运筹学判断题
运筹学选择判断题答案

一、选择题(每小题3分)1. (线性规划问题的数学模型形式)线性规划问题的数学模型由目标函数、约束条件和( D )三个部分组成。
A. 非负条件B. 顶点集合C. 最优解D. 决策变量2.(线性规划问题的标准形式)在线性规划问题的标准形式中,不可能存在的变量是(D )。
A.决策变量B.松驰变量 C.剩余变量 D.人工变量3.(同上)将线性规划问题转化为标准形式时,下列说法不正确的是( D )。
A.如为求z的最小值,需转化为求-z的最大值B.如约束条件为≤,则要增加一个松驰变量C.如约束条件为≥,则要减去一个剩余变量D.如约束条件为=,则要增加一个人工变量4.(同上)下列选项中不符合线性规划模型标准形式要求的有(B )。
A.目标函数求最大值 B.右端常数无约束 C.变量非负 D.约束条件为等式5.(线性规划问题解的情况)线性规划问题若有最优解,则最优解( C )。
A.只有一个B.会有无穷多个C. 唯一或无穷多个D.其值为06.(图解法)用图解法求解一个关于最小成本的线性规划问题时,若其等值线与可行解区域的某一条边重合,则该线性规划问题( A )。
A.有无穷多个最优解 B.有有限个最优解C.有唯一的最优解D.无最优解7.(图解法)图解法通常用于求解有(B)个变量的线性规划问题A.1B.2C.4D.58.(单纯形法求解线性规划问题的几种特殊情况)若线性规划问题的最优解不唯一,则在最优单纯形表上( B )。
A. 非基变量的检验数都为零B. 非基变量检验数必有为零C. 非基变量检验数不必有为零者D. 非基变量的检验数都小于零9.(同上)线性规划具有多重最优解是指( B )。
A.目标函数系数与某约束系数对应成比例B.最优表中存在非基变量的检验数为零C.可行解集合无界D.基变量全部大于零10.(同上)线性规划具有唯一最优解是指( A )A.最优表中非基变量检验数全部非零B.不加入人工变量就可进行单纯形法计算C.最优表中存在非基变量的检验数为零D.可行解集合有界11.(单纯形法)单纯形法当中,入基变量的确定应选择检验数(C )A.绝对值最大B.绝对值最小C. 正值最大D. 负值最小12.(单纯形法)出基变量的含义是( D )A . 该变量取值不变 B.该变量取值增大 C. 由0值上升为某值 D.由某值下降为013.(单纯形法之人工变量)在约束方程中引入人工变量的目的是( D )A.体现变量的多样性B. 变不等式为等式C.使目标函数为最优D. 形成一个单位阵14. (单纯形法之大M法)求目标函数为最大的线性规划问题时,若全部非基变量的检验数小于等于零,且基变量中有人工变量时该问题有(B )A.无界解B.无可行解C. 唯一最优解D.无穷多最优解15(灵敏度分析)若线性规划问题最优基中某个基变量的目标系数发生变化,则(C )A.该基变量的检验数发生变化 B.其他基变量的检验数发生变化C.所有非基变量的检验数发生变化D.所有变量的检验数都发生变化16(灵敏度分析)线性规划灵敏度分析的主要功能是分析线性规划参数变化对(D )的影响。
运筹学概念判断题答案

【管理运筹学】考试判断题及答案一.判断题1. 整数规划的目标函数值一般优于其相应的线性规划问题解的目标函数值;(×)2. 指派问题数学模型的形式与运输问题十分相似,故也可以用表上作业法求解(√)3. 求解整数规划问题,可以通过先求解无整数约束的松弛问题最优解,然后对该最优解取整求得原整数规划的最优解;(×)4. 指派问题效率矩阵的每一个元素都乘上同一常数k,将不影响最优指派方案;(×)5. 用割平面法求解纯整数规划时,要求包括松弛变量在内的所有变量必须取整数值;(√)6. 对于一个动态规划问题,应用顺推或者逆推解法可能会得出不同的最优解;(×)7. 动态规划中,定义状态时应保证在各个阶段中所做决策的相互独立性;(√)8. 在动态规划模型中,问题的阶段数等于问题中子问题的数目;(√)9. 用分支定界法求解一个最大化的整数规划问题时,任何一个可行解的目标函数值都是该问题目标函数值的下界;(√)10. 动态规划的最优决策具有如下的性质:无论初始状态与初始决策如何,对于先前决策所形成的状态而言,其以后的所有决策应构成最优策略;(√)11. 用割平面法求解整数规划时,构造的割平面有可能切去一些不属于最优解的整数解;(×)12. 分枝定界求解整数规划时, 分枝问题的最优解不会优于原( 上一级) 问题的最优解;(√)13. 无后效性是指动态规划各阶段状态变量之间无任何联系;(×)14. 求解整数规划的分支定界法在本质上属于一种过滤隐枚举方法;(√)15. 动态规划的最优性原理保证了从某一状态开始的未来决策独立于先前已作出的决策;(√)二、概念判断题1. 线性规划问题的数学模型中目标函数和约束函数不一定都是线性函数。
