+αcosα-sinα-ctgα-tgα180°-αsinα-cosα-tgα-c tgα180°+α-sinα-cosαtgαctgα270°-α-cosα-sinαctgαtgα270°+α-cosαsinα-ctgα-tgα360°-α-sinαcosα-tgα-ctgα360°+αsinαcosαtgαctgα·和差角公式:·和差化积公式:·倍角公式:·半角公式:·正弦定理:·余弦定理:·反三角函数性质:高阶导数公式——莱布尼兹(Leibniz)公式:中值定理与导数应用:曲率:定积分的近似计算:定积分应用相关公式:空间解析几何和向量代数:多元函数微分法及应用微分法在几何上的应用:方向导数与梯度:多元函数的极值及其求法:重积分及其应用:柱面坐标和球面坐标:曲线积分:曲面积分:高斯公式:斯托克斯公式——曲线积分与曲面积分的关系:常数项级数:级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数:一些函数展开成幂级数:欧拉公式:三角级数:傅立叶级数:周期为的周期函数的傅立叶级数:微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:(*)式的通解两个不相等实根两个相等实根一对共轭复根二阶常系数非齐次线性微分方程。

大学高等数学公式大全

大学高等数学公式大全

大学高等数学公式大全第一部分:微积分基础一、导数1. 导数的定义:导数是一个函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。

2. 导数的运算法则:常数函数的导数为0。

幂函数的导数为指数乘以底数的指数减1,即d/dx(x^n) =nx^(n1)。

指数函数的导数为指数函数乘以指数,即d/dx(a^x) = a^xln(a)。

对数函数的导数为1除以x乘以底数的对数,即d/dx(ln(x)) =1/x。

三角函数的导数:d/dx(sin(x)) = cos(x),d/dx(cos(x)) =sin(x),d/dx(tan(x)) = sec^2(x)。

3. 高阶导数:函数的导数可以继续求导,得到高阶导数。

例如,f''(x)表示二阶导数。

二、积分1. 定积分的定义:定积分是一个函数在某个区间上的累积和,表示为∫[a,b]f(x)dx。

2. 积分的运算法则:常数函数的积分为其乘以区间长度,即∫[a,b]c dx = c(ba)。

幂函数的积分为其指数加1除以指数加1乘以区间长度,即∫[a,b]x^n dx = (b^(n+1)a^(n+1))/(n+1)。

指数函数的积分为其指数函数除以指数,即∫[a,b]a^x dx = (a^ba^a)/ln(a)。

对数函数的积分为其对数函数乘以区间长度,即∫[a,b]ln(x) dx = (xln(x)x)。

三角函数的积分:∫[a,b]sin(x) dx = cos(x) + C,∫[a,b]cos(x) dx = sin(x) + C,∫[a,b]tan(x) dx = ln|cos(x)| + C。

3. 积分的性质:积分与导数互为逆运算,即d/dx(∫f(x)dx) = f(x)。

积分区间可以改变顺序,即∫[a,b]f(x)dx = ∫[b,a]f(x)dx。

积分可以分解为多个区间上的积分,即∫[a,c]f(x)dx =∫[a,b]f(x)dx + ∫[b,c]f(x)dx。

高等数学重要公式(必记)

高等数学重要公式(必记)

高等数学重要公式(必记)一、导数公式:二、基本积分表:三、三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-C ax a x a x dx x a C a x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:四、三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

高等数学公式汇总(大全)

高等数学公式汇总(大全)

高等数学公式汇总(大全)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高等数学公式汇总(大全)一 导数公式:二 基本积分表:三 三角函数的有理式积分:222212211cos 12sin ududx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x Cx dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-C ax a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ四 一些初等函数: 五 两个重要极限:六 三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( x xarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xx x x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ七 高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑八 中值定理与导数应用:拉格朗日中值定理。

高等数学公式大全

高等数学公式大全

高等数学公式大全
1.极限运算法则:lim(f(x)+g(x))=limf(x)+limg(x),
lim(f(x)-g(x))=limf(x)-limg(x),
lim(f(x)*g(x))=limf(x)*limg(x),
lim(f(x)/g(x))=limf(x)/limg(x)。

2.导数公式:包括求导的四则运算法则、复合函数的求导法
则、高阶导数等。

3.导数的应用:包括极值与拐点、曲线的凹凸性和拐点、函
数图形的描绘等。

4.不定积分:包括不定积分的性质和运算法则、基本积分公
式、积分的方法等。

5.定积分:包括定积分的性质和运算法则、微积分基本定理
等。

6.多重积分:包括二重积分、三重积分等。

7.微分方程:包括一阶微分方程、高阶微分方程、线性微分
方程等。

8.空间解析几何:包括向量的表示与运算、向量的数量积、
向量积等。

9.多元函数的微分学:包括偏导数与高阶偏导数、全微分、
方向导数等。

10.重积分:包括二重积分、三重积分、曲线积分、曲面
积分等。

高等数学公式大全(带书签及目录)

高等数学公式大全(带书签及目录)
高等数学公式大全(V1.00)
一、一元函数的极限与连续 .................................... 1 ㈠、和差公式与和差化积 ................................ 1 ㈡、积化和差公式 ............................................ 1 ㈢、倍角公式与半角公式 ................................ 1 ㈣、其它公式 .................................................... 2 ㈤、极限 ............................................................ 2 ㈥、连续 ............................................................ 2 二、导数与微分 ........................................................ 3 ㈠、基本导数公式 ............................................ 3 ㈡、高阶导数 .................................................... 3 ㈢、微分 ............................................................ 4 三、微分中值定理与微分的应用 ............................ 4 ㈠、基本定理 .................................................... 4 ㈡、泰勒公式及常用展开式 ............................ 4 ㈢、弧微分公式 ................................................ 5 四、不定积分 ............................................................ 5 ㈠、常用不定积分公式 .................................... 5 ㈡、常用凑微分公式 ........................................ 6 ㈢、有特殊技巧的积分 .................................... 6 五、定积分 ................................................................ 7 ㈠、基本概念 .................................................... 7 ㈡、常用定积分公式 ........................................ 7 六、定积分应用 ........................................................ 8 ㈠、平面图形的面积 ........................................ 8 ㈡、空间立体的体积 ........................................ 8 ㈢、平面曲线的弧长 ........................................ 9 七、向量代数与空间解析几何 ................................ 9 八、多元函数微分法及其应用 .............................. 11 ㈠、定义 .......................................................... 11 ㈡、微分 .......................................................... 11 ㈢、隐函数求导 .............................................. 12 ㈣、曲线的切线和法平面 .............................. 12 ㈤、曲面的切平面和法线 .............................. 12 ㈥、方向导数 .................................................. 13 ㈦、梯度 .......................................................... 13 九、重积分 .............................................................. 13 ㈠、 二重积分 ................................................ 13 ㈡、三重积分 .................................................. 13 ㈢、重积分的应用 .......................................... 14 十、曲线积分和曲面积分 ...................................... 15 ㈠、第一类曲线积分(对弧长的曲线积分) .... 15 ㈡、第二类曲线积分(对坐标的曲线积分) .... 15 ㈢、第一类曲面积分 ...................................... 15 ㈣、第二类曲面积分 ...................................... 16 十一、无穷级数 ...................................................... 17 ㈠、常数项级数

级数知识点公式总结

级数知识点公式总结

级数知识点公式总结一、级数的定义1.1 级数的概念级数是指将一系列数相加得出的结果,通常用符号表示为S = a1 + a2 + a3 + ... = ∑an其中ai(i=1,2,3,...)为级数的每一项,∑为级数的求和符号。

1.2 级数的收敛与发散级数的和可能有限也可能无限。

如果级数的和有限,即级数收敛;如果级数的和无限,即级数发散。

收敛和发散是级数的重要性质,在后续的讨论中将会详细介绍。

1.3 级数的部分和级数的部分和是指级数中前n项的和,通常用Sn表示。

级数的部分和是级数收敛与发散的重要依据,在计算级数的和时,通常需要用到级数的部分和。

1.4 级数的常见形式在实际应用中,级数通常有一些常见的形式,如等比级数、调和级数、幂级数等。

不同形式的级数有着不同的性质和求和方法,需要根据具体情况进行分析和求解。

二、级数的常见性质2.1 级数的加法性质级数具有加法性质,即级数的和等于其各项部分和的和。

假设级数∑an收敛,则有S = a1 + a2 + a3 + ... = ∑an对于级数的部分和Sn也有Sn = a1 + a2 + ... + an则有级数的和S等于部分和Sn的极限:S = lim(n→∞)Sn2.2 级数的乘法性质级数也具有乘法性质,即级数的和与乘以一个常数之后的和是相等的。

假设级数∑an收敛,则有kS = k(a1 + a2 + a3 + ...) = k∑an其中k为一个常数。

2.3 级数的收敛性质级数的收敛性质时级数理论中的重要内容,对于级数是否收敛有着一些判断的方法。

其中比较常见的是级数收敛的判别法,例如比较判别法、比值判别法、根值判别法等。

这些判别法在判断级数的收敛性时具有一定的实用性,需要掌握和运用。

2.4 级数的发散性质级数的发散性质同样是级数理论中的重要内容,对于级数是否发散也有着一些判断的方法。

通常可以通过级数的通项公式、部分和的性质等来判断级数的发散性。

2.5 级数的收敛域级数在其收敛域内可以具有比较好的性质和应用,而在其发散域外则有着不同的性质和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