(√)2. 求般获得最好经济效益问题是求如何合理安排决策变量(即如何安排生产)使目标函数最大的问题,求最大的目标函数问题,则记为max Z;若是如何安排生产使成本是最小的问题,则记为min Z .(√)3. 用图解法解线性规划问题,存在最优解时,一定在有界可行域的某顶点得到;若在两个顶点同时得到最优解,则它们的连线上任意点都是最优解。
运筹学试题与答题

运筹学试题与答题一、判断题(正确的打“√”,错误的打“×”):1.图解法只能解决包含两个决策变量的线性规划问题.(是)2.线性规划具有无界解,则可行域无界.(是)3.若线性规划问题的可行域存在,则可行域是一个凸集.(是)4.单纯形法求解线性规划问题时每换基迭代一次必使目标函数值下降一次.(错)每迭代一次,目标函数的值都会增加,即增量大于05.用单纯形法求解线性规划问题时,如果表中所有的检验数0≤σ,则表j中的基可行解为最优解.(是)0≤σ,则非基变量都<=0j6.对偶问题的对偶就是原问题.(恩)8.互为对偶问题,原问题有最优解,对偶问题也有最优解.(恩)且目标函数的值也一样9.任意一个运输问题一定存在最优解.(是的)运输问题一定存在最优解10.线性规划问题的最优解只能在极点上达到.(错)11.对偶单纯形法是直接解对偶问题的一种方法.(错)有区别的。
通过判断b列的正负来进行迭代的。
12.原问题具有无界解,对偶问题无可行解.(恩)13.可行解是基解.(错)14.标准型中的变量要求非正.(恩)大于015.线性规划的基本最优解是最优解.(恩)16.对产销平衡运输问题,各产地产量之和等于各销地销量之和.(恩)18.用单纯形法求解线性规划问题时,一定要将问题化为标准型.(恩)19.匈亚利解法是求解运输问题的一种方法.(错)匈牙利(康尼格)法是求解及小型(优化方向为极小)指派问题的一种方法20.运输问题必存在有限最优解.(错)当非基变量为0时有无穷多最优解(关于其退化问题)二、填空题:1.规划问题的数学模型由目标函数、约束条件、决策变量三个要素组成。
2.满足变量非负约束条件的基解称为基可行解。
3.线性规划的约束条件个数与其对偶问题的决策变量个数相等;4.如原问题有可行解且目标函数值无界,则其对偶问题无可行解;反之,对偶问题有可行解且目标函数值无界,则其原问题无可行解。
5.线性规划的右端常数项是其对偶问题的目标函数的变量系数;6.用单纯形法求解线性规划问题时,判断是否为最优解的标准是:对极大化问题,检验数应为小于0 ;对极小化问题,检验数应为大于0 。
运筹学习题判断题及答案(通用篇)

运筹学习题判断题及答案(通用篇)一、判断题1. 线性规划问题中,目标函数必须是线性函数。
()答案:错误。
线性规划问题的目标函数可以是线性函数,也可以是非线性函数。
但是,当目标函数为非线性函数时,该问题就不再是线性规划问题。
2. 在目标规划中,若决策变量有上界和下界,则称为有界决策变量。
()答案:正确。
在目标规划中,有界决策变量是指决策变量具有上界和下界限制。
3. 对偶问题与原问题具有相同的可行域。
()答案:错误。
对偶问题与原问题具有相同的解,但可行域一般不同。
4. 在整数规划中,若决策变量取值为整数,则该问题一定为整数规划问题。
()答案:错误。
整数规划问题要求决策变量取整数值,但并非所有决策变量取整数值的问题都是整数规划问题。
例如,线性规划问题的决策变量也可以取整数值。
5. 在动态规划中,最优子结构的性质是指一个问题的最优解包含了其子问题的最优解。
()答案:正确。
动态规划的最优子结构性质是指问题的最优解可以通过求解子问题的最优解来构造。
6. 网络流问题是图论中的一个特殊问题,它涉及到图中各顶点之间的流量分配。
()答案:正确。
网络流问题确实是图论中的一个特殊问题,主要研究如何在图中各顶点之间进行流量分配,使得整个网络的流量达到最大。
7. 在排队论中,顾客到达率和服务率是描述排队系统性能的关键指标。
()答案:正确。
顾客到达率和服务率是排队论中描述排队系统性能的两个重要指标,它们分别表示单位时间内到达系统的顾客数和单位时间内服务完毕的顾客数。
8. 在库存管理中,经济订货批量(EOQ)模型适用于确定最优订货量和订货周期。
()答案:正确。
经济订货批量(EOQ)模型是库存管理中的一种重要模型,用于确定最优订货量和订货周期,以降低库存成本。
9. 在非线性规划中,库恩-塔克(KKT)条件是判断约束非线性规划问题最优解的必要条件。
()答案:正确。
库恩-塔克(KKT)条件是约束非线性规划问题最优解的必要条件,它提供了一种求解约束非线性规划问题的方法。
运筹学习题集第四版判断题

复习思考题 第一章11判断下列说法是否正确:(a )图解法与单纯形法虽然求解的形式不同,但从几何上理解, 两者是一致的。
正确。
(b )线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大。
正确。
这里注意:增加约束,可行域不会变大;减少约束,可行域不会变小。
(c )线性规划问题的每一个基解对应可行域的一个顶点。
错误。
线性规划的基本定理之一为:线性规划问题的基本可行解对应于可行域的顶点。
(d )如线性规划问题存在可行域,则可行域一定包含坐标的原点。
错误。
如果约束条件中有一个约束所对应的区域不包含坐标的原点,则即使有可行域,也不包含坐标的原点。
(e )取值无约束的变量i x ,通常令'''i i i x x x =-,其中'''0,0i i x x ≥≥,在用单纯形法求得的最优解中,有可能同时出现'''0,0i i x x >>。
错误。
由于'"i i P P =-,()()1''1""ttt i it i i B P P B P P --==-=-,因此,'''i i x x 和中至多只有一个是t B 下的基变量,从而'''i i x x 和中至多只有一个取大于零的值。
(f )用单纯形法求解标准型式的线性规划问题时,与0j σ>对应的变量都可以被选作入基变量。
正确。
如表1-1,取k x 为入基变量,旋转变换后的目标函数值相反数的新值为:10t tt t t t tl k l kt lkb zz z a σθσ+⨯-=--=-- 即旋转变换后的目标函数值增量为t t l k θσ,由于0tl θ≥,只要0,t k σ≥就能保证0t t l k θσ≥,满足单纯形法基变换后目标函数值不劣化的要求。
运筹学试题与答题

一、判断题正确的打“√”,错误的打“×”:1.图解法只能解决包含两个决策变量的线性规划问题. 是2.线性规划具有无界解,则可行域无界. 是3.若线性规划问题的可行域存在,则可行域是一个凸集. 是4.单纯形法求解线性规划问题时每换基迭代一次必使目标函数值下降一次. 错 每迭代一次,目标函数的值都会增加,即增量大于05.用单纯形法求解线性规划问题时,如果表中所有的检验数0≤j σ,则表中的基可行解为最优解. 是 0≤j σ,则非基变量都<=06.对偶问题的对偶就是原问题. 恩8.互为对偶问题,原问题有最优解,对偶问题也有最优解. 恩 且目标函数的值也一样9.任意一个运输问题一定存在最优解. 是的运输问题一定存在最优解10.线性规划问题的最优解只能在极点上达到.错11.对偶单纯形法是直接解对偶问题的一种方法. 错 有区别的;通过判断b 列的正负来进行迭代的;12.原问题具有无界解,对偶问题无可行解. 恩13.可行解是基解. 错14.标准型中的变量要求非正. 恩 大于015.线性规划的基本最优解是最优解. 恩16.对产销平衡运输问题,各产地产量之和等于各销地销量之和. 恩18.用单纯形法求解线性规划问题时,一定要将问题化为标准型. 恩19.匈亚利解法是求解运输问题的一种方法.错 匈牙利康尼格法是求解及小型优化方向为极小指派问题的一种方法20.运输问题必存在有限最优解. 错 当非基变量为0时有无穷多最优解关于其退化问题二、填空题:1.规划问题的数学模型由 目标函数 、 约束条件 、 决策变量 三个要素组成;2.满足变量非负约束条件的 基解 称为基可行解;3.线性规划的约束条件个数与其对偶问题的 决策变量个数 相等;4.如原问题有可行解且目标函数值无界,则其对偶问题 无可行解 ;反之,对偶问题有可行解且目标函数值无界,则其原问题 无可行解 ;5.线性规划的右端常数项是其对偶问题的 目标函数的变量系数 ;6.用单纯形法求解线性规划问题时,判断是否为最优解的标准是:对极大化问题,检验数应为 小于0 ;对极小化问题,检验数应为 大于0 ;7.