常数项级数:
是发散的调和级数:等差数列:等比数列:n n n n q
q q q q n
n 1312112
)1(3211111
2+++++=++++--=++++- 级数审敛法:
散。

存在,则收敛;否则发、定义法:
时,不确定时,级数发散时,级数收敛,则设:、比值审敛法:
时,不确定时,级数发散时,级数收敛,则设:别法):
—根植审敛法(柯西判—、正项级数的审敛法n n n n n n n n n n s u u u s U U u ∞→+∞→∞→+++=⎪⎩
⎪⎨⎧=><=⎪⎩
⎪⎨⎧=><=lim ;3111lim 2111lim 1211 ρρρρρρρρ。

的绝对值其余项,那么级数收敛且其和
如果交错级数满足—莱布尼兹定理:
—的审敛法或交错级数1113214321,0lim )0,(+∞
→+≤≤⎪⎩⎪⎨⎧=≥>+-+-+-+-n n n n n n n n u r r u s u u u u u u u u u u u 绝对收敛与条件收敛:
∑∑∑∑>≤-+++++++++时收敛
1时发散p 级数: 收敛;
级数:收敛;
发散,而调和级数:为条件收敛级数。

收敛,则称发散,而如果收敛级数;
肯定收敛,且称为绝对收敛,则如果为任意实数;
,其中111)1(1)1()1()2()1()2()2()1(232121p n p n n n u u u u u u u u p n
n n n
幂级数:
0010)3(lim )3(1111111221032=+∞=+∞===
≠==><+++++≥-<++++++++∞→R R R a a a a R R x R x R x R x a x a x a a x x x x x x x n n n n n n n n 时,时,时,的系数,则是,,其中求收敛半径的方法:设称为收敛半径。

,其中时不定
时发散时收敛
,使在数轴上都收敛,则必存收敛,也不是在全
,如果它不是仅在原点 对于级数时,发散
时,收敛于
ρρρρρ 函数展开成幂级数:
+++''+'+===-+=+-++-''+-=∞→++n n n n n n n n n x n f x f x f f x f x R x f x x n f R x x n x f x x x f x x x f x f !
)0(!2)0()0()0()(00lim )(,)()!
1()()(!
)()(!2)())(()()(2010)1(00)(20000时即为麦克劳林公式:充要条件是:可以展开成泰勒级数的余项:函数展开成泰勒级数:ξ一些函数展开成幂级数:
)()!12()1(!5!3sin )11(!)1()1(!2)1(1)1(121532+∞<<-∞+--+-+-=<<-++--++-+
+=+--x n x x x x x x x n n m m m x m m mx x n n n m 欧拉公式:
⎪⎪⎩
⎪⎪⎨⎧-=+=+=--2sin 2cos sin cos ix ix ix
ix ix e
e x e e x x i x e 或 三角级数:。

上的积分=在任意两个不同项的乘积正交性:。

,,,其中,0],[cos ,sin 2cos ,2sin ,cos ,sin ,1cos sin )sin cos (2)sin()(00101
0ππωϕϕϕω-====++=++=∑∑∞
=∞= nx nx x x x x x t A b A a aA a nx b nx a a t n A A t f n n n n n n n n n n n n
傅立叶级数:
是偶函数 ,余弦级数:是奇函数 ,正弦级数:(相减)(相加) 其中,周期∑⎰∑⎰⎰⎰∑+=======
==+-+-=++++=+++=+++⎪⎪⎩
⎪⎪⎨⎧=====++=--∞
=nx a a x f n nxdx x f a b nx b x f n xdx x f b a n nxdx x f b n nxdx x f a nx b nx a a x f n n n n n n n n n n n cos 2
)(2,1,0cos )(20sin )(3,2,1n sin )(2012413121164131211246
14121851311)3,2,1(sin )(1)2,1,0(cos )(12)sin cos (2)(000222222222
2222
221
0 π
ππππππππππππππ
周期为l 2的周期函数的傅立叶级数:
⎪⎪⎩⎪⎪⎨⎧=====++=⎰⎰∑--∞=l l n l l n n n n n dx l x n x f l b n dx l x n x f l a l l
x n b l x n a a x f )3,2,1(sin )(1)2,1,0(cos )(12)sin cos (2)(10 其中,周期ππππ。

相关文档
最新文档