线性规划问题如果没有可行解,则单纯形计算表的终点表中必然有 基变量中有非零的人工变量 ;9.对于有)(n m +个结构约束条件的产销平衡运输问题,由于 销量等于产量 ,故只有)1(-+n m 个结构约束条件是线性独立的;10.某些运输问题会出现数字格的数目<行数+列数-1的现象,这种现象称为 退化 现象;11.运输问题中求初始基可行解的方法有 西北角法 、 最小元素法 、 伏尔格法 三种常用方法;12.在运输问题中,每次迭代时,如果有某非基变量的检验数等于零,则该运输问题 有无限多最优解 ;13.对产销平衡运输问题,所有结构约束条件都是 产量等于销量 ;14.解极小化不平衡运输问题时,如果销售量大于生产量,则需要增加一个虚拟产地,将问题化为平衡运输问题,虚拟产地的产量等于 销量减产量的差额;15.要求 线性规则中 决策变量必须取整数值的规划问题称为整数规划;不考虑整数条件,由余下的目标函数和约束条件构成的规划问题称为该整数规划问题的 相应的线性规划问题 ;16.求解0-1型整数规划时,为了减少运算量,常按目标函数中各变量系数的大小顺序重新排列各变量;对于最大化问题,可按 变量系数递增 的顺序排列,对于最小化问题,则相反;三、选择题:1.下列关于运筹学的优点中,不正确的是A .凡是可以建立数学模型的问题,一定能用运筹学的方法求得最优解有些问题本来就没有最优解B .运筹学可以量化分析许多问题C .大量复杂的运筹学问题,可以借助计算机来处理D .对复杂的问题可以较快地找到最优的解决方法2.线性规划的约束条件为⎪⎩⎪⎨⎧≥=++=++0,,422341421321x x x x x x x x ,则基本可行解为A .0,0,4,3B .1,1,0,0C .2,0,1,0D .3,4,0,03.有4个产地5个销地的平衡运输问题模型具有特征A .有9个基变量B .有8个约束有9个约束方程,8个独立约束C .有20个约束D .有20个变量4.下列叙述正确的是A .线性规划问题,若有最优解,则必是一个基变量组的可行基解B .线性规划问题一定有可行基解C .线性规划问题的最优解只能在极点上达到D .单纯形法求解线性规划问题时每换基迭代一次必使目标函数值下降一次5.使用人工变量法求解极大化线性规划问题时,当所有的检验数0≤j σ,在基变量中仍含有非零的人工变量,表明该线性规划问题A .有唯一的最优解B .有无穷多个最优解C .为无界解D .无可行解7.在产销平衡运输问题中,设产地为m 个,销地为n 个,那么解中非零变量的个数A .不能大于m +n -1B .不能小于m +n -1C .等于m +n -1D .不确定;8.线性规划0,,22,4,43m in 21212121≥≤+≥++=x x x x x x x x z ,则A .无可行解B .有唯一最优解C .有多重解D .无界解9.对偶问题有5个变量4个约束,则原问题有A .4个约束5个变量B .5个约束4个变量C .4个约束4个变量D .5个约束5个变量10.互为对偶的两个线性规划问题的解存在关系A .原问题有最优解,对偶问题可能无最优解B .对偶问题有可行解,原问题也有可行解C .若最优解存在,则最优解相同D .若最优解存在,则最优解不同12.如果决策变量数相等的两个线性规划的最优解相同,则两个线性规划A .约束条件相同B .目标函数相同C .最优目标函数值相等D .以上结论都不对14.线性规划具有无界解是指A .可行解集合无界B .有相同的最小比值C .存在某个检验数),,2,1(00m i a k i k =≤>且λD .最优表中所有非基变量的检验数非零15.线性规划最优解不唯一是指A .最优表中存在非基变量的检验数为零B .存在某个检验数),,2,1(00m i a k i k =≤>且λC .可行解集合是空集D .可行解集合无界16. 是求解运输问题的一种简便而有效的方法A .匈亚利解法B .表上作业法C .完全枚举法D .割平面法一、单项选择题本大题有8小题,每小题2分,共16分 1、在单纯性法计算中,如果检验数都小于等于零,而且非基变量的检验数全为负数,则表明此问题有 ;A 、无穷多组最优解B 、无最优解C 、无可行解D 、唯一最优解2、互相对偶的两个线性规划问题,若其中一个无可行解,则另一个必定 ;A 、无可行解B 、有可行解,也可能无可行解C 、有最优解D 、有可行解3、资源的影子价格是一种 ;A 、机会成本B 、市场价格C 、均衡价格D 、实际价格4、检验运输方案的闭合回路法中,该回路含有 个空格为顶点;A 、4个B 、2个C 、1个D 、3个5、m 个产地,n 个销地的初始调运表中,调运数字应该为A 、m+n 个B 、m+n --1个C 、m×nD 、m+n+1个。
《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。
A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。
答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。
答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。
答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。
答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。
答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。
()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。
()答案:错误3. 目标规划中的偏差变量可以是负数。
()答案:正确4. 在动态规划中,最优策略具有最优子结构。
()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。
运筹学试卷与参考答案完整版

《运筹学》模拟试题及参考答案一、判断题(在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写错误者写“X”。
)1. 图解法提供了求解线性规划问题的通用方法。
()2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j> 0,贝V问题达到最优。
()3. 在单纯形表中,基变量对应的系数矩阵往往为单位矩阵。
()4. 满足线性规划问题所有约束条件的解称为基本可行解。
()5. 在线性规划问题的求解过程中,基变量和非基变量的个数是固定的。
()6. 对偶问题的目标函数总是与原问题目标函数相等。
()7. 原问题与对偶问题是一一对应的。
()8. 运输问题的可行解中基变量的个数一定遵循m + n —1的规则。
()9. 指派问题的解中基变量的个数为m +n。
()10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。
()11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。
()12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往不相等。
()13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。
()14. 单目标决策时,用不同方法确定的最佳方案往往是一致的。
()15. 动态规划中运用图解法的顺推方法和网络最短路径的标号法上是一致的。
()三、填空题1. 图的组成要素------------------- ; ---------------- 。
2. 求最小树的方法有------------------ 、-------------- 。
3. 线性规划解的情形有--------------- 、------------- 、-------------- - ----------- 。
4. 求解指派问题的方法是------------------ 。
5. 按决策环境分类,将决策问题分为----------------- 、、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运筹学判断题
一、判断下列说法是否正确
(1)图解法同单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的;F
(2)线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大;T
(3)线性规划问题的每一个基解对应可行域的一个顶点;F
(4)如线性规划问题存在最优解,则最优解一定对应可行域边界上的一个点;T
(5)对取值无约束的变量,通常令,其中,在用单纯形法得的最优解中有可能同时出现;F
(6)用单纯形法求解标准型式的线性规划问题时,与对应的变量都可以被选作换入变量;T
(7)单纯形法计算中,如不按最小比值原则选取换出变量,则在下一个解中至少有一个基变量的值为负;T
(8)单纯形法计算中,选取最大正检验数对应的变量作为换入变量,将使目标函数值得到最快的增长;F
(9)一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果;T
(10)线性规划问题的任一可行解都可以用全部基可行解的线性组合表示;T
(11)若分别是某一线性规划问题的最优解,则也是该线性规划问题的最优解,其中为正的实数;F
(12)线性规划用两阶段法求解时,第一阶段的目标函数通常写为,但也可写为,只要所有均为大于零的常数;T
(13)对一个有n个变量、m个约束的标准型的线性规划问题,其可行域的顶点恰好为;F
(14)单纯形法的迭代计算过程是从一个可行解转换到目标函数值更大的另一个可行解;F
(15)线性规划问题的可行解如为最优解,则该可行解一定是基可行解;F
(16)若线性规划问题具有可行解,且其可行域有界,则该线性规划问题最多具有有限个数的最优解;F
(17)线性规划可行域的某一顶点若其目标函数值优于相邻的所有顶点的目标函数值,则该顶点处的目标函数值达到最优。
T
第二章对偶理论与灵敏度分析
(1)任何线性规划问题存在并具有唯一的对偶问题;T
(2)对偶问题的对偶问题一定是原问题;T
(3)根据对偶问题的性质,当原问题为无界解时,其对偶问题无可行解,反之,当对偶问题无可行解时,其原问题具有无界解;F (4)设分别为标准形式的原问题与对偶问题的可行解,分别为其最优解,则恒有
;T
(5)若线性规划的原问题有无穷多最优解,则其对偶问题也一定有无穷多最优解;F
(6)已知为线性规划的对偶问题的最优解,若,说明在最优生产计划中第i种资源已完全耗尽;T
(7)若某种资源的影子价格等于k,在其他条件不变的情况下,当该种资源增加5个单位时,相应的目标函数值将增大5k;F
(8)应用对偶单纯形法计算时,若单纯形表中某一基变量,又所在行的元素全部大于或等于零,则可以判断其对偶问题具有无界解。
T
第三章运输问题
(1)运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一;有唯一最优解,有无穷多最优解,无界解,无可行解;F
(2)在运输问题中,只要任意给出一组含(m+n-1)个非零的,且满足,,就可以作为一个初始基可行解;F
(3)表上作业法实质上就是求解运输问题的单纯形法;T
(4)按最小元素法(或沃格尔法)给出的初始基可行解,从每一空格出发可以找出而且仅能找出唯一的闭回路;T
(5)如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数k,最优调运方案将不会发生变化;T
(6)如果运输问题单位运价表的某一行(或某一列)元素分别乘上一个常数k,最优调运方案将不会发生变化;F
(7)当所有产地产量和销地销量均为整数值时,运输问题的最优解也为整数值。
F
第四章目标规划
(1)线性规划问题是目标规划问题的一种特殊形式;T
(2)正偏差变量应取正值,负偏差变量应取负值;F
(3)目标规划模型中,应同时包含系统约束(绝对约束)与目标约束;F
(4)当目标规划问题模型中存在的约束条件,则该约束为系统约束。
F
第五章整数规划
1、判断:
(1)整数规划解的目标函数值一般优于其相应的线性规划问题的解的目标函数值;F
(2)用分枝定界法求解一个极大化的整数规划问题时,任何一个可行解的目标函数值是该问题目标函数值的下界;T
(3)用分枝定界法求解一个极大化的整数规划问题时,当得到多于一个可行解时,通常可任取其中一个作为下界值,再进行比较剪枝;F
(4)指派问题效率矩阵的每个元素都乘上同一个常数k,将不影响最优指派方案;F
(5)指派问题数学模型的形式同运输问题十分相似,故也可以用表上作业法求解;T
(6)求解0-1规划的隐枚举法是分枝定界法的特例;T
(7)分枝定界法在需要分枝时必须满足:一是分枝后的各子问题必须容易求解;二是各个子问题解的集合必须覆盖原问题的解。
T
第八章图与网络分析
1、判断:
(1) 若是图的支撑树,、分别是图的顶点数与边数,则的边数为;